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Gradient Descent Method

Gradient Descent Method:
I Solve an unconstrained smooth optimization problem:

min
x∈RN

f(x) , where f ∈ C1(RN )

I Update Equation:
x(k+1) = x(k) − τk∇f(x(k)) .

I Contribution historically assigned to Cauchy in 1847:
[A.L. Cauchy: Méthode générale pour la résolution des systèmes

d’équations simultanées, Comptes rendus, Ac. Sci. Paris 25, 536–538
(1847).]

I He was motivated by calculations in astronomy.

I He wants to solve non-linear equations.
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Augustin Louis Cauchy

[Augustin Louis Cauchy, 1789–1857
(Wikimedia, Cauchy Dibner-Collection Smithsonian Inst.)]
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Facts about Gradient Descent

Gradient Descent is also known as Steepest Descent:.
I Objective has steepest descent along d = −∇f(x̄).

I W.l.o.g., we can assume that |d| = 1 (the scaling of d can be absorbed by τ ).

I For sufficiently small τ > 0, the direction d is optimal with respect to:

min
d∈RN

f(x̄+ τd)− f(x̄)

τ
s.t. |d| = 1 .

I Consider the first order Taylor expansion:

f(x̄+ τd) = f(x̄) + τ 〈∇f(x̄), d〉+ o(τ |d|) .

(Note that for τ → 0, the term o(τ) vanishes faster than τ 〈∇f(x̄), d〉.)

I The direction d solves the following problem

min
d∈RN

〈∇f(x̄), d〉 s.t. |d| = 1 .
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Facts about Gradient Descent

I Problem:
min
d∈RN

〈∇f(x̄), d〉 s.t. |d| = 1 .

I Denote by θ the angle between ∇f(x̄) and d and write:

〈∇f(x̄), d〉 = |∇f(x̄)||d| cos θ ,

I Therefore, problem is solved by

d = − ∇f(x̄)

|∇f(x̄)|
.

I Negative gradient −∇f(x̄) points in the direction of steepest descent.
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Descent Direction

Definition: (Descent Direction)
A vector 0 6= d ∈ RN is a descent direction for the function f at the point x̄, if
〈∇f(x̄), d〉 < 0 holds, i.e. the angle between d and ∇f(x̄) is larger than 90
degree (obtuse angle).

I For descent direction d:

f(x̄+ τd) = f(x̄) + τ 〈∇f(x̄), d〉︸ ︷︷ ︸
<0

+o(τ |d|)

<
τ small

f(x̄)

Example:
I B positive definite, d = −B∇f(x̄) 6= 0:

〈∇f(x̄), d〉 ≤ −λmin(B)|∇f(x̄)|2 < 0 .

x̄

−∇f(x̄)
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Descent Direction for Non-smooth Functions?

Remark: This definition is not true for non-smooth functions:

x̄
−d̃

d

I −d̃ steepest descent direction.

I d satisfies
〈
d, d̃
〉
< 0.

I However, f(x̄+ τd) > f(x̄) for any τ > 0.
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Sufficient Descent Condition is Required

Sufficient Descent Condition:
I Is f(x(k+1)) < f(x(k)) “sufficient” to find a minimizer or a stationary point

∇f(x?) = 0 ? (x? is called stationary or critical point)

Example:
f(x) = x2 − 1. Start at x(0) = 2; descent direction
d(k) = −x(k)/|x(k)| and τ (k) such that f(x(k)) =
1/(k + 1). Then, obviously,

f(x(k+1)) =
1

k + 2
<

1

k + 1
= f(x(k)) ,

however f(x(k)) → 0 for k → ∞ and min f = −1.
This algorithm does not converge to the minimum.
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Armijo condition — Sufficient Descent Condition

Definition (Armijo condition):
The step size τ > 0 is said to satisfy the Armijo condition for γ ∈ (0, 1) and the
descent direction d ∈ RN at the point x̄ ∈ RN , if the following holds:

f(x̄+ τd) ≤ f(x̄) + γτ 〈∇f(x̄), d〉

τ

x̄

f(x̄)

τ 7→ f(x̄+ τd)

τ 7→ f(x̄) + τ · γ 〈∇f(x̄), d〉
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Armijo condition

Example: (Armijo condition)
I Let d = −∇f(x̄). Then, the Armijo condition reads

f(x̄+ τd) ≤ f(x̄)− γτ |∇f(x̄)|2 .

I Descent achieved whenever τ |∇f(x̄)|2 > 0 (i.e. x̄ is not a stationary point).

I A small descent of the objective values means that τ is small or |∇f(x̄)|2 is
small:

γτ |∇f(x̄)|2 ≤ f(x̄)− f(x̄+ τd)

I The difference between successive objective values is a measure for the
stationarity of the iterates (scaled by τ ).
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Backtracking Line Search

Algorithm (Backtracking Line Search Method):
I Prerequisites: Descent direction d ∈ RN at x̄ ∈ RN for f ∈ C1(RN ).

I Goal: Find a step size τ that satisfies the Armijo condition.

I Procedure:

I Initialize: Let τ̄ > 0, γ, ρ ∈ (0, 1) and set τ (0) = τ̄ .

I For j = 0, 1, 2, . . .: If the condition

f(x̄+ τ (j)d) ≤ f(x̄) + γτ (j) 〈∇f(x̄), d〉

is satisfied, then stop the algorithm and return τ (j), otherwise

set τ (j+1) = ρτ (j) .
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Convergence of Gradient Descent

Proposition (Stationarity of Limit Points):
Let
I f ∈ C1(RN )

I (x(k))k∈N be generated by Gradient Descent d(k) = −∇f(x(k))

I (τk)k∈N selected by backtracking line search satisfies the Armijo condition.

Then
I every limit point of (x(k))k∈N is a stationary point of f .
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Convergence of Gradient Descent

Proposition (Constant Step Size Rule):
Let
I f ∈ C1(RN ) with L-Lipschitz continuous gradient ∇f :

|∇f(x)−∇f(y)| ≤ L|x− y| , ∀x, y ∈ RN

I (x(k))k∈N be generated by Gradient Descent d(k) = −∇f(x(k))

I for some ε > 0, the step sizes (τk)k∈N satisfy

ε ≤ τk ≤
2− ε
L

.

Then
I every limit point of (x(k))k∈N is a stationary point of f .
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Discussion Convergence

Discussion: (Convergence of Gradient Descent):
I (f(x(k)))k∈N converges to f∗ > −∞.

I Every limit point x∗ satisfies

∇f(x∗) = 0 , i.e. it is a stationary point.

I x∗ is not necessarily a local minimizer.

I Possibly: Convergence to a saddle point or local maximum.

I The sequence (x(k))k∈N does not necessarily converge, although

|∇f(x(k))| → 0
τk=τ 6=0⇒ |x(k+1) − x(k)| → 0 .
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Counterexample for Convergence

Counterexample:
I Gradient Descent with line minimization does not converge to a single point.

I [H. B. Curry: The method of steepest descent for non-linear minimization
problems, Quart. Appl. Math., 2 (1944), pp. 258–261.]:

Let f(x1, x2) = 0 on the unit circle and f(x1, x2) > 0 for any other point.
Outside the unit circle let the surface have a spiral gully making infinitely
many turns about the circle. The iterates will follow the gully and have all

points of the circle as limit points.

I Counterexample given by a C∞-function. (See next slide.)
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Counterexample for Convergence

Counterexample:

From [Absil, Mahony, Andrews 2005]

I Defined in polar coordinates (r, θ):

f(r, θ) :=

{
e
− 1

1−r2

(
1− 4r4

4r4+(1−r2)4 sin
(
θ − 1

1−r2
))
, if r < 1 ;

0 , if r ≥ 1 ;
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Convergence to a Single Stationary Point

Convergence to a Single Point: (Requires additional assumptions)
I Critical points isolated or Hessian non-degenerate [Helmke, Moore 1994].

I Strictly convex functions: Global minimum is unique isolated critical point.

I Objective differentiable quasi-convex [Kiwiel, Murty 1996].

I Convergence to isolated local minimum [Bertsekas 1995].
(Capture Theorem)

I Pseudo-convexity conditions and growth conditions [Dunn 1981, 1987].

I f convex, ∇f Lipschitz, const. step size, e.g. [Bauschke, Combettes 2011].
(using Fejér Monoticity)

I Real analytic functions [Absil, Mahony, Andrews 2005].
(using Łojasiewicz inequality)

I Tame functions [Bolte, Daniilidis, Ley, Mazet 2010].
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Single Point convergence

Part 4:
Single Point Convergence

1. Łojasiewicz Inequality

2. Kurdyka-Łojasiewicz Inequality

3. Abstract Convergence Theorem

4. Convergence of Non-convex Forward–Backward Splitting

5. A Generalized Abstract Convergence Theorem

6. Convergence of iPiano

7. Local Convergence of iPiano
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Convergence Speed of Gradient Descent

Convergence Rate for Smooth Strongly Convex Functions:
I f ∈ S 1,1

µ,L (smooth strongly convex), i.e. f(x)− µ
2 |x|

2 convex.

I For τ ∈ (0, 2/(µ+ L)]

|x(k+1) − x?|2 ≤
(

1− 2τµL

µ+ L

)k
|x(0) − x?|2 .

If τ = 2/(µ+ L), then

|x(k+1) − x?|2 ≤
(L− µ
L+ µ

)2k

|x(0) − x?|2 .

Linear convergence rate [Nesterov 2004].

c© 2018 — Peter Ochs Part 1: Gradient Descent 20 / 40



Convergence Speed of Gradient Descent

Convergence Rate for Smooth Convex Functions:
I f ∈ F1,1

L (smooth convex).

I For τ ∈ (0, 2/L)

f(x(k))− f? ≤ 2(f(x(0))− f?)‖x(0) − x∗‖2

2‖x(0) − x∗‖2 + kτ(2− τL)(f(x(0))− f?)
= O(1/k) .

Sub-Linear convergence rate [Nesterov 2004].
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Convergence Speed of Gradient Descent

Convergence Speed of Gradient Descent: (Discussion)
I We have upper complexity bounds for Gradient Descent.

I Still unclear, how good Gradient Descent is.

I For irregularly scaled level sets, Gradient Descent is bad.

x
(0)
GD

x
(1)
GD

x
(2)
GD

I For some classes of problems, we have lower complexity bounds.
[Nesterov 2004], [Nemirovski, Yudin 1983].
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Lower complexity bound for S∞,1
µ,L (R∞), [Nesterov 2004]

Theorem: (Lower Bound for Smooth Strongly Convex Functions)
For any x(0) ∈ R∞ and any constants µ > 0, L > µ there exists a function
f ∈ S∞,1µ,L (R∞) such that for any first-order methodM satisfying our
assumptions, we have

‖x(k) − x?‖2 ≥ q2k‖x(0) − x?‖2 , q :=

√
L−√µ
√
L+
√
µ

f(x(k))− f? ≥ µ
2 q

2k‖x(0) − x?‖2 .

Discussion:
I The “worst function” depends on µ and L, but not on k.

I The bound is uniform in the dimension.

I Turns out to be tight for quadratic functions (e.g. Conjugate Gradient Method).

I The rate is “much” worse for Gradient Descent:

qGD :=
L− µ
L+ µ

vs qopt :=

√
L−√µ
√
L+
√
µ
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Lower complexity bound for F∞,1L (RN), [Nesterov 2004]

Theorem: (Lower Bound for Smooth Convex Functions)
For any k with 1 ≤ k ≤ 1

2 (N − 1) and any x(0) ∈ RN , there exists at least one
function f ∈ F1,1

L (RN ) such that for any first order methodM satisfying our
assumption, we have that

f(x(k))− f? ≥ 3L‖x(0) − x?‖2

32(k + 1)2
, i.e. f(x(k))− f? ∈ O(1/k2)

Discussion:
I The estimates are valid for large scale problems (N > 105),

or for the first iterates of small problems (N < 104).

I The complexity bound is uniform in the dimension of the problem.

I Unclear whether the estimation of the lower complexity bound is tight.

I After k = 100 iterations we can decrease our initial residual by a factor of 104.

I In order to improve the situation, we have to find another problem class.

I Obviously, Gradient Descent is not optimal O(1/k).
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Acceleration Strategies

Part 2:
Acceleration Strategies

1. Time Continuous Setting

2. Heavy-ball Method

3. Nesterov’s Acceleration

4. Quasi-Newton Methods

5. Subspace Acceleration
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Applications

Image Processing: (Image Denoising, Deblurring)
I f ∈ RN : degraded (grey-value) image

clean image g noisy image f reconstruction u

I Suppose degradation process is known A : RN → RN (linear):

f = A(g) + n

I g ∈ RN : ground truth/clean image.
I n ∈ RN : noise (e.g. Gaussian or Impulse noise)
I We also consider (non-additive) Poisson noise. (different formula)
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Image Processing: (Image Denoising, Deblurring)

Reconstruction by Variational Methods:

min
u∈RN

D(u)︸ ︷︷ ︸
data term

+ λ R(u)︸ ︷︷ ︸
regularization term

I Data term: Reconstruction/solution u should be similar to f .
I D(u) = ‖A(u)− f‖22: good for removing Gaussian noise.
I D(u) = ‖A(u)− f‖1: good for removing impulse noise.

I Regularization term: u should not contain noise, i.e. it should be smooth:
I Define finite-difference operator D : RN → R2N for u ∈ Rnx×ny ' RN by

D = (Dx,Dy) , (Du)xi,j =

{
ui+1,j − ui,j , if i < nx

0 , otherwise.

I R(u) = ‖Du‖22 (Tikhonov regularization)
I R(u) = ‖Du‖2,1 =

∑
i,j((Dxu)2

i,j + (Dyu)2
i,j)

1/2 ((isotropic) Total Variation)
I R(u) = ‖Du‖1 =

∑
i,j |(Dxu)i,j |+ |(Dyu)i,j | ((anisotropic) Total Variation)

I R(u) =
∑
i,j ϕ((Du)i,j) with ϕ(p) = log(1 + ν|p|) (non-convex) ...
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Image Processing: (Image Denoising, Deblurring)

Regularization term:
I Also known as prior assumption.

I Natural image statistics motivate the use of non-convex regularizers.

I Learned regularization filters:
(8.07,0.17) (8.05,0.15) (8.03,0.13) (8.02,0.12) (8.02,0.11) (8.00,0.10)

(8.00,0.09) (7.99,0.07) (7.98,0.06) (7.97,0.08) (7.97,0.05)

(7.96,0.05) (7.96,0.03) (7.95,0.03) (7.95,0.03) (7.94,0.04)

(8.06,0.16) (8.05,0.14) (8.03,0.13) (8.02,0.11) (8.01,0.11)

(8.00,0.09) (7.99,0.08) (7.99,0.10) (7.98,0.07) (7.97,0.08) (7.96,0.04)

(7.96,0.02) (7.95,0.01) (7.95,0.01) (7.95,0.06) (7.94,0.02)

(8.06,0.16) (8.04,0.14) (8.02,0.13) (8.02,0.11) (8.01,0.12)

(8.00,0.11) (7.99,0.08) (7.99,0.08) (7.97,0.05) (7.97,0.09)

(7.96,0.07) (7.96,0.01) (7.95,0.01) (7.95,0.01) (7.94,0.04) (7.94,0.07)
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Applications: LASSO

Least Absolute Shrinkage and Selection Operator: [Tibshirani 1994]

min
x∈RN

1

2
|Ax− b|2 + λ‖x‖1 or min

x∈RN

1

2
|Ax− b|2 s.t. ‖x‖1 ≤ λ .

I Sparse linear regression: (Ai ∈ RM is a feature for describing b)

b ≈
N∑
i=1

Aixi , A = (A1, . . . , AN ) ∈ RM×N , x = (x1, . . . , xN )> .

I ‖x‖1 used as a convex approxima-
tion to #{i : xi 6= 0}.

I Motivation: Many zero-coordinates
yield an interpretable model

b ≈
N∑
i=1

Aixi =
∑

j∈{i : xi 6=0}

Ajxj .
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Applications

Similar problems:
I Group Lasso, Fused Lasso, ...

I Logistic Regression: (xi, yi) ∈ X × {−1, 1} given “training data”:

min
w∈RN

∑
i

log(1 + exp(−yi 〈w, xi〉)) + λ‖w‖1 .

I Non-negative Least Squares:

min
x∈RN

1

2
|Ax− b|2 s.t. xi ≥ 0 ∀i = 1, . . . , N .

I Elastic Net Regularization:

min
x∈RN

1

2
|Ax− b|2 + λ1‖x‖1 + λ2‖x‖22 .

I Low Rank Approximation: (e.g. Matrix completion)

min
X∈RM×N

1

2
‖A−X‖2F + λ‖X‖∗ .
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Application

Neural Networks:
I Non-linear Regression Problem: (or interpolation)

I Given training data (xi, yi) ∈ X × Y , i = 1, . . . ,M .

I Training: Find w ∈ RP such that

Nw(xi) ≈ yi i = 1, . . . ,M

I The non-linear prediction function has a composition structure (L layer):

Nw(x) = wLσ(. . . σ(w2σ(w1x+ b1) + b2) . . .) + bL

with “activation functions” σ (coordinate-wise non-linear functions) and

w = (w1, . . . , wL, b1, . . . , bL) .
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Neural Networks

I Optimization Problem/Training: (e.g. Empirical risk)

min
w∈RN

1

2

M∑
i=1

|Nw(xi)− yi|2 or min
w∈RN

1

2

M∑
i=1

max(0, 1− yiNw(xi)) .

I Can also be complemented with sparsity or other priors for w.

I Use robust non-linear regression, when outliers are expected:

min
w∈RN

1

2

M∑
i=1

‖Nw(xi)− yi‖1 .
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Non-smooth Optimization

Part 3:
Non-smooth Optimization

1. Basic Definitions

2. Infimal Convoution

3. Proximal Mapping

4. Subdifferential

5. Optimality Condition (Fermat’s Rule)

6. Proximal Point Algorithm

7. Forward–Backward Splitting
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Non-smooth Optimization

Structured Optimization Problems:
I Most of the applications yield structured non-smoothness:

min
x∈RN

f(x) + g(x)

I f is a smooth function.

I g is a non-smooth function with “nice properties”.

I Forward–Backward Splitting is designed for such problems.
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Non-smooth Optimization Algorithms

Part 3: Non-smooth Optimization

6. Proximal Point Algorithm 7. Forward–Backward Splitting

Part 4: Single Point Convergence

4. Convergence of Non-convex Forward–Backward Splitting

Part 5: Variants and Acceleration of
Forward–Backward Splitting

1. FISTA

2. Adaptive FISTA

3. Proximal Quasi-Newton
Methods

4. Efficient Solution for Rank-1 Perturbed
Proximal Mapping

5. Forward–Backward Envelope

6. Generalized Forward–Backward Splitting
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Interpretation of Gradient Descent

Interpretation of Gradient Descent: (Relations to other Algorithms)
I Gradient Descent step equivalent to minimizing a quadratic function:

x(k+1) = argmin
x∈RN

f(x(k)) +
〈
∇f(x(k)), x− x(k)

〉
+

1

2τ
|x− x(k)|2 .

f(x)

x(k)

I Optimality condition:

∇f(x(k)) +
1

τ
(x− x(k)) = 0

⇔ x = x(k) − τ∇f(x(k))
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Interpretation of Gradient Descent

Another point of view:
I Minimization of a linear function

fx(k)(x) = f(x(k)) +
〈
∇f(x(k)), x− x(k)

〉
with quadratic penalty on the distance to x(k):

Dh(x, x(k)) =
1

2τ
|x− x(k)|2 .

I Update step:
x(k+1) = argmin

x∈RN

fx(k)(x) +Dh(x, x(k))
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Interpretation of Gradient Descent

Generalization to non-smooth functions f :
I Minimization of a convex model function

fx(k)(x) with |f(x)− fx(k)(x)| ≤ ω(|x− x(k)|)︸ ︷︷ ︸
growth function

with quadratic penalty on the distance to x(k):

Dh(x, x(k)) =
1

2τ
|x− x(k)|2 .

I Update step:
x(k+1) = argmin

x∈RN

fx(k)(x) +Dh(x, x(k))
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Interpretation of Gradient Descent

Generalization to non-smooth functions f :
I Minimization of a convex model function

fx(k)(x) with |f(x)− fx(k)(x)| ≤ ω(|x− x(k)|)︸ ︷︷ ︸
growth function

with penalty on the distance to x(k):

Dh(x, x(k)) .

I Update step:
x(k+1) = argmin

x∈RN

fx(k)(x) +Dh(x, x(k))
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A Unifying Framework

Part 6:
Bregman Proximal Minimization

1. Model Function Framework

2. Examples of Model Functions

3. Examples of Bregman Functions

4. Convergence Results

5. Applications
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Convergence Rate for the Gradient Method

Example for Unification: (Convergence Rate for the Gradient Method)
I Set the model: fx̄(x) = f(x̄) +

〈
∇f(x̄), x− xk

〉
(Gradient Descent).

I fx̄ satisfies the model assumption:

0 ≤ f(x)− fx̄(x) ≤ L

2
‖x− x̄‖2 .

I Define:
fτx̄ (x) := fx̄(x) +

1

2τ
‖x− x̄‖2 ,

i.e.
x̂ = arg min

x∈RN
fτx̄ (x) .

I fτx̄ is τ−1-strongly convex, i.e.

fτx̄ (x̂) +
1

2τ
‖x̂− x‖2 ≤ fτx̄ (x) .
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Convergence Rate for the Gradient Method

I fτx̄ is τ−1-strongly convex, i.e.

fτx̄ (x̂) +
1

2τ
‖x̂− x‖2 ≤ fτx̄ (x) .

I Using the model assumption, we obtain:

f(x̂) +

(
1

2τ
− L

2

)
‖x̂− x̄‖2 +

1

2τ
‖x̂− x‖2 ≤ f(x) +

1

2τ
‖x− x̄‖2 .

I Using x = x̄ and 0 < τ < 2
L , we obtain a descent algorithm.

I Restricting to 0 < τ ≤ 1
L , we obtain

f(x̂)− f(x) ≤ 1

2τ

(
‖x− x̄‖2 − ‖x− x̂‖2

)
.

I Set x = x?, x̂ = x(k+1) and x̄ = x(k), and sum both sides

f(x(k+1))− f(x?) ≤ ‖x
? − x(0)‖2

2τk

τ= 1
L=
L‖x? − x(0)‖2

2k
.
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Time Continuous Interpretation of Gradient Descent

Time Continuous Interpretation of Gradient Descent:
I Let (x(k))k∈N be generated by Gradient Descent.

I Then

x(k+1) = x(k) − τ∇f(x(k)) ⇔ x(k+1) − x(k)

τ
= −∇f(x(k)) .

I Consider as discretization of a curve X : [0,+∞)→ RN , t 7→ X(t).

I Set
tk := kτ and X(tk) = x(k) .

I Taylor expansion:

X(tk+1) = X(tk) + Ẋ(tk)(tk+1 − tk) +O(τ2)
= X(tk) + τẊ(tk) +O(τ2)

I Therefore
X(tk+1)−X(tk)

τ
= Ẋ(tk) +O(τ) = −∇f(X(tk)) .
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Gradient descent dynamical system

Gradient descent dynamical system:
I Also known as gradient descent dynamical system.

I Given by the differential equation:

Ẋ(t) +∇f(X(t)) = 0

I X : [0,+∞)→ RN curve with time derivative Ẋ.

I X ∈ C1 is a solution (curve), when it satisfies the differential equation.

I If we fix X(0) = X0 ∈ RN , existence and uniqueness is a classical result in
the theory of Ordinary Differential Equations.

I f is a Lyapunov function, i.e. it decreases along the solution curve:

d

dt
(f ◦X)(t) =

〈
∇f(X(t)), Ẋ(t)

〉
= −|∇f(X(t))|2

∇f(X(t)) 6=0
< 0 .
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Gradient descent dynamical system

Gradient descent dynamical system:
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Gradient descent dynamical system

Gradient descent dynamical system:
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Heavy-ball Dynamical System with Friction

Heavy-ball Dynamical System with Friction:
I Differential equation:

Ẍ(t) = −γẊ(t)−∇f(X(t))

I Describes the motion of a ball on the graph of the objective function f .

I Ẍ(t) is the second derivative (∼ acceleration).
 models inertia / momentum.

I −γẊ is a viscous friction force (γ > 0).

I Lyapunov function: F (t) := f(X(t)) + 1
2 |Ẋ(t)|2

d

dt
(F ◦X)(t) =

〈
∇f(X(t)), Ẋ(t)

〉
+
〈
Ẋ(t), Ẍ(t)

〉
= −γ|Ẋ(t)|2

Ẋ(t)6=0
< 0 .

I [Attouch, Goudou, Redont 2000]:

lim
t→∞

Ẋ(t) = lim
t→∞

Ẍ(t) = lim
t→∞

∇f(X(t)) = 0 .
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Inertial methods can speed up convergence

Inertial methods can speed up convergence:
I Polyak investigates multi-step methods in the paper:

[Some methods for speeding up the convergence
of iteration methods. Polyak, 1964].

I A m-step method constructs x(k+1) using the previous m iterations
x(k), . . . , x(k−m+1).

I Gradient descent method is a single-step method.

I Inertial methods are multi-step methods.

I Heavy-ball method is a 2-step method.
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Heavy-ball method

(Time-discrete) Heavy-ball method:
I Time-continuous dynamical system:

Ẍ(t) + γẊ(t) +∇f(X(t)) = 0 .

I Discretization yields:

0 =
x(k+1) − 2x(k) + x(k−1)

τ2
+ γ

x(k+1) − x(k)

τ
+∇f(x(k))

⇔ 0 = (1 + τγ)x(k+1) − (τγ + 2)x(k) + x(k−1) + τ2∇f(x(k))
⇔ 0 = (1 + τγ)x(k+1) − (τγ + 1)x(k) − (x(k) − x(k−1)) + τ2∇f(x(k))

⇔ 0 = x(k+1) − x(k) − 1

1 + τγ
(x(k) − x(k−1)) + τ2

1 + τγ
∇f(x(k))

I Set α = τ2

1+τγ and β = 1
1+τγ : (momentum β vs. friction γ)

x(k+1) = x(k) − α∇f(x(k)) + β(x(k) − x(k−1)) .
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Heavy-ball method

(Time-discrete) Heavy-ball method:
I Update rule:

x(k+1) = x(k) − α∇f(x(k)) + β(x(k) − x(k−1)) .

I (x(k))k∈N: sequence of iterates.

I α > 0: step size parameter.

I β ∈ [0, 1): inertial parameter.

I For β = 0, we recover the gradient descent method.

I Optimal for strongly convex functions [Polyak 1964]

|x(k+1) − x?|2 ≤ cq2k|x(0) − x?|2 , qHB :=

√
L−
√
l√

L+
√
l
.
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Heavy-ball method

Some properties:

I It is not a classical descent method.

I It avoids zick-zacking.

I Similarity to conjugate gradient method.

−∇f(x(1))

β(x(1) − x(0))

x
(0)
GD,HB

x
(1)
GD,HB

x
(2)
GD

x
(2)
HB

c© 2018 — Peter Ochs Part 2: Acceleration Strategies 11 / 17



Accelerated Gradient Descent

Nesterov’s Accelerated Gradient Method: f convex
I A differential equations:

Ẍ(t) +
ρ

t
Ẋ(t) +∇f(X(t)) = 0 .

[Su, Boyd, Candès, 2015] [Attouch, Peypouquet, Redont 2015]

I For ρ > 3: any trajectory converges weakly to a minimizer.

I Convergence rate: O(1/t2). (actually o(1/t2) [Attouch, Peypouquet 2016].)

I From overdamping to underdamping.

I Studied before in the following context: [Cabot, Engler, Gadat 2009]

Ẍ(t) + g(t)Ẋ(t) +∇f(X(t)) = 0 .
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Accelerated Gradient Descent

Nesterov’s Accelerated Gradient Method:
I Update step:

x(k+1) = y(k) − τ∇f(y(k))

tk+1 =
1 +

√
1 + 4t2k
2

y(k+1) = x(k+1) +
tk − 1

tk+1
(x(k+1) − x(k))

I [Nesterov, 1983]: f ∈ C1,1
L convex, optimal method

f(x(k))− f? ≤ 4L|y(0) − x?|2

(k + 2)2

I In the setting of Forward–Backward Splitting: FISTA [Beck, Teboulle 2009].
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Optimized Accelerated Gradient Descent

Adaptive FISTA: [O., Pock, 2017]
I Update step:

y(k)(β) = x(k) + β(x(k) − x(k−1))
x(k+1) = argmin

x
min
β

fL(x; y(k)(β))

I fL(x; y(k)(β)): quadratic approximation of f around y(k)(β).

I If f is quadratic, equivalent to (details later )

x(k+1) = x(k) −M−1∇f(x(k)) (Quasi-Newton step)

with positive definite M (rank-1 modification of a diagonal matrix)

I Quasi-Newton Methods are also accelerations of Gradient Descent.
I For example: BFGS, DFP, SR1, ...
I try to approximate Newton’s method (quadratic convergence).
I Some Quasi-Newton Methods converge superlinearly.
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Subspace Acceleration Methods

Subspace Acceleration Methods:
I Update step:

x(k+1) = x(k) +D(k)s(k) , D(k) = (d
(k)
1 , . . . , d

(k)
M ) , d

(k)
i ∈ RN .

I s(k) ∈ RM is a multi-dimensional step size that aims at minimizing

s 7→ f(x(k) +D(k)s) .

I First such algorithm: Memory Gradient Method [Miele, Cantrell 1960’s]

D(k) = (−∇f(x(k)), d(k−1)) , s(k) by exact minimization .

I L-BFGS quasi-Newton method: subspace of size 2m+ 1, where m is the
limited memory parameter.

I Adaptive FISTA tries to minimize w.r.t. the overrelaxation parameter β.
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Subspace Acceleration Methods

Construction of Subspaces

from [Chouzenoux, Idier, Moussaoui 2011]
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Subspace Acceleration Methods

Multi-dimensional step size search via Majorization–Minimization:
I [Chouzenoux, Idier, Moussaoui 2011]

[Chouzenoux, Jezierska, Pesquet, Talbot 2013]

I Approximate minimization of s 7→ f(x(k) +D(k)s) by MM procedure.

I Sequentially approximate f by quadratic (tangent majorizers) functions
around current trial step size s(k,j) and minimize these quadratic
approximations.

I Yields monotonically non-increasing objective values, and gradient
vanishes.
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Extended real numbers

Definition:
I Extended real numbers R := [−∞,+∞]

a+ (+∞) = +∞+ a = +∞ for −∞ < a ≤ +∞
a+ (−∞) = −∞+ a = −∞ for −∞ ≤ a < +∞

a(+∞) = (+∞)a = +∞ for 0 < a ≤ +∞
a(−∞) = (−∞)a = −∞ for 0 < a ≤ +∞
a(+∞) = (+∞)a = −∞ for −∞ ≤ a < 0
a(−∞) = (−∞)a = +∞ for −∞ ≤ a < 0
0(±∞) = (±∞)0 = 0

−(−∞) = +∞
inf ∅ = +∞

sup ∅ = −∞
I Operations +∞+ (−∞) and −∞+ (+∞) are not defined.
I Familiar laws of arithmetic, if all binary operations are well-defined:

a+ b = b+ a , (a+ b) + c = a+ (b+ c) ,

ab = ba , (ab)c = a(bc) , a(b+ c) = ab+ ac
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Extended real numbers

I Extend functions f̄ : C → R with C ⊂ RN
to the whole space RN by

f(x) =

{
f̄(x), if x ∈ C ;

+∞, otherwise.
f̄

f
+∞ +∞

I Definition:
A function f : RN → R is called proper, if{

f(x) < +∞ for at least one x ∈ RN and
f(x) > −∞ for all x ∈ RN ,

and improper otherwise.
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Domain, Epigraph, and Level Sets

Definition:

I The (effective) domain is the set

dom f := {x ∈ RN | f(x) < +∞} .

I The epigraph is the set

epi f := {(x, α) ∈ RN × R|α ≥ f(x)} .

I The lower level set is the set

lev≤αf := {x ∈ RN | f(x) ≤ α} . dom f

f

α

lev≤α

+∞ +∞
epi f
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Semi-continuity

Definition:
I The lower limit of a function f : RN → R at x̄ is the value in R defined by

lim inf
x→x̄

f(x) := lim
δ↘0

[
inf

x∈Bδ(x̄)
f(x)

]
= sup

δ>0

[
inf

x∈Bδ(x̄)
f(x)

]
.

I f : RN → R is lower semi-continuous (lsc) at x̄ if

lim inf
x→x̄

f(x) ≥ f(x̄) ,

and lsc on RN if this holds for every x̄.

f

x̄
lsc / not usc

Theorem: (Characterization of lower semi-continuity)
The following properties of a function f : RN → R are equivalent:

(a) f is lower semi-continuous on RN .
(b) The epigraph epi f is closed in RN × R.
(c) The level sets of type lev≤αf are all closed in RN .
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Attainment of minimizers

Definition:
A function f : RN → R is (lower) level-bounded, if for every α ∈ R the set
lev≤αf is bounded (possibly empty).

Theorem: (Attainment of minimizers)
Suppose f : RN → R is lsc, level-bounded, and proper. Then the value
infx∈RN f(x) is finite and the set arg minx∈RN f(x) is nonempty and compact.
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Infimal convolution

Definition
The infimal convolution (or inf-convolution) is defined by

(f � g)(x) := inf
w∈RN

f(x− w) + g(w) = inf
w∈RN

f(w) + g(x− w) .

I f � g is the point-wise infimum of functions hw(x) = f(w) + g(x− w).
I epi (f � g) = epi f + epi g, if the infimum in f � g is attained when finite.

Example:
Let f(x) = |x| and g(x) = 1

2λ |x|
2.

(f � g)(x) = inf
w∈RN

|w|+ 1

2λ
|x− w|2

=

{
1

2λx
2 , if |x| ≤ λ

|x| − λ
2 , otherwise.
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Moreau envelope and proximal mapping

Definition:
For a proper, lsc function f : RN → R and parameter value λ > 0 the Moreau
envelope function eλf and the proximal mapping proxλf are defined by

eλf(x) := inf
w∈RN

f(w) +
1

2λ
|w − x|2

proxλf (x) := arg min
w∈RN

f(w) +
1

2λ
|w − x|2

Remark:
In general, eλf is extended-valued, and proxλf is set-valued.

Example:
Let ∅ 6= C ⊂ RN be a closed convex set and δC the associated indicator
function. Then, for any x̄ ∈ RN and λ > 0, it holds that

proxλδC (x̄) = argmin
x∈C

1

2λ
|x− x̄|2 = projC(x̄) .
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Calculation Rules for the Proximal Mapping

Calculation Rules for the Proximal Mapping:
Let f : RN → R and g : RN → R be proper, lsc functions and b ∈ R.
I If f(x, y) = f1(x) + f2(y), then proxλf (x, y) = (proxλf1(x),proxλf2(y)).

I If f(x) = αg(x) + b with α > 0, then proxf (x) = proxαg(x) .

I If f(x) = g(αx+ b) with α 6= 0, then proxf (x) = 1
α (proxα2g(αx+ b)− b) .

I If f(x) = g(Qx) with Q orthogonal (such that Q>Q = Q>Q = id), then

proxf (x) = Q>proxg(Qx) .

I If f(x) = g(x) + 〈a, x〉+ b with a ∈ RN , then proxf (x) = proxg(x− a) .

I If f(x) = g(x) + γ
2 |x− a|

2 with γ > 0 and a ∈ RN , then

proxf (x) = proxγ̃g(γ̃x+ γ̃γa)

with γ̃ := 1/(1 + γ).
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Examples for the Proximal Mapping

Examples for the Proximal Mapping:
I f(x) = λ

2 |x|
2:

proxτf (x̄) = argmin
x∈RN

τλ

2
|x|2 +

1

2
|x− x̄|2

Optimality condtion:

τλx+ (x− x̄) = 0 ⇔ x =
x̄

1 + τλ
.

I Nuclear norm: f(X) = ‖X‖∗ :=
∑N
i=1 σi with SVD

X = Udiag(σ1, . . . , σN )V > σi ≥ 0 .

We can show that (g(σi) = σi + δ[σi≥0](σi))

proxτf (X̄) = Udiag
(
[proxτg(σ̄i)]

N
i=1

)
V > with X̄ = Udiag(σ̄1, . . . , σ̄N )V >

and
proxτg(σ̄i) = argmin

σi≥0
τσi +

1

2
(σi − σ̄i)2 = max(0, σ̄i − τ) .
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Generalized Projection Theorem

Theorem: (Generalized Projection Theorem)
Let f : RN → R be lsc, proper, and convex, and x ∈ RN , λ > 0. Then,
proxλf (x) ∈ RN is the unique point that satisfies

eλf(x) = f(proxλf (x)) +
1

2λ
|proxλf (x)− x|2 .

Moreover,

p = proxλf (x) ⇔ ∀y ∈ RN : 〈x− p, y − p〉+ λf(p) ≤ λf(y) .

The envelope function eλf is continuously differentiable and

∇eλf(x) =
1

λ
(x− proxλf (x))

is λ−1-Lipschitz continuous.

The same formula holds locally, for prox-regular functions. ( later )
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Subgradients of Convex Functions

Definition:
I Let f : RN → R be convex.

I v is a subgradient of f at x̄, i.e. v ∈ ∂f(x̄),
if the following holds:
subgradient inequality:

f(x) ≥ f(x̄) + 〈v, x− x̄〉 , ∀x ∈ RN

I Subdifferential ∂f : RN ⇒ RN (set-valued
mapping) of f given by

Graph ∂f := {(x, v) ∈ RN × RN | v ∈ ∂f(x)}

f

∂f
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Set-valued mapping

Definition:
A set-valued mapping F : RN ⇒ RM is a mapping that maps each x ∈ RN to a
subset of RM . The graph of the mapping F is given by

GraphF := {(x, u) ∈ RN × RM |u ∈ F (x)} ⊂ RN × RM .

For a set-valued mapping the (effective) domain is defined by

domF := {x ∈ RN |F (x) 6= ∅} ⊂ RN .
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Subgradients for nonconvex functions

Definition:
I Let f : RN → R be a function and x̄ a point with f(x̄) finite.

I v is a regular subgradient of f at x̄, i.e. v ∈ ∂̂f(x̄), if

lim inf
x→x̄
x 6=x̄

f(x)− f(x̄)− 〈x− x̄, v〉
|x− x̄|

≥ 0(
⇔ f(x) ≥ f(x̄) + 〈v, x− x̄〉+ o(|x− x̄|)

)
.

I v is a (limiting) subgradient of f at x̄, i.e. v ∈ ∂f(x̄), if

∃ xν → x̄ : f(xν)→ f(x̄), vν → v, vν ∈ ∂̂f(xν)

I v is a horizon subgradient of f at x̄, i.e. v ∈ ∂∞f(x̄), if

∃ xν → x̄, λν ↘ 0: f(xν)→ f(x̄), λνvν → v, vν ∈ ∂̂f(xν)
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Subgradients for nonconvex functions

Example: (Subgradients for nonconvex functions)

epi f

(v,−1); v ∈ ∂f(x1) = ∂̂f(x1)

∂f(x2) = {∇f(x2)} = ∂̂f(x2)

(v1,2,−1); ∂f(x3) = {v1, v2}
∂̂f(x3) = ∅

Properties:
I f differentiable at x̄, then ∂̂f(x̄) = {∇f(x̄)}, and ∇f(x̄) ∈ ∂f(x̄).
I f smooth in a neighborhood of x̄, then ∂f(x̄) = {∇f(x̄)}.
I f proper, convex, then ∂̂f(x̄) = ∂f(x̄).
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Examples for the Subdifferential

Example:

I The subdifferential of f : RN → R, x 7→ 1
2 |x|

2 is given by

∂f(x) = {x} .

I The subdifferential of | · | in RN is

∂| · |(x) =


{ x

|x|

}
, if x 6= 0 ;

B1(0), if x = 0 .

I The subdiffferential of f : R→ R, x 7→
√
|x| is given by

∂̂
√
| · |(x) = ∂

√
| · |(x) =


{ 1

2
√
x
} , if x > 0 ;

{ −1
2
√
−x} , if x < 0 ;

(−∞,∞) , if x = 0 .
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Subdifferential Calculus

Proposition: (Subdifferential Calculus)

I If f(x) = f1(x1) + f2(x2) with x = (x1, x2), then

∂̂f(x) = ∂̂f1(x1)× ∂̂f2(x2) and ∂f(x) = ∂f1(x1)× ∂f2(x2) .

I If f = f1 + f2 with proper lsc functions f1 and f2 and x̄ ∈ dom f , then

∂̂f(x̄) ⊃ ∂̂f1(x̄) + ∂̂f2(x̄) .

If the only combination of vi ∈ ∂∞fi(x̄) with v1 + v2 = 0 is v1 = v2 = 0, then

∂f(x̄) ⊂ ∂f1(x̄) + ∂f2(x̄) .

If each fi is regular at x̄, i.e. ∂̂f(x̄) = ∂f(x̄), then

∂f(x̄) = ∂f1(x̄) + ∂f2(x̄) .

I If f = f1 + f2 with f1 finite at x̄ and f2 smooth on a neighborhood of x̄, then

∂̂f(x̄) = ∂̂f1(x̄) +∇f2(x̄) and ∂f(x̄) = ∂f1(x̄) +∇f2(x̄) .
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Optimality condition: Fermat’s rule

Theorem: (Fermat’s Rule)
Let f : RN → R be a proper functions with a local minimum at x̄, then

0 ∈ ∂f(x̄) .

If f is convex, then

x̄ ∈ argmin
x∈RN

f(x) ⇔ 0 ∈ ∂f(x̄) .

−2 −1 1 2
−1

1

2

3

4
f
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Smooth Minimization with Geometric Constraint

Smooth Minimization with Geometric Constraint:
I f : RN → R continuously differentiable and ∅ 6= C ⊂ RN be a closed set.

I Then, we have the following necessary optimality condition

0 ∈ ∂(f + δC)(x) = ∇f(x) + ∂δC(x) =: ∇f(x) +NC(x)

⇔ −∇f(x) ∈ NC(x) .

Example:
For C = [0,+∞)N , we have

(NC(x))i =

{
(−∞, 0] , if xi = 0

0 otherwise.

or (NC(x))i = {vi : xi ≥ 0 and vi ≤ 0 and xivi = 0} .
Therefore, −∇f(x) ∈ NC(x) is equivalent to the complementary condition:

(∇f(x))i ≥ 0 , xi ≥ 0 , and (∇f(x))ixi = 0 .
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Example: Fermat’s Rule

Example: Fermat’s Rule
I Compute proxτf (x̄) for f(x) = |x|.

I Can be computed coordinate-wise. Thus, w.l.o.g. x ∈ R1.

I Optimality condition of minx τ |x|+ 1
2 (x− x̄)2:

0 ∈ τ∂| · |(x) + x− x̄

⇔ x = x̄− ∂| · |(x) =


x̄− τ if x > 0 (⇔ x̄ > τ) ;

x̄+ τ if x < 0 (⇔ x̄ < −τ) ;

x̄− τ [−1, 1] if x = 0 (⇔ x̄ ∈ [−τ, τ ]) .

I The solution is the Soft Shrinkage-Thresholding Operator:

proxτf (x̄) = max(0, |x̄| − τ) sign(x̄) .
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An Algorithm for Non-smooth Functions

An Algorithm for Non-smooth Functions: (Convex Optimization)
I Return to the gradient dynamical system:

Ẋ(t) +∇f(X(t)) = 0 .

I Explicit discretization yields Gradient Descent: (aka. forward step)

x(k+1) − x(k)

τk
+∇f(x(k)) = 0 ⇔ x(k+1) = (id− τk∇f)(x(k)) .

I Implicit discretization yields Proximal Algorithm: (aka. backward step)

x(k+1) − x(k)

τk
+∇f(x(k+1)) = 0 ⇔ (id + τk∇f)(x(k+1)) = x(k) .
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Proximal Algorithm / Proximal Point Algorithm

I Proximal Algorithm can be written as

x(k+1) = argmin
x∈RN

f(x) +
1

2τk
|x− x(k)|2 .

I Optimality condition:

0 = ∇f(x) +
1

τk

(
x− x(k)

)
⇔ (id + τk∇f)x = x(k) .

I The proximal algorithm does not require f to be differentiable.

I Optimality condition: (f proper, lsc)

0 ∈ ∂f(x) +
1

τk

(
x− x(k)

)
= 0 ⇔ x(k) ∈ (id + τk∂f)x

f convex⇔ x = (id + τk∂f)−1(x(k)) .
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Proximal Point Algorithm (PPA)

Algorithm: (Proximal Minimization Algorithm)
I Optimization problem: f : RN → R proper, lsc
I Iterations (k ≥ 0): Update (x(0) ∈ RN )

x(k+1) ∈ proxτkf (x(k)) = arg min
w∈RN

f(w) +
1

2τk
|w − x(k)|2

I Parameter setting: τk > 0 step size parameter.

I Very general (conceptual) algorithm.
I Note that a single iteration is usually as hard as solving the original problem.
I In a more general form, it applies to maximal monotone operators.

See [Rockafellar 1976].
I Many algorithms are actually special cases of the proximal point algorithm.
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Forward–Backward Splitting

Structured Optimization Problems: (Splitting)
I Common Structure in Applications:

min
x∈RN

f(x) + g(x)

RN → R
smooth

∇f Lipschitz

RN → R
non-smooth
simple prox

I Lasso, Group Lasso, ...:

min
x∈RN

1

2
|Ax− b|2 + λ‖x‖1 or min

x∈RN
1

2
|Ax− b|2 s.t. ‖x‖1 ≤ λ .

I Non-negative Least Squares:

min
x∈RN

1

2
|Ax− b|2 s.t. xi ≥ 0 ∀i = 1, . . . , N .
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Applications of Forward–Backward Splitting

I Logistic Regression:

min
w∈RN

log(1 + exp(−yi 〈xi, w〉)) + λ‖w‖1 .

I Low Rank Approximation: (e.g. Matrix completion)

min
X∈RM×N

1

2
‖A−X‖2F + λ‖X‖∗ .

I Regularized Non-linear Regression:

min
w∈RN

1

2

M∑
i=1

|Nw(xi)− yi|2 + λg(w) .

I Feasibility Problem: Find x ∈ C ∩D for closed set C 6= ∅ and a closed
convex set D 6= ∅.

min
x∈RN

e1δD(x) s.t. x ∈ C = min
x∈C

dist(x,D)2
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Forward–Backward Splitting

Algorithm: (Forward–Backward Splitting (FBS)) (Convex Problem)
I Optimization problem: minx f(x) + g(x)

I f : RN → R continuously differentiable, convex, with ∇f L-Lipschitz.
I g : RN → R proper, lsc, convex with simple proximal mapping.

I Iterations (k ≥ 0): Update (x(0) ∈ RN ), ε ≤ τk ≤ 2−ε
L for some ε > 0:

x(k+1) = proxτkg(x
(k) − τk∇f(x(k)))

Proposition: [Combettes, Pesquet 2011], [Combettes, Wajs 2005]
If f + g is coercive, then any sequence generated by FBS converges to a
solution of minx f + g.

Method traces back to:
[P. L. Lions and B. Mercier: Splitting algorithms for the sum of two nonlinear
operators, SIAM J. Numer. Anal., 16 (1979), pp. 964–979.]
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Forward–Backward Splitting

Naming:
x(k+1) = proxτkg︸ ︷︷ ︸

backward step

(x(k) − τk∇f(x(k)))︸ ︷︷ ︸
forward step

I Other frequently used name: Proximal Gradient Descent.

Equivalent update rules:

x(k+1) = proxτkg(x
(k) − τk∇f(x(k)))

= (id + τk∂g)−1
(
x(k) − τk∇f(x(k))

)
= argmin

x∈RN
g(x) + f(x(k)) +

〈
∇f(x(k)), x− x(k)

〉
+

1

2τk
|x− x(k)|2

= x(k) − τk
[ 1

τk

(
x(k) − proxτkg

(
x(k) − τk∇f(x(k))

))]
= (id− τk∇eτkg)(id− τk∇f)(x(k))
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Łojasiewicz and smooth Kurdyka-Łojasiewicz inequality

Theorem:[[Łojasiewicz, 1963]]
Let f : U ⊂ RN → R be a real analytic, U open, and x̂ ∈ U a critical point of f .
Then, there exists θ ∈ [ 12 , 1), C > 0, and a neighbourhood W of x̂ such that

∀x ∈W : |f(x)− f(x̂)|θ ≤ C|∇f(x)| .

I Equivalent formulation: ϕ(s) := cs1−θ (desingularization function)

ϕ′(f(x)− f(x̂))|∇f(x)| ≥ 1 ,

I or (assume f(x̂) = 0)
|∇(ϕ ◦ f)(x)| ≥ 1
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Łojasiewicz Inequality and Gradient System

I Let X : [0,+∞)→W be a gradient trajectory (i.e. Ẋ(t) = −∇f(X(t))).

Lyapunov function: h(t) := ϕ(f(X(t))− f(X̂)) (X̂ limit point of X) .

I ḣ(t) = ϕ′(f(X(t))− f(X̂))
〈
∇f(X(t)), Ẋ(t)

〉
.

I Lyapunov property (non-increasingness along the trajectory):

ḣ(t) + |Ẋ(t)| = ḣ(t) + |∇f(X(t))|
= ḣ(t) + |∇f(X(t))|−1|∇f(X(t))|2

≤ ḣ(t) + ϕ′(f(X(t))− f(X̂))
〈
∇f(X(t)),−Ẋ(t)

〉
= 0 .

I This yields Ẋ ∈ L1(0,+∞):

length(X) =

∫ +∞

0

|Ẋ(t)| dt ≤ h(0)− lim
t→+∞

h(t)

= ϕ(f(X(0))− f(X̂)) < +∞ .
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Nonsmooth Kurdyka-Łojasiewicz (KL) Inequality

Definition:
The lsc function f : RN → R has the KL property at x̂ ∈ dom ∂f , if
I there exists η ∈ (0,+∞],

I a neighborhood U of x̂,

I and a continuous concave function ϕ : [0, η)→ R+ with
ϕ(0) = 0

ϕ ∈ C1((0, η))

ϕ′(s) > 0 for all s ∈ (0, η)

such that the (non-smooth) Kurdyka-Łojasiewicz inequality

ϕ′(f(x)− f(x̂)) dist(0, ∂f(x)) ≥ 1

holds, for all x ∈ U ∩ {x ∈ RN : f(x̂) < f(x) < f(x̂) + η}.
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KL inequality

f

f(x)− f(x̂)

(x̂, f(x̂))

U

U ∩ {x| f(x̂) < f(x) < f(x̂) + η}

f(x̂) + η

ϕ

ϕ ◦ f

x
(x̂, f(x̂))
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KL inequality
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What functions have the KL property?

What functions have the KL property?
I Real analytic functions [Łojasiewicz ’63]

I Differentiable functions definable in an o-minimal structure [Kurdyka ’98]

I Non-smooth lsc functions definable in an o-minimal structure

I Clarke subgradients [Bolte, Daniilidis, Lewis, Shiota 2007]

I Limiting subgradients [Attouch, Bolte, Redont, Soubeyran 2010]

 nearly any function in practice

(excludes many pathological cases.)
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What functions have the KL property?

Theorem: [Bolte, Daniilidis, Lewis, Shiota 2007]
Any lsc function f : RN → R that is definable in an o-minimal structure O has
the Kurdyka-Łojasiewicz property at each point of dom ∂f . Moreover, the
function ϕ is definable in O.

Examples:
I semi-algebraic functions (Next slides.)

(polynomials, piecewise polynomials, absolute value function, Euclidean
distance function, p-norm for p ∈ Q (also p = 0), . . . )

I globally subanlytic functions
(e.g. exp |[−1,1])

I log–exp extension of globally subanalytic structure is an o-minimal structure

I An o-minimal structure is closed under finite sums and products,
composition, and several other important operations
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Semi-algebraic Functions

Semi-algebraic Structure:
I A set S is semi-algebraic, iff there exists polynomials Pi,j , Qi,j such that

S =

p⋃
j=1

q⋂
i=1

{x ∈ RN : Pi,j(x) = 0 , Qi,j < 0}

I f : RN → R is semi-algebraic, iff Graph (f) ⊂ RN+1 is semi-algebraic.

I Finite union, intersection, complementary are again semi-algebraic.

I Theorem (Tarski-Seidenberg):
Canonical projection of S ∈ RN+1 onto RN preserves semi-algebraicity.

I Composition of semi-algebraic functions: f = h ◦ g, RN → RM → RL:

Graph (f) = {(x, z) ∈ RN×L : z = h(g(x))}
= {(x, z) ∈ RN×L : ∃y ∈ RM : z = h(y), y = g(x)}

= ΠRN×RL
(
{(x, y, z) : y = g(x)} ∩ {(x, y, z) : z = h(y)}

)
I Desingularization function of the form ϕ(s) = cs1−θ, θ ∈ [0, 1) ∩Q.
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Definable Functions

Definable Functions: (Axiomatization of the qualitative properties of
semi-algebraic sets) [van den Dries, 1998]

Definition:
O = {On}n∈N is an o-minimal structure, if On is a collection of subsets of Rn,
and
1. Each On is a boolean algebra: ∅ ∈ On, A,B ∈ On ⇒ A ∪B,A ∩B,Rn rA ∈ On.

2. For all A ∈ On, A× R and R×A belong to On+1.

3. For all A ∈ On+1, Π(A) := {(x1, . . . , xn) ∈ Rn : (x1, . . . , xn, xn+1) ∈ A} ∈ On.

4. For all i 6= j in {1, . . . , n}, {(x1, . . . , xn) ∈ Rn : xi = xj} ∈ On.

5. The set {(x1, x2) ∈ R2 : x1 < x2} belongs to O2.

6. The elements of O1 are exactly finite unions of intervals.

I A is definable, if A belongs to O.
I f : RN → R is definable, if Graph (f) is a definable subset of RN+1.
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Single Point Convergence

Single Point Convergence:
I Generalize the result for the gradient trajectory to many other algorithm.

I [Attouch et al. 2013] formulate an abstract descent algorithm.

I Use the (non-smooth) KL inequality.

I Prove a finite length property and single-point convergence.
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Abstract descent algorithms [Attouch et al. 2013]

Abstract descent algorithms: [Attouch et al. 2013]

min
x∈RN

f(x)

f : RN → R proper, lsc; a, b > 0 fixed.
Let (x(k))k∈N be a sequence that satisfies the following conditions:

(h1) (Sufficient decrease condition). For each k ∈ N,

f(x(k+1)) + a|x(k+1) − x(k)|2 ≤ f(x(k)) ;

(h2) (Relative error condition). For each k ∈ N,

‖∂f(x(k+1))‖− ≤ b|x(k+1) − x(k)| ;

(h3) (Continuity condition). There exists K ⊂ N and x̃ such that

x(k) → x̃ and f(x(k))→ f(x̃) as k k∈K→ ∞ .
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An abstract convergence theorem

Theorem: [Attouch et al. 2013]
I Let f : RN → R be a proper, lsc.
I If (x(k))k∈N satisfies (h1), (h2), and (h3), i.e.,

I Sufficient decrease condition,
I Relative error condition,
I Continuity condition, and

I f has the Kurdyka-Łojasiewicz property at the cluster point x̃,
then

I (x(k))k∈N converges to x̄ = x̃

I x̄ is a critical point of f , i.e., 0 ∈ ∂f(x̄), and

I (x(k))k∈N has a finite length, i.e.,

∞∑
k=0

|x(k+1) − x(k)| < +∞ .
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Convergence of Forward–Backward Splitting

Convergence of Forward–Backward Splitting:
I ∇f is L-Lipschitz, g : RN → R is proper, lsc., inf f + g > −∞

I Use this theorem to prove convergence of FBS:

x(k+1) ∈ argmin
x∈RN

g(x) + f(x(k)) +
〈
∇f(x(k)), x− x(k)

〉
+

1

2τ
|x− x(k)|2 .

I or an inexact version: Fix τ < 1/L. Find x(k+1), v(k+1) such that

g(x(k+1)) +
〈
∇f(x(k)), x(k+1) − x(k)

〉
+

1

2τ
|x(k+1) − x(k)|2 ≤ g(x(k))

v(k+1) ∈ ∂g(x(k+1))

|v(k+1) +∇f(x(k))| ≤ b|x(k+1) − x(k)|

I Let (x(k))k∈N be a bounded sequence generated by (inexact) FBS.
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Convergence of Forward–Backward Splitting

Sufficient Decrease Conditions:
I Add update step and Descent Lemma:

f(x(k+1)) ≤ f(x(k)) +
〈
∇f(x(k)), x(k+1) − x(k)

〉
+
L

2
|x(k+1) − x(k)|2

g(x(k+1)) ≤ g(x(k))−
〈
∇f(x(k)), x(k+1) − x(k)

〉
− 1

2τ
|x(k+1) − x(k)|2

⇒ (f + g)(x(k+1)) ≤ (f + g)(x(k))−
( 1

2τ
− L

2

)
|x(k+1) − x(k)|2 .
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Convergence of Forward–Backward Splitting

Relative Error Condition:
I Inexact Algorithm:

‖∂(f + g)(x(k+1))‖− = ‖∂g(x(k+1)) +∇f(x(k+1))‖−
≤ |v(k+1) +∇f(x(k))| + |∇f(x(k+1))−∇f(x(k))| ≤ (b+ L)|x(k+1) − x(k)|

I Exact Algorithm: Use optimality of x(k+1):

x(k) − x(k+1)

τ
−∇f(x(k)) ∈ ∂g(x(k+1)) .
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Convergence of Forward–Backward Splitting

Continuity Condition:
I Inexact Algorithm: Assume that g is continuous on dom g.

I Exact Algorithm:
I Let x(k) k∈K→ x̃ with K ⊂ N.
I Since ((f + g)(x(k)))k∈N is monotonically non-increasing, we have( 1

2τ
− L

2

)
|x(k+1) − x(k)|2 ≤ (f + g)(x(k))− (f + g)(x(k+1))→ 0 .

I Then lim sup
k
k∈K→ ∞

g(x(k+1)) ≤ g(x̃) by taking lim sup on both sides of

g(x(k+1)) +
〈
∇f(x(k)), x(k+1) − x(k)

〉
+

1

2τ
|x(k+1) − x(k)|2

≤ g(x̃) +
〈
∇f(x(k)), x̃− x(k)

〉
+

1

2τ
|x̃− x(k)|2 .

I Combined with lower semi-continuity lim
k
k∈K→ ∞

g(x(k)) = g(x̃).
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Convergence of Forward–Backward Splitting

Theorem:
Let (x(k))k∈N be a bounded sequence that is generated by FBS or inexact
FBS. Then (x(k))k∈N converges to a critical point x∗ of f + g. Moreover,
(x(k))k∈N has the finite length property:

∞∑
k=0

|x(k+1) − x(k)| < +∞ .
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Generalized Abstract Descent Algorithm

Generalized Abstract Descent Algorithm: [O. 2016]
I Let F : RN × RP → R be proper lsc with inf F > −∞.

(H1) (Sufficient decrease condition) For each k ∈ N:

F(x(k+1), u(k+1)) + akd
2
k ≤ F(x(k), u(k)) .

(H2) (Relative error condition) For each k ∈ N: (set dj = 0 for j ≤ 0)

bk+1‖∂F(x(k+1), u(k+1))‖− ≤ b
∑
i∈I

θidk+1−i + εk+1 .

(H3) (Continuity condition) There exists K ⊂ N and (x̃, ũ):

(x(k), u(k))
F→ (x̃, ũ) as k k∈K→ ∞ .

(H4) (Distance condition) dk → 0⇒ |x(k+1) − x(k)| → 0 and

∃k′ : ∀k ≥ k′ : dk = 0⇒ ∃k′′ : ∀k ≥ k′′ : x(k+1) = x(k) .

(H5) (Parameter condition)

(bk)k∈N 6∈ `1 , sup
k∈N

(akbk)−1 <∞ , inf
k∈N

ak =: a > 0 , (εk)k∈N ∈ `1 .
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Generalized Abstract Descent Algorithm

Theorem:
Suppose F is a proper, lsc, Kurdyka-Łojasiewicz function with inf F > −∞.
Let (x(k))k∈N, (u(k))k∈N be bounded and satsify (H1)–(H5). Assume that
converging subsequences of (x(k), u(k))k∈N converge F-attentive. Then:
(i) The sequence (dk)k∈N satisfies

∞∑
k=0

dk < +∞ .

(ii) If dk satisfies |x(k+1) − x(k)| ≤ c̄dk+k′ for some k′, then

∞∑
k=0

|x(k+1) − x(k)| <∞

and (x(k))k∈N converges to x̃.
(iii) If (u(k))k∈N converges, then (x(k), u(k))k∈N converges to a critical point of F .
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Inertial proximal algorithm for nonconvex optimization

Algorithm: (iPiano, [O., Chen, Brox, Pock 2014])
I Optimization problem: minx∈RN h(x), h(x) := f(x) + g(x)

I ∇f is Lipschitz
I g is proper, lsc, convex and simple

I Iterations (k ≥ 0): Update (x−1 := x0 ∈ dom g)

x(k+1) = proxαkg
(
x(k) − αk∇f(x(k)) + βk(x(k) − x(k−1))

)
I Parameter setting for αk and βk, see convergence analysis

Remark:
I Extension: g non-convex in [Bot, Csetnek, Lázló 2016], [O. 2015].
I Other suitable names: “proximal Heavy-ball method”
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Convergence results – iPiano

A Lyapunov function: Define Hδk(x, y) := h(x) + δk|x− y|2 (δk > 0).
I (Hδk(x(k), x(k−1)))∞k=0 is non-increasing: (γk > 0)

Hδk+1
(x(k+1), x(k)) ≤ Hδk(x(k), x(k−1))− γk|x(k) − x(k−1)|2 .

c© 2018 — Peter Ochs Part 4: Single Point Convergence 22 / 37



Convergence Results – Lyapunov Function for iPiano

Proof of the Lyapunov Property.
I Update step: x(k+1) ∈ arg minx∈RN G(k)(x) with

G(k)(x) := g(x)+
〈
∇f(x(k)), x− x(k)

〉
+

1

2αk
|x− (x(k) +β(x(k)−x(k−1))))|2 .

I Optimality of x(k+1):

G(k)(x(k+1)) +
1

2αk
|x(k+1) − x(k)|2 ≤ G(k)(x(k)) = g(x(k))

I Descent Lemma:

f(x(k+1)) ≤ f(x(k)) +
〈
∇f(x(k)), x(k+1) − x(k)

〉
+
Lk
2
|x(k+1) − x(k)|2

I Combination of optimality and descent lemma:

h(x(k+1)) ≤ h(x(k)) +
〈
∇f(x(k)), x(k+1) − x(k)

〉
+
Lk

2
|x(k+1) − x(k)|2

−
〈
∇f(x(k))− βk

αk
(x(k) − x(k−1)), x(k+1) − x(k)

〉
− 1

2αk
|x(k+1) − x(k)|2 .
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Convergence Results – Lyapunov Function for iPiano

I Use 2 〈a, b〉 ≤ |a|2 + |b|2 for vectors a, b ∈ RN :

h(x(k+1)) + δk|x(k+1) − x(k)|2︸ ︷︷ ︸
Hδk (x

(k+1),x(k))

≤ h(x(k)) + δk|x(k) − x(k−1)|2︸ ︷︷ ︸
Hδk (x

(k),x(k−1))

−γk|x(k) − x(k−1)|2

i.e.
Hδk+1

(x(k+1), x(k)) ≤ Hδk(x(k), x(k−1))− γk|x(k) − x(k−1)|2

where γk > 0 and (δk)k∈N monotonically non-increasing with

γk :=
1

2

(
1− 2βk
αk

− Lk
)

and δk := γk +
βk

2αk

Yields step size restrictions: (Lk = L)

g convex: 0 < α < 2(1−β)
L β ∈ [0, 1)

g − m
2 | · |

2 convex: 0 < α < 2(1−β)
L−m β ∈ [0, 1)

g non-convex: 0 < α < (1−2β)
L β ∈ [0, 12 )
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Convergence Results of iPiano

Theorem: Convergence Results of iPiano:
I The sequence (h(x(k)))k∈N converges.

I There exists a converging subsequence (xkj )j∈N.

I Any limit point x∗ := lim
j→∞

xkj is a critical point h and h(xkj )→ h(x∗) as

j →∞.

If Hδ(x, y) has the Kurdyka-Łojasiewicz property at (x∗, x∗), then
I (x(k))k∈N has finite length, i.e.,

∞∑
k=1

|x(k) − x(k−1)| <∞ ,

I x(k) → x∗ as k →∞,

I (x∗, x∗) is a critical point of Hδ, and x∗ is a critical point of h, i.e.,

0 ∈ ∂h(x∗) .
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Diffusion based Image Compression

Diffusion based Image Compression:

Encoding:
I store image g only in some small number of

pixel: ci = 1 if pixel i is stored and 0 otherwise

Decoding:
I use ui = gi for all i with ci = 1

I use linear diffusion in unknown region (ci = 0)
(solve Laplace equation Lu = 0)

 solve for u in

C(u− g)− (I − C)Lu = 0

where C = diag(c), and I the identity matrix

encoding

decoding
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Diffusion based Image Compression

Diffusion based Image Compression:

Our goal:
I Find a sparse vector c that yields the best

reconstruction.

Non-convex optimization problem:

min
c∈RN ,u∈RN

1

2
‖u(c)− g‖2 + λ‖c‖1

s.t. C(u− g)− (I − C)Lu = 0

or equivalently (setting A := C + (C − I)L):

min
c∈RN

1

2
‖A−1Cg − g‖2 + λ‖c‖1

encoding

decoding

c© 2018 — Peter Ochs Part 4: Single Point Convergence 26 / 37



Results for Trui
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Results for Walter

c© 2018 — Peter Ochs Part 4: Single Point Convergence 28 / 37



Results for Walter
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Results for Walter
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KL Exponent: A measure for the convergence rate

KL Exponent: A measure for the convergence rate:
I Reminder: KL inequality for h : RN → R at x̄ ∈ dom ∂h:

There exists [...] and ϕ : [0, η)→ R+ with [...] such that

ϕ′(h(x)− h(x̄))dist(0, ∂h(x)) ≥ 1

for x close to x̄ and h(x̄) < h(x) < h(x̄) + η.

I If ϕ(s) = c
θ s
θ for θ ∈ (0, 1], then θ is known

as the KL exponent. It holds that

‖∂h(x)‖− ≥
1

c

(
h(x)− h(x̄)

)1−θ
.

I Fact: e.g. when h is semi-algebraic.
See [Kurdyka, 1998] and
[Bolte, Daniilidis, Lewis, Shiota 2007].

0 0.5 1

0

0.5

1h(x) = max(x, 0) θ = 1

h(x) = max(x, 0)2  θ = 1
2

h(x) = max(x, 0)4  θ = 1
4
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Convergence for iPiano

Theorem: (Local convergence rates for iPiano) [O. 2018] analogue to
[Frankel–Garrigos–Peypouquet, 2014], [Johnstone–Moulin, 2016], [Li–Pong,
2016]

Let θ be the KL-exponent of Hδ.

I If θ = 1, then x(k) converges to x∗ in a finite number of iterations.

I If 1
2 ≤ θ < 1, then Hδ(x

(k+1), x(k))→ h(x∗) and x(k) → x∗ linearly.

I If 0<θ< 1
2 , then Hδ(x

(k+1), x(k))−h(x∗)∈O(k
1

2θ−1 ) and |x(k)−x∗| ∈O(k
θ

2θ−1 ).

Remark: [Liang–Fadili–Peyré, 2016]: local convergence rates using partial
smoothness.
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Gradient of the Moreau envelope

Theorem: (Local convergence) [O. 2018]

Let x∗ be a local (or global) minimizer of h and a certain growth condition
holds at x∗.

I Then, if x(k0) is sufficiently close to x∗, then there exists r > 0:

x(k) ∈ Br(x∗) for all k ≥ k0 .

Reminder/Fact:
If f is prox-regular, then, locally, eλf ∈ C1,+ with

∇eλf(x) =
1

λ
(x− proxλf (x)) .

being λ−1-Lipschitz continuous (for λ small enough).
If f is convex, eλf is finite-valued, and the formula above holds globally.
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Gradient of the Moreau envelope

Assume from now on:

The gradient of the Moreau envelope can be expressed as above.

Remark:
I Can be true globally or on a neighborhood of a local (or global) minimum.

I All iterates of iPiano stay within a neighborhood of a local minimum.

I Proximal mappings derived via ∇eλf are single-valued.

I Proximal mapping in the backward-step of iPiano may be multi-valued.

We present some informal results on the next slides.
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Heavy-ball method on the Moreau envelope

Heavy-ball method on the Moreau envelopeof a function:

min
x∈RN

F (x) , F (x) = eλf(x) = min
w∈RN

f(w) +
1

2λ
|w − x|2 .

I Heavy-ball update step (using θ := αλ−1)

x(k+1) = x(k) − α∇eλf(x(k)) + β(x(k) − x(k−1))
= x(k) − αλ−1(x(k) − proxλf (x(k))) + β(x(k) − x(k−1))

= (1− θ)x(k) + θproxλf (x(k)) + β(x(k) − x(k−1)) .

→ inertial proximal point algorithm for θ = 1.

I f prox-regular: local convergence.

I f convex: global convergence.
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Heavy-ball method on the sum of two Moreau envelopes

Heavy-ball method on the sum of two Moreau envelopes:

F (x) =
1

2
(eλg(x) + eλf(x))

= min
w,z∈RN

1

2

(
g(z) + f(w) +

1

2λ
|z − x|2 +

1

2λ
|w − x|2

)
.

I Heavy-ball update step:

x(k+1) = (1− θ)x(k) +
θ

2

(
proxλg(x

(k)) + proxλf (x(k))
)

+ β(x(k) − x(k−1)) .

→ inertial averaged proximal minimization method for θ = 1.

→ inertial averaged projection method, if f and g are indicator functions.

I Obvious extension to the weighted sum of Moreau envelopes.

I f , g prox-regular: local convergence.

I f , g convex: global convergence.
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iPiano on an objective involving a Moreau envelope

iPiano on an objective involving a Moreau envelope:

min
x∈RN

g(x) + F (x) , F (x) = eλf(x) = min
w∈RN

f(w) +
1

2λ
|w − x|2 .

I iPiano update step:

x(k+1) = proxαg(y
(k) − α∇eλf(x(k)))

= proxθλg((1− θ)x(k) + θproxλf (x(k)) + β(x(k) − x(k−1)))

→ inertial alternating proximal minimization method for θ = 1.

→ inertial alternating projection method, if f and g are indicator functions.

I f prox-regular: local convergence.

I f convex: global convergence. (also non-convex g with multi-valued prox)
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A Feasibility Problem

A Feasibility Problem:
Find X ∈ RN×M of rank R that satisfies a lin. sys. of eq. A(X) = b:

find X in {X ∈ RN×M | A(X) = b}︸ ︷︷ ︸
=:A

∩{X ∈ RN×M | rk(X) = R}︸ ︷︷ ︸
=:R

.

I The projection onto each set is easy:

projA (X) = X −A∗(AA∗)−1(A(X)− b) and projR(X) =

R∑
i=1

σiuiv
>
i ,

I USV > is (ordered) singular value decomposition of X (σ1 ≥ σ2 ≥ . . . ≥ σN ).

I 200 randomly generated problems with M = 110, N = 100, R = 4, D = 450.

I max. 1000 iterations.
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A Feasibility Problem

Precision 10p → −2 −4 −6 −8 −10 −12 −2 −4 −6 −8 −10 −12 −2 −4 −6 −8 −10 −12
Method iterations time [sec] success [%]
alternating
projection

235 886 — — — — 1.88 7.03 — — — — 100 97.5 0 0 0 0

averaged projection 639 — — — — — 5.13 — — — — — 100 0 0 0 0 0

Douglas-Rachford 974 — — — — — 8.10 — — — — — 2 0 0 0 0 0

Douglas-Rachford
75

209 449 696 949 — — 1.68 3.62 5.63 7.66 — — 100 100 100 100 0 0

glob-altproj, α =
0.99

238 894 — — — — 1.92 7.18 — — — — 100 96.5 0 0 0 0

glob-ipiano-
altproj, β = 0.45

— — — — — — — — — — — — 0 0 0 0 0 0

glob-ipiano-
altproj-bt, β = 0.45

45 69 90 115 140 166 0.65 1.03 1.52 2.08 2.63 3.20 100 100 100 100 100 100

heur-ipiano-
altproj, β = 0.75

59 212 386 567 749 925 0.79 2.82 5.14 7.52 9.93 12.22 100 100 100 100 100 91

loc-heavyball-
avrgproj-bt, β = 0.75

126 297 502 717 929 — 2.29 5.47 9.24 13.21 17.17 — 100 100 100 100 93.5 0

loc-ipiano-
altproj-bt, β = 0.75

66 101 138 176 214 252 1.32 2.06 2.80 3.56 4.31 5.06 100 100 100 100 100 100

I Non-convex version of Douglas–Rachford splitting [Li, Pong 2016].
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FISTA

FISTA: [Beck, Teboull 2009]
I Fast Iterative Shrinkage-Thresholding Algorithm

I Extension of Nesterov’s Accelerated Gradient to convex FBS setting:

min
x∈RN

f(x) + g(x) , f, g convex , ∇f is L-Lipschitz.

I Algorithm:

tk+1 =
1 +

√
1 + 4t2k
2

y(k) = x(k) +
( tk − 1

tk+1

)
(x(k) − x(k−1))

x(k+1) = proxg/L
(
y(k) − 1

L
∇f(y(k))

)
I Optimal Algorithm O(1/k2): Convergence rate:

(f + g)(x(k))− (f + g)(x?) ≤ 2L|x(0) − x?|2

(k + 1)2
.
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FISTA for non-convex problems

FISTA for non-convex problems: [Wen, Chen, Pong 2015]
I Problem:

min
x∈RN

f(x) + g(x)

with g convex and f (non-convex) satisfies for some l, L ≥ 0, L ≥ l

f(x) ≥ f(x̄) + 〈∇f(x̄), x− x̄〉 − l

2
|x− x̄|2 ∀x, x̄ ,

f(x) ≤ f(x̄) + 〈∇f(x̄), x− x̄〉+
L

2
|x− x̄|2 ∀x, x̄ .

I For 0 ≤ infk βk ≤ supk βk <
√

L
L+l , the following algorithm

y(k) = x(k) + βk(x(k) − x(k−1))

x(k+1) = proxg/L
(
y(k) − 1

L
∇f(y(k))

)
converges to a critical point of f + g:
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Adaptive FISTA

Update Scheme: FISTA

y
(k)
βk

= x(k) + βk(x(k) − x(k−1))

x(k+1) = argmin
x

g(x) + f(y
(k)
βk

) +
〈
∇f(y

(k)
βk

), x− y(k)
βk

〉
+

1

2τ
|x− y(k)

βk
|2
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Adaptive FISTA

Update Scheme: FISTA

y
(k)
βk

= x(k) + βk(x(k) − x(k−1))

x(k+1) = argmin
x

g(x) + f(y
(k)
βk

) +
〈
∇f(y

(k)
βk

), x− y(k)
βk

〉
+

1

2τ
|x− y(k)

βk
|2

Equivalent to

x(k+1) = argmin
x∈RN

g(x)+
1

2τ
|x−

(
y

(k)
βk
−τ∇f(y

(k)
βk

)
)
|2 =: proxτg

(
y

(k)
βk
−τ∇f(y

(k)
βk

)
)
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Adaptive FISTA

Update Scheme: Adaptive FISTA (also non-convex) [O., Pock 2017]

y
(k)
βk

= x(k) + βk(x(k) − x(k−1))

x(k+1) = argmin
x

min
βk

g(x) + f(y
(k)
βk

) +
〈
∇f(y

(k)
βk

), x− y(k)
βk

〉
+

1

2τ
|x− y(k)

βk
|2
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Adaptive FISTA

Update Scheme: Adaptive FISTA (f quadratic) [O., Pock 2017]

y
(k)
βk

= x(k) + βk(x(k) − x(k−1))

x(k+1) = argmin
x

min
βk

g(x) + f(y
(k)
βk

) +
〈
∇f(y

(k)
βk

), x− y(k)
βk

〉
+

1

2τ
|x− y(k)

βk
|2

... Taylor expansion around x(k) and optimize for βk = βk(x) ...

x(k+1) = argmin
x

g(x) +
1

2
|x− (x(k) − V −1

k ∇f(x(k)))|2Vk
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Discussion about Solving the Proximal Mapping

Update Scheme: Adaptive FISTA (f quadratic)

x(k+1) = argmin
x∈RN

g(x) +
1

2
|x− (x(k) − V −1

k ∇f(x(k)))|2Vk

=: proxVk
g (x(k) − V −1

k ∇f(x(k)))

with Vk ∈ S++(N) as in the (zero memory) SR1 quasi-Newton method:

V = I − uu> (identity minus rank-1) .

I SR1 proximal quasi-Newton method proposed by [Becker, Fadili ’12]
(convex case).

I Special setting is treated in [Karimi, Vavasis ’17].

I Unified and extended in [Becker, Fadili, O. ’18].
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Solving the rank-1 Proximal Mapping

Solving the rank-1 Proximal Mapping: (g convex)

I For general V , the main algorithmic step is hard to solve:

x̂ = proxV
g := argmin

x∈RN

g(x) +
1

2
|x− x̄|2V

I Theorem: [Becker, Fadili ’12] V = D ± uu> ∈ S++ for u ∈ RN and D

diagonal. Then

proxV
g (x̄) = D−1/2 ◦ proxg◦D−1/2(D1/2x̄∓ v?)

where v? = α?D−1/2u and α? is the unique root of

l(α) =
〈
u, x̄−D−1/2 ◦ proxg◦D−1/2 ◦D1/2(x̄∓ αD−1u)

〉
+ α ,

which is strictly increasing and Lipschitz continuous with 1 +
∑
i u

2
i di.
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Solving the rank-1 Proximal Mapping for `1-norm

Example:
I Let g(x) = |x|1 =

∑N
i=1 |xi|2, D = diag(d), u ∈ RN .

I V = D − uu>.

I Using the theorem, the proximal mapping

argmin
x∈RN

|x|1 +
1

2
|x− x̄|2V

can be solved by

proxV
g (x̄) = D−1/2 ◦ proxg◦D−1/2(D1/2x̄+ v?) .

where v? = α?D−1/2u and α? ∈ R is the unique root of

l(α) =
〈
u, x̄−D−1/2 ◦ proxg◦D−1/2 ◦D1/2(x̄+ αD−1u)

〉
+ α .

c© 2018 — Peter Ochs Part 5: Acceleration and Variants of FBS 8 / 30



Solving the rank-1 Proximal Mapping for `1-norm

Example: (Solving the rank-1 prox of the `1-norm)
I The proximal mapping wrt. the diagonal matrix is separable and simple

proxg◦D−1/2(z) = argmin
x∈RN

|D−1/2x|1 +
1

2
|x− z|2

= argmin
x∈RN

N∑
i=1

|xi|/
√
di +

1

2
(xi − zi)2

=
(

argmin
xi∈R

|xi|/
√
di +

1

2
(xi − zi)2

)
i=1,...,N

=
(

max
(
0, |zi| − 1/

√
di
)
sign(zi)

)
i=1,...,N
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Solving the rank-1 Proximal Mapping for `1-norm

The root finding problem in the rank-1 prox of the `1-norm:
I α? is the root of the 1D function (i.e. l(α?) = 0)

l(α) =
〈
u, x̄−D−1/2 ◦ proxg◦D−1/2 ◦D1/2(x̄∓ αD−1u)

〉
+ α

=
〈
u, x̄− PLin(x̄∓ αD−1u)

〉
+ α

which is a piecewise linear function.

I Construct this function by sorting K ≥ N breakpoints. Cost: O(K log(K)).

I The root is determined using binary search. Cost: O(log(K)).
(remember: l(α) is strictly increasing)

I Computing l(α) costs O(N).

 Total cost: O(K log(K)).
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Solving the rank-1 Proximal Mapping for `1-norm

ŝ1 ŝ2 ŝ3 ŝ4

from [S. Becker]
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Discussion about Solving the Proximal Mapping

Function g Algorithm

`1-norm Separable: exact
Hinge Separable: exact
`∞-ball Separable: exact
Box constraint Separable: exact
Positivity constraint Separable: exact
Linear constraint Nonseparable: exact
`1-ball Nonseparable: Semi-smooth Newton

+ proxg◦D−1/2 exact
`∞-norm Nonseparable: Moreau identity
Simplex Nonseparable: Semi-smooth Newton

+ proxg◦D−1/2 exact

From [Becker, Fadili ’12].
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Discussion about Solving the Proximal Mapping

Discussion about Solving the Proximal Mapping: (g convex)

I For general V , the main algorithmic step is hard to solve:

x̂ = proxV
g := argmin

x∈RN

g(x) +
1

2
|x− x̄|2V

I (L-)BFGS uses a rank-r update of the metric with r > 1.

I Theorem: [Becker, Fadili, O. ’18]
V = P ±Q ∈ S++, P ∈ S++, Q =

∑r
i=1 uiu

>
i , rank(Q) = r. Then

proxV
g (x̄) = P−1/2 ◦ proxg◦P−1/2P 1/2(x̄∓ P−1Uα?)

where U = (u1, . . . , ur) and α? is the unique root of

l(α) = U>
(
x̄− P−1/2 ◦ proxg◦P−1/2 ◦ P 1/2(x̄∓ P−1Uα)

)
+ Xα ,

where X := U>Q+U ∈ S++(r).
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Example: Lasso
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Variants with O(1/k2)-convergence rate

Adaptive FISTA: Variants with O(1/k2)-convergence rate: (convex case)

I Adaptive FISTA cannot be proved to have the accelerated rate O(1/k2).

I For each point x̄, aFISTA decreases the objective more than a FISTA.

I However, global view on the sequence is lost.

I aFISTA can be embedded into schemes with accelerated rate O(1/k2).

I Monotone FISTA version: (Motivated by [Li, Lin ’15], [Beck, Teboulle ’09].)

I Tseng-like version: (Motivated by [Tseng ’08].)
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Nesterov’s Worst Case Function
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LASSO

min
x∈RN

h(x) , h(x) =
1

2
|Ax− b|2 + λ‖x‖1 ,

100 101 102 103

10−4

10−2

100

iteration k

h
(x

(k
)
)
−

h
∗

FISTA MFISTA
aFISTA aMFISTA
aTseng

10−3 10−2 10−1 100

10−4

10−2

100

time [sec]

c© 2018 — Peter Ochs Part 5: Acceleration and Variants of FBS 17 / 30



Proposed Algorithm

Proposed Algorithm: (non-convex setting)

I Current iterate x(k) ∈ RN . Step size: τ > 0.

I Define the extrapolated point y(k)
β that depends on β:

y
(k)
β := x(k) + β(x(k) − x(k−1)) .

I Exact version: Compute x(k+1) as follows:

x(k+1) = argmin
x∈RN

min
β

`gf (x; y
(k)
β ) +

1

2τ
|x− y(k)

β |
2,

`gf (x; y
(k)
β ) := g(x) + f(y

(k)
β ) +

〈
∇f(y

(k)
β ), x− y(k)

β

〉
I Inexact version: Find x(k+1) and β such that

`gf (x(k+1); y
(k)
β ) +

1

2τ
|x(k+1) − y(k)

β |
2 ≤ f(x(k)) + g(x(k))
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Neural network optimization problem / non-linear inverse problem

min
W0,W1,W2
b0,b1,b2

N∑
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(
|(W2σ2(W1σ1(W0X+B0)+B1)+B2−Ỹ )1,i|2+ε2

)1/2
+λ

2∑
j=0

‖Wj‖1
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Forward–Backward Envelope

Forward–Backward Envelope: [Stella, Themelis, Patrinos 2017]
I Forward–Backward Envelope: (g convex)

eFBS
γ (x̄) = min

x∈RN
g(x) + f(x̄) + 〈∇f(x̄), x− x̄〉︸ ︷︷ ︸

=:`gf (x;x̄)

+
1

2γ
|x− x̄|2 .

I Using

P FBS
γ (x̄) := argmin

x∈RN

`gf (x; x̄) +
1

2γ
|x− x̄|2

RFBS
γ (x̄) := γ−1

(
x̄− P FBS

γ (x̄)
)

the FBS envelope is equivalent to

eFBS
γ (x̄) = g(P FBS

γ (x̄)) + f(x̄)− γ
〈
∇f(x̄), RFBS

γ (x̄)
〉

+
γ

2
|RFBS
γ (x̄)|2 .

I eFBS
γ (x̄) is always finite-valued, but not necessarily convex.
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Forward–Backward Envelope

modified from [Stella, Themelis, Patrinos 2017]
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Forward–Backward Envelope

Properties 1 (Relation of objective values):
I eFBS

γ (x̄) ≤ (f + g)(x̄)− γ
2 |R

FBS
γ (x̄)|2 for all γ > 0.

I (f + g)(P FBS
γ (x̄)) ≤ eFBS

γ (x̄)− γ
2 (1− γL)|RFBS

γ (x̄)|2 for all γ > 0.

I (f + g)(P FBS
γ (x̄)) ≤ eFBS

γ (x̄) for all γ ∈ (0, 1/L].

Properties 2 (Relation of optimality):
I (f + g)(z) = eFBS

γ (z) for all γ > 0 and z with 0 ∈ ∂(f + g)(z);

I inf(f + g) = inf eFBS
γ and argmin(f + g) ⊂ argmin eFBS

γ for γ ∈ (0, 1/L];

I argmin(f + g) = argmin eFBS
γ for all γ ∈ (0, 1/L).
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Forward–Backward Envelope

Properties 3 (Differentiability of the forward–backward envelope):
I Assume f is twice continuously differentiable. Then eFBS

γ is continuously
differentiable and we have

∇eFBS
γ (x̄) = (I − γ∇2f(x̄))RFBS

γ (x̄).

I If γ ∈ (0, 1/L), then the set of stationary points of eFBS
γ equals zer∂(f + g).

I eFBS
γ serves as an exact penalty formulation for the original objective.

I Apply variable metric Gradient Descent to eFBS
γ

x(k+1) = x(k) − γ(I − γ∇2f(x(k)))−1∇eFBS
γ (x(k))

= x(k) − γRFBS
γ (x(k))

= P FBS
γ (x(k))

leads to Forward–Backward Splitting.
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Forward–Backward Envelope

Accelerations using the Forward–Backward Envelope:
I Using the Forward–Backward Envelope, a non-smooth problem is

transformed into a smooth problem.

I Machinery from smooth optimization can be applied.

I Opens the door for Quasi-Newton Methods and also Newton’s method.

I To improve the (weak) convergence properties of quasi-Newton methods,
MINFBE interleaves descent steps over the FBE with forward–backward
steps, which yields global convergence.
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Forward–Backward Envelope

LASSO problem from [Stella, Themelis, Patrinos 2017]
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Forward–Backward Envelope

Matrix completion problem from [Stella, Themelis, Patrinos 2017]
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Generalized Forward–Backward Splitting

Generalized Forward–Backward Splitting: [Raguet, Fadili, Peyré 2013]
I Convex optimization problem:

min
x∈RN

f(x) +

M∑
i=1

gi(x) .

I f, g convex; ∇f is L-Lipschitz; gi are proper lsc convex and simple.

Application Examples:
I Elastic net regularization; e.g. for Linear Regression

min
x∈RN

1

2
|Ax− b|2︸ ︷︷ ︸
=:f(x)

+ ρ|x|1︸ ︷︷ ︸
=:g1(x)

+ µ|x|22︸ ︷︷ ︸
=:g2(x)

I Block-decomposition: Reformulate

min
x∈RN

f(x) + h(x) as min
x,y∈RN

f(x) + h(y) s.t. x = y .
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Generalized Forward–Backward Splitting

Algorithm: (GFBS)
I Fix ω ∈ (0, 1]M with

∑M
i=1 ωi = 1, γ ∈ (0, 2/L), λk ∈ (0,min( 3

2 ,
1
2 + 1

γL )) .

I Initialize: z(0)
i ∈ RN and set x(0) =

∑M
i=1 ωiz

(0)
i .

I Update for k ≥ 0:
I For i = 1, . . . ,M :

z
(k+1)
i = z

(k)
i + λk

(
proxγgi/ωi

(
2x(k) − z(k)

i − γ∇f(x(k))
)
− x(k)

)
I Compute:

x(k+1) =

M∑
i=1

ωiz
(k+1)
i .
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Generalized Forward–Backward Splitting

Theorem: (Convergence of Generalized Forward–Backward Splitting)
Under a qualification condition, the sequence (x(k))k∈N generated by GFBS
with erroneuous update steps (with summable error terms) converges to a
solution.

Properties:
I For f ≡ 0: Relaxed Douglas–Rachford Splitting.

I For M = 1: Relaxed Forward–Backward Splitting.
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Generalized Forward–Backward Splitting

Follow-up work applied to Semantic Labelling of 3D Point Clouds:

Random Forest Classification

[Raguet 2017]
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Generalized Forward–Backward Splitting

Follow-up work applied to Semantic Labelling of 3D Point Clouds:

Regularized Labelling

[Raguet 2017]
c© 2018 — Peter Ochs Part 5: Acceleration and Variants of FBS 30 / 30



Generalized Forward–Backward Splitting

Follow-up work applied to Semantic Labelling of 3D Point Clouds:

Ground Truth Labelling

[Raguet 2017]
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Facts about Gradient Descent

I Smooth optimization problem: (f continuously differentiable)

min
x∈RN

f(x)

I Update step with step size τ > 0:

x(k+1) = x(k) − τ∇f(x(k)) .

I Step size selection:
I f continuously differentiable
⇒ line-search is required.

I ∇f Lipschitz continuous
⇒ feasible range of step sizes can be
computed.

x̄

−∇f(x̄)
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Facts about Gradient Descent

I Equivalent to minimizing a quadratic function:

x(k+1) = argmin
x∈RN

f(x(k)) +
〈
∇f(x(k)), x− x(k)

〉
+

1

2τ
|x− x(k)|2 .

f(x)

x(k)

I Optimality condition:

∇f(x(k)) +
1

τ
(x− x(k)) = 0

⇔ x = x(k) − τ∇f(x(k))
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Facts about Gradient Descent

Another point of view:
I Minimization of a linear function

fx(k)(x) = f(x(k)) +
〈
∇f(x(k)), x− x(k)

〉
with quadratic penalty on the distance to x(k):

Dh(x, x(k)) =
1

2τ
|x− x(k)|2 .

I Update step:
x(k+1) = argmin

x∈RN

fx(k)(x) +Dh(x, x(k))
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Facts about Gradient Descent

Generalization to non-smooth functions f :
I Minimization of a convex model function

fx(k)(x) with |f(x)− fx(k)(x)| ≤ ω(|x− x(k)|)︸ ︷︷ ︸
growth function

with quadratic penalty on the distance to x(k):

Dh(x, x(k)) =
1

2τ
|x− x(k)|2 .

I Update step:
x(k+1) = argmin

x∈RN

fx(k)(x) +Dh(x, x(k))
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Facts about Gradient Descent

Generalization to non-smooth functions f :
I Minimization of a convex model function

fx(k)(x) with |f(x)− fx(k)(x)| ≤ ω(|x− x(k)|)︸ ︷︷ ︸
growth function

with penalty on the distance to x(k):

Dh(x, x(k)) .

I Update step:
x(k+1) = argmin

x∈RN

fx(k)(x) +Dh(x, x(k))
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Model assumption / Growth function

f(x)

f(x) + ω(|x− x(k)|)

f(x)− ω(|x− x(k)|)

x(k)
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Contribution

Key Contribution:

The growth function and the distance function
determine

the convergence properties.

Types of growth functions:

(i) growth function: ω(0) = ω′(0) = 0

(ii) proper growth function: lim
t↘0

ω′(t) = lim
t↘0

ω(t)/ω′(t) = 0.

(iii) global growth function (does not require line-search).
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Abstract Algorithm

Abstract Algorithm:

x̃(k) = argmin
x∈RN

fx(k)(x) +Dh(x, x(k)) .

Find η(k) > 0 using (inexact) line-search along

x(k+1) = x(k) + η(k)(x̃(k) − x(k))

to satisfy an Armijo-like condition along.

Remark: (Alternative Line-Search Strategy)
I Replace line-search for η(k) > 0 by scaling of h in Dh(x, x(k)).
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Outline

1: Examples for Model Functions
I Gradient Descent, Forward–Backward Splitting, ProxDescent
I Presented with Euclidean distance measure.
I However any distance measure from PART 2 can be used.

2: Examples for Distance Functions
I Bregman distance generated by Legendre functions.

3: Convergence Analysis
I Subsequential convergence to a stationary point.

4: Numerical Examples
I Robust non-linear regression.
I Image deblurring under Poisson noise.
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Forward–Backward Splitting

I Optimization problem:

min
x∈RN

f0(x)︸ ︷︷ ︸
non-smooth

convex

+ f1(x)︸ ︷︷ ︸
diff.

non-convex

I Update step:

x̃(k) = argmin
x∈RN

f0(x) + f1(x(k))+
〈
x− x(k),∇f1(x(k))

〉
+

1

2τ
|x− x(k)|2

I Model function:

fx̄(x) = f0(x) + f1(x̄) + 〈x− x̄,∇f1(x̄)〉

I Model assumption/error:

|f(x)− fx̄(x)| = |f1(x)− f1(x̄)− 〈x− x̄,∇f1(x̄)〉 | ≤ ω(|x− x̄|)

I FBS case was considered by [Bonettini et al., 2016].
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Variable Metric Forward–Backward Splitting

I Optimization problem:

min
x∈RN

f0(x)︸ ︷︷ ︸
non-smooth

convex

+ f1(x)︸ ︷︷ ︸
twice diff.

non-convex

I Model function:

fx̄(x) = f0(x) + f1(x̄) + 〈x− x̄,∇f1(x̄)〉+
1

2
〈x− x̄, B(x− x̄)〉

B is a positive definite approximation to the Hessian ∇2f1(x̄)

I Update step: (Damped (approx.) Newton Method)

x̃(k) = argmin
x∈RN

f0(x)+f1(x(k)) +
〈
x− x(k),∇f1(x(k))

〉
+

1

2

〈
x− x(k), B(x− x(k))

〉
+

1

2τ
|x− x(k)|2

c© 2018 — Peter Ochs Part 6: Bregman Proximal Minimization 11 / 23



ProxDescent

I Optimization problem:

min
x∈RN

f0(x)︸ ︷︷ ︸
non-smooth

convex

+ g
(

︸︷︷︸
non-smooth

convex
finite-valued

F (x)︸ ︷︷ ︸
diff.

)

I Model function: (DF (x̄) is the Jacobian matrix of F at x̄)

fx̄(x) = f0(x) + g(F (x̄) +DF (x̄)(x− x̄))

I Model assumption:

|f(x)− fx̄(x)| = |g(F (x))− g(F (x̄) +DF (x̄)(x− x̄))|
≤ `|F (x)− F (x̄)−DF (x̄)(x− x̄)|
≤ ω(|x− x̄|)
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ProxDescent

I Update step:

x̃(k) = argmin
x∈RN

f0(x) + g(F (x(k)) +DF (x(k))(x− x(k))) +
1

2τ
|x− x(k)|2

I [Lewis and Wright, 2016], [Drusvyatskiy and Lewis, 2016]

A Special Case of ProxDescent:
I Optimization problem: (Non-linear least-squares problem)

min
x∈RN

1

2
|F (x)|2

I Update step: (Levenberg–Marquardt Algorithm)

x̃(k) = argmin
x∈RN

1

2
|F (x(k)) +DF (x(k))(x− x(k))|2 +

1

2τ
|x− x(k)|2
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Composite Optimization: Iterative Reweighting

I Optimization problem:

min
x∈RN

f0(x)︸ ︷︷ ︸
non-smooth

convex

+ g
(

︸︷︷︸
smooth

(∇g)i non-negative

F (x)︸ ︷︷ ︸
Lipschitz
Fi convex

)

I Model function:

fx̄(x) = f0(x) + g(F (x̄)) + 〈∇g(F (x̄)), F (x)− F (x̄)〉

I Model assumption:

|f(x)− fx̄(x)| = |g(F (x))− g(F (x̄))− 〈∇g(F (x̄)), F (x)− F (x̄)〉 |
≤ ω(|F (x)− F (x̄)|)
≤ ω(|x− x̄|)
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Composite Optimization: Iterative Reweighting

I Update step:

x̃(k) = argmin
x∈RN

f0(x) +
〈
∇g(F (x(k))), F (x)− F (x(k))

〉
+

1

2τ
|x− x(k)|2 .

Example: (image deblurring with non-convex regularization)

min
u

1

2
|Au− f |2 + ρ

∑
i,j

log(1 + µ|(Du)i,j |)

clean burry/noisy reconstruction
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Distance Measures

Class of Distance Measures:
I Bregman distance Dh generated by Legendre functions h.

Examples:

I Euclidean Distance Measure: Dh(x, x̄) =
1

2
|x− x̄|2

I Scaled Euclidean Distance Measure:

Dh(x, x̄) =
1

2
|x− x̄|2A :=

1

2
〈x− x̄, A(x− x̄)〉

I Burg’s Entropy: (e.g. for non-negativity constraints)

Dh(x, x̄) =

N∑
i=1

(
xi
x̄i
− log

(xi
x̄i

)
− 1

)

I h(xi) = − log(xi) (Barrier) has domain (0,+∞) and grows towards +∞ for
for xi → 0.
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Convergence Results

Seek for stationary point x∗, i.e. |∇f |(x∗) = 0. (Limiting Slope)

Termination of Backtracking Line-Search:
I Backtracking terminates after a finite number of iterations.

Stationarity for Finite Termination:
I Fixed-points of the algorithm are stationary points of f .

Convergence of Objective Values:
I (f(x(k)))k∈N is non-increasing and converging.
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Stationarity of Limit Points

Assumption to avoid technical details: Dh has full domain.

Prove Stationarity of Limit Points in Three Settings:

(i) ω is a growth function: ω(0) = ω′(0) = 0 and |∇f |(x(k))→ 0.

(ii) ω is a proper growth function: lim
t↘0

ω′(t) = lim
t↘0

ω(t)/ω′(t) = 0.

(iii) ω is a global growth function (does not require line-search).
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Robust Non-linear Regression

Non-smooth non-convex optimization problem:

min
u:=(a,b)∈RP×RP

M∑
i=1

‖Fi(u)− yi‖1 , Fi(u) :=

P∑
j=1

bj exp(−ajxi)

I (xi, yi) ∈ R× R noisy non-negative input-output.
I yi = Fi(u) + ni with impulse noise ni.

I Model function linearizes the inner functions Fi.

I Convex subproblems of the form: (solved using dual ascent)

ũ = argmin
u∈RP×RP

M∑
i=1

‖Kiu− y�i ‖1 +
1

2τ
|u− ū|2 , y�i := yi − F (ū) +Kiū .

I Ki := DFi(ū) is the Jacobian of Fi at ū.
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Robust Non-linear Regression
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Objective value vs. number of subproblem iterations.
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Image Deblurring under Poisson Noise

Constrained smooth optimization problem:

min
u∈Rnx×ny

DKL(f ,Au)︸ ︷︷ ︸
Kullback–Leibler

divergence

+
λ

2

nx∑
i=1

ny∑
j=1

log(1 + µ|(Du)i,j |2)︸ ︷︷ ︸
smooth non-convex regularizer

s.t. ui,j ≥ 0

I Even for convex regularization, it is hard to minimize.

I Difficulty comes from the lack of global Lipschitz continuity.

I For convex regularizer: Use generalized Descent Lemma and Burg’s
entropy. [Bauschke et al., 2016]

I Burg’s entropy is not strongly convex and cannot be used by current FBS.

I Subproblems in our framework have simple analytic solution.
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Image Deblurring under Poisson Noise

clean noisy and blurry reconstruction

c© 2018 — Peter Ochs Part 6: Bregman Proximal Minimization 22 / 23



Summary

Summary:

1. Gradient Descent

• Gradient or Steepest Descent
• Convergence of Gradient Descent
• Convergence to a Single Point
• Speed of Convergence
• Applications
• Structured Optimization Problems
• Unification of Algorithms

3. Non-Smooth Optimization

• Basic Definitions
• Infimal Convoution
• Proximal Mapping
• Subdifferential
• Optimality Condition (Fermat’s Rule)
• Proximal Point Algorithm
• Forward–Backward Splitting

5. Variants and Acceleration of
Forward–Backward Splitting

• FISTA
• Adaptive FISTA
• Proximal Quasi-Newton Methods
• Efficient Solution for Rank-1 Perturbed Proximal

Mapping
• Forward–Backward Envelope
• Generalized Forward–Backward Splitting

2. Acceleration Strategies

• Time Continuous Setting
• Heavy-ball Method
• Nesterov’s Acceleration
• Quasi-Newton Methods
• Subspace Acceleration

4. Single Point Convergence

• Łojasiewicz Inequality
• Kurdyka-Łojasiewicz Inequality
• Abstract Convergence Theorem
• Convergence of Non-convex

Forward–Backward Splitting
• A Generalized Abstract Convergence

Theorem
• Convergence of iPiano
• Local Convergence of iPiano

6. Bregman Proximal Minimization

• Model Function Framework
• Examples of Model Functions
• Examples of Bregman Functions
• Convergence Results
• Applications
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