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Gradient Descent Method

Gradient Descent Method:
Solve an unconstrained smooth optimization problem:

min f(z), where f € C1(RY)

z€RN

Update Equation:
gD — 20 _ 7 v f(z®),

Contribution historically assigned to Cauchy in 1847:
[A.L. Cauchy: Méthode générale pour la résolution des systemes

d’équations simultanées, Comptes rendus, Ac. Sci. Paris 25, 536-538
(1847).]

He was motivated by calculations in astronomy.

He wants to solve non-linear equations.
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Augustin Louis Cauchy

Aty

B tigeari. @;

[Augustin Louis Cauchy, 1789-1857
(Wikimedia, Cauchy Dibner-Collection Smithsonian Inst.)]
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Facts about Gradient Descent

Gradient Descent is also known as Steepest Descent:.
Objective has steepest descent along d = —V f(z).

W.lL.o.g., we can assume that |d| = 1 (the scaling of d can be absorbed by 7).

For sufficiently small = > 0, the direction d is optimal with respect to:

o f@+rd) = £@)

st.|d=1.
deRN T

Consider the first order Taylor expansion:

f@+71d) = f(&)+7(Vf(Z),d)+ o(r|d]) .
(Note that for = — 0, the term o(7) vanishes faster than 7 (V f(z), d).)
The direction d solves the following problem

min (Vf(z),d) s.t.|d =1.
deRN
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Facts about Gradient Descent

min C ’ .t = 1

» Denote by 6 the angle between V f(z) and d and write:
(Vf(z),d) = |V f(Z)||d] cos b,
» Therefore, problem is solved by

_ Vi@
IVi@)]

» Negative gradient —V f(z) points in the direction of steepest descent.
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Descent Direction

Definition: (Descent Direction)

A vector 0 # d € RY is a descent direction for the function f at the point z, if
(Vf(z),d) <0 holds, i.e. the angle between d and V f(z) is larger than 90
degree (obtuse angle).

» For descent direction d:
f(@+71d) = f(z) + 7(Vf(Z),d) +o(r|d])
N—_——
<0
7 small

Example:
» B positive definite, d = —BV f(z) # 0:

(V(@),d) < =Amin(B)|Vf(@)]> < 0.
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Descent Direction for Non-smooth Functions?

Remark: This definition is not true for non-smooth functions:

» —d steepest descent direction.
» d satisfies <d, cZ> <0.

» However, f(z + 7d) > f(z) forany 7 > 0.
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Sufficient Descent Condition is Required

Sufficient Descent Condition:
> s f(zF+D) < f(z®)) “sufficient” to find a minimizer or a stationary point

Vf(*) =07 («* is called stationary or critical point)
Example:
f(z) = ? — 1. Start at (%) = 2; descent direction
d® = —z0 /|z®)| and 7®) such that f(z®) =

1/(k + 1). Then, obviously,

1 1
(k+1)y — = — (k)
FE®Y) = — < = = 1),

however f(z(*)) — 0 for k — oo and min f = —1. \V

This algorithm does not converge to the minimum.
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Armijo condition — Sufficient Descent Condition

Definition (Armijo condition):
The step size 7 > 0 is said to satisfy the Armijo condition for v € (0,1) and the
descent direction d € R at the point z € RY, if the following holds:

f(@+7d) < f(Z) +77(V(T),d)

f@) - 70 f@)+7-7(Vf(2),d)
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Armijo condition

Example: (Armijo condition)
Let d = —V f(z). Then, the Armijo condition reads

f@+7d) < f(z) =7V (@)
Descent achieved whenever 7|V f(z)|? > 0 (i.e. Z is not a stationary point).

A small descent of the objective values means that 7 is small or |V f(z)|? is

small:
7IVF(@)]? < (&) — f(Z 4 7d)

The difference between successive objective values is a measure for the
stationarity of the iterates (scaled by 7).
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Backtracking Line Search

Algorithm (Backtracking Line Search Method):
» Prerequisites: Descent direction d € RY at z € R for f € C}(RY).

» Goal: Find a step size 7 that satisfies the Armijo condition.
» Procedure:
~ Initialize: Let 7 > 0,v,p € (0,1) and set 7(9) = 7.
» For j =0,1,2,...: If the condition
f@+79d) < f(7) + 79 (Vf (7). d)
is satisfied, then stop the algorithm and return 7() | otherwise

set 70D = pr0)
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Convergence of Gradient Descent

Proposition (Stationarity of Limit Points):
Let
> feC'RY)

» (z(®))ren be generated by Gradient Descent d*) = —V f(z(®)

» (71)ken Selected by backtracking line search satisfies the Armijo condition.

Then
» every limit point of (z(*)),cy is a stationary point of f.
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Convergence of Gradient Descent

Proposition (Constant Step Size Rule):
Let
» f € CHRY) with L-Lipschitz continuous gradient V f:

» (z(®))ren be generated by Gradient Descent d*) = —V f(z(®)

» for some e > 0, the step sizes (71 )en satisfy

e< 1 <
= Th = L

Then
» every limit point of (z(*)),cy is a stationary point of f.
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Discussion Convergence

Discussion: (Convergence of Gradient Descent):
> (f(z(®)))en converges to f* > —oo.

» Every limit point =* satisfies
Vf(z*)=0, ie.itisa stationary point.

» z* is not necessarily a local minimizer.

v

Possibly: Convergence to a saddle point or local maximum.

v

The sequence (z(*)),cn does not necessarily converge, although

IVF®) =0 "0 |zt _ 8 0,
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Counterexample for Convergence

Counterexample:
Gradient Descent with line minimization does not converge to a single point.

[H. B. Curry: The method of steepest descent for non-linear minimization
problems, Quart. Appl. Math., 2 (1944), pp. 258—-261.]:
Let f(x1,22) = 0 on the unit circle and f(x1,x2) > 0 for any other point.
Outside the unit circle let the surface have a spiral gully making infinitely
many turns about the circle. The iterates will follow the gully and have all
points of the circle as limit points.

Counterexample given by a C°°-function. (See next slide.)
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Counterexample for Convergence

Counterexample:

From [Absil, Mahony, Andrews 2005]

» Defined in polar coordinates (r, 6):

— 1 4 ) .
tney = | (1wt (0 - ) i <1
v ifr>1;
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Convergence to a Single Stationary Point

Convergence to a Single Point: (Requires additional assumptions)
Critical points isolated or Hessian non-degenerate [Helmke, Moore 1994].

Strictly convex functions: Global minimum is unique isolated critical point.
Objective differentiable quasi-convex [Kiwiel, Murty 1996].

Convergence to isolated local minimum [Bertsekas 1995].
(Capture Theorem)

Pseudo-convexity conditions and growth conditions [Dunn 1981, 1987].

f convex, V f Lipschitz, const. step size, e.g. [Bauschke, Combettes 2011].
(using Fejér Monoticity)

Real analytic functions [Absil, Mahony, Andrews 2005].
(using tojasiewicz inequality)

Tame functions [Bolte, Daniilidis, Ley, Mazet 2010].
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Single Point convergence

Part 4.
Single Point Convergence

1. Lojasiewicz Inequality

2. Kurdyka-tojasiewicz Inequality

3. Abstract Convergence Theorem

4. Convergence of Non-convex Forward—Backward Splitting
5. A Generalized Abstract Convergence Theorem

6. Convergence of iPiano

7. Local Convergence of iPiano
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Convergence Speed of Gradient Descent

Convergence Rate for Smooth Strongly Convex Functions:
» fe 5” L | (smooth strongly convex), i.e. f(z) — £]x|* convex.

» Forr € (0,2/(u+ L)]

a0 o < (1~ 22 Ta0 — o
m

If r=2/(n+ L), then

0 = 0t < () e ® o
1

Linear convergence rate [Nesterov 2004].
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Convergence Speed of Gradient Descent

Convergence Rate for Smooth Convex Functions:
» f e F;' (smooth convex).

» Forr € (0,2/L)

T 2F(@®) — )@ — *|?
HE) =1 < S — [P 3 @ — 7 D) (F@O) — 1)

Sub-Linear convergence rate [Nesterov 2004].

= O(1/k).
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Convergence Speed of Gradient Descent

Convergence Speed of Gradient Descent: (Discussion)
» We have upper complexity bounds for Gradient Descent.

» Still unclear, how good Gradient Descent is.

» Forirregularly scaled level sets, Gradient Descent is bad.

» For some classes of problems, we have lower complexity bounds.
[Nesterov 2004], [Nemirovski, Yudin 1983].
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Lower complexity bound for ﬂﬁ;l(Ro‘j), [Nesterov 2004]

Theorem: (Lower Bound for Smooth Strongly Convex Functions)

For any z(9) € R> and any constants 1 > 0, L > p there exists a function

fe (Eﬁff’L’l(Roo) such that for any first-order method M satisfying our

assumptions, we have

g YE- VB
 VI+ym

[2® = 2*|2 > 2@ — 2|2,

Fa®) = f* > 8@ — 27|

Discussion:
The “worst function” depends on p and L, but not on k.

The bound is uniform in the dimension.
Turns out to be tight for quadratic functions (e.g. Conjugate Gradient Method).

The rate is “much” worse for Gradient Descent:
L— VL - /i

qGD ‘= 7“ VS qopt ‘=
Ltp VL+ .k
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Lower complexity bound for fgo’l(]RN ), [Nesterov 2004]

Theorem: (Lower Bound for Smooth Convex Functions)
Forany kwith 1 < k < 1(NV —1) and any 2(%) € R¥, there exists at least one

function f € ;' (RY) such that for any first order method M satisfying our
assumption, we have that

3L||:c(0) — z*||?
> - W

f®) =1 2 = e f@) - e 0/k)

Discussion:

The estimates are valid for large scale problems (N > 105),
or for the first iterates of small problems (N < 10%).

The complexity bound is uniform in the dimension of the problem.

Unclear whether the estimation of the lower complexity bound is tight.

After k = 100 iterations we can decrease our initial residual by a factor of 10%.
In order to improve the situation, we have to find another problem class.

Obviously, Gradient Descent is not optimal O(1/k).
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Acceleration Strategies

Part 2:
Acceleration Strategies

1. Time Continuous Setting
2. Heavy-ball Method

3. Nesterov’s Acceleration
4. Quasi-Newton Methods

5. Subspace Acceleration
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Applications

Image Processing: (Image Denoising, Deblurring)
f € RN: degraded (grey-value) image

clean image g noisy image f reconstruction u

Suppose degradation process is known A: RY — RY (linear):
f=A(g)+n

g € RY: ground truth/clean image.
n € RY: noise (e.g. Gaussian or Impulse noise)
We also consider (non-additive) Poisson noise. (different formula)
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Image Processing: (Image Denoising, Deblurring)

Reconstruction by Variational Methods:
min D(u) + A R(u)
N o~~~ ——

ueR
data term regularization term

Data term: Reconstruction/solution u should be similar to f.
D(u) = || A(u) — f||2: good for removing Gaussian noise.
D(u) = || A(u) — f||1: good for removing impulse noise.

Regularization term: u should not contain noise, i.e. it should be smooth:
Define finite-difference operator D: RY — R2¥ for u € R"=*" ~ RN by

_ (DT z _ JWit1,5 — Wi, ifi < ny
D = (D%, DY), (Du)i,= {0’ otherwise.

R(u) = ||Du)3 (Tikhonov regularization)

R(u) = |[Dullz, = X, (D)}, + (DY) ;)'/? ((isotropic) Total Variation)
R(u) = ||Dulli =3, ; f(Dxu)m»| + |(DYu); ;| ((anisotropic) Total Variation)
R(u) =3, ; ¢((Du);,;) with ¢(p) = log(1 + v|p[) (non-convex) ...
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Image Processing: (Image Denoising, Deblurring)

Regularization term:
» Also known as prior assumption.

» Natural image statistics motivate the use of non-convex regularizers.

» Learned regularization filters:

(8.07,0.17) (8.06,0.16) (8.06,0.16) (8.05,0.15) (8.05,0.14) (8.04,0.14) (8.03,0.13) (8.03,0.13) (8.02,0.13) (8.02,0.12) (8.02,0.11) (8.02,0.11) (8.02,0.11) (8.01,0.11) (8.01,0.12) (8.00,0.10)

HEHEENEZMENEZENMNE N

(8.00,0.09) (8.00,0.11) (8.00,0.09) (7.99,0.08) (7.99,0.08) (7.99,0.07) (7.99,0.10) (7.99,0.08) (7.98,0.06) (7.98,0.07) (7.97,0.05) (7.97,0.08) (7.97,0.08) (7.97,0.09) (7.97,0.05) (7.96,0.04)

=NZN=NEN=0=ES=M

(7.96,0.07) (7.96,0.05) (7.96,0.02) (7.96,0.01) (7.96,0.03) (7.95,0.01) (7.95,0.01) (7.95,0.03) (7.95,0.01) (7.95,0.01) (7.95,0.03) (7.95,0.06) (7.94,0.04) (7.94,0.04) (7.94,0.02) (7.94,0.07)

RS EESERERCEERRT

A @© 2018 — Peter Ochs Part 1: Gradient Descent 28 / 40



Applications: LASSO

Least Absolute Shrinkage and Selection Operator: [Tibshirani 1994]

1
min f\Aa:—b\2+/\||x||1 or min —|Az —b]® st |z]1 <.
zERN zERN 2

» Sparse linear regression: (A; € RM is a feature for describing b)
bNZA$“ Al,...,AN)ERMXN,l‘:(l‘h...,x]v)T.

» |||l used as a convex approxima-
tionto #{i : x; # 0}.

» Motivation: Many zero-coordinates ey 4
yield an interpretable model

N
bey Z Aixi = Z Aj.]?] o ‘ g } "
i=1

je{i:z;#0}
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Applications

Similar problems:
Group Lasso, Fused Lasso, ...

Logistic Regression: (z;,y;) € X x {—1, 1} given “training data™:

i 1 1 —Yi y g >\ .
min > log(1 + exp(—y: w, 7)) + Al

Non-negative Least Squares:

1
min —|Az —b*> st.x; >0Vi=1,...,N.
zERN 2
Elastic Net Regularization:

iy = LAz — b2+ Allells + e ll2l3 -
Low Rank Approximation: (e.g. Matrix completion)

—|A-X AllX ]« -
i 24— X[E+AX]
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Application

Neural Networks:
Non-linear Regression Problem: (or interpolation)

Given training data (z;,y;) € X xY,i=1,..., M.
Training: Find w € R¥ such that
Ny(z;) =~ y; i=1,....,.M
The non-linear prediction function has a composition structure (L layer):
Nu(@) =wpo(...o(wao(wix +b1) +b2)...) +bp
with “activation functions” o (coordinate-wise non-linear functions) and

w:(wl,...,wL,bl,...,bL).
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Neural Networks

» Optimization Problem/Training: (e.g. Empirical risk)

min —Z|N x;) —yi|° or min —Zmax Noy(z)) .

weRN 2 weRN 2

».».».»-»I»I» cat

» Can also be complemented with sparsity or other priors for w.

» Use robust non-linear regression when outliers are expected:

Inin -ZIIN i) = yill1 -
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Non-smooth Optimization

Part 3:
Non-smooth Optimization

1. Basic Definitions

2. Infimal Convoution

3. Proximal Mapping

4. Subdifferential

5. Optimality Condition (Fermat’s Rule)
6. Proximal Point Algorithm

7. Forward—Backward Splitting
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Non-smooth Optimization

Structured Optimization Problems:
» Most of the applications yield structured non-smoothness:

Inin, f(z) + g(z)
» fis a smooth function.
» ¢ is a non-smooth function with “nice properties”.

» Forward-Backward Splitting is designed for such problems.
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Non-smooth Optimization Algorithms

Part 3: Non-smooth Optimization

6. Proximal Point Algorithm 7. Forward—Backward Splitting

Part 4: Single Point Convergence

4. Convergence of Non-convex Forward—Backward Splitting

Part 5: Variants and Acceleration of
Forward—Backward Splitting

1. FISTA 4. Efficient Solution for Rank-1 Perturbed
Proximal Mapping
2. Adaptive FISTA
5. Forward—Backward Envelope
3. Proximal Quasi-Newton
Methods 6. Generalized Forward—Backward Splitting
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Interpretation of Gradient Descent

Interpretation of Gradient Descent: (Relations to other Algorithms)
» Gradient Descent step equivalent to minimizing a quadratic function:

Y = argmin f(2®) + <Vf(a:(k)), x — x(k)> + i|:10 —z®)2,
rzERN 2T

/()

» Optimality condition:

Viz®) + %(:c —z®) =0
oz =z® -7V fz®)
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Interpretation of Gradient Descent

Another point of view:
» Minimization of a linear function

fow (@) = f(=™) + <Vf(:v(k)), T — x(k)>
with quadratic penalty on the distance to z(*):
1
Dp(z,z®) = —|z — 2®)2.
2T

» Update step:
l'(k+1) — argmin f:v(k) (I’) + Dh(xa ‘T(k))
z€RN
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Interpretation of Gradient Descent

Generalization to non-smooth functions f:
» Minimization of a convex model function

fowr (@) With  |f(2) = fo0 (@)] < w(|lz —a®))
———

growth function
with quadratic penalty on the distance to z(*):
1
Dy(z,z®) = §|x —z®)2,

» Update step:
z**tD = argmin fro () + Dp(z, :z:(k))
z€RN
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Interpretation of Gradient Descent

Generalization to non-smooth functions f:
» Minimization of a convex model function

Far (@) With | £(2) = fo0 (@)] < w(|a — ™)
——

growth function
with penalty on the distance to z(*):
Dy(z,z®)).
» Update step:

™+ = argmin £, () + Dp(z,2®))
z€ERN
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A Unifying Framework

Part 6:
Bregman Proximal Minimization

1. Model Function Framework

2. Examples of Model Functions

3. Examples of Bregman Functions
4. Convergence Results

5. Applications
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Convergence Rate for the Gradient Method

Example for Unification: (Convergence Rate for the Gradient Method)
» Setthe model: fz(z) = f(z) + (Vf(z),z — z*) (Gradient Descent).

» f; satisfies the model assumption:

05 (&)~ fola) < Sllo = 7|

» Define:

» fIis 7~ !-strongly convex, i.e.

FE@)+ 5ol — ol < 7).
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Convergence Rate for the Gradient Method

» fIis T~ !l-strongly convex, i.e.

FE@) + o lle = 2l < f2(@).
Using the model assumption, we obtain:
1 L

1
1@+ (5= 5 ) 1 =2l + 3-l16 — I < &) + -l - ol

v

v

Usingz =zand 0 <7 < % we obtain a descent algorithm.

v

Restricting to 0 < 7 < +, we obtain

£@) = 1(@) < 5 (lz =3l ~ Iz~ #17) -

» Setz = z*, & = 2zt and z = z(*), and sum both sides

Ja = 2O = Lja® — 202
27k 2k '

F@®*) — f(z*) <
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Time Continuous Interpretation of Gradient Descent

Time Continuous Interpretation of Gradient Descent:
» Let (2(®),cn be generated by Gradient Descent.

» Then
2D — o) _yr®)) o g —2® = VW),
T
» Consider as discretization of a curve X : [0, +00) — RN, t = X (¢).
» Set
ty =kt and X(tg) = 2®.
» Taylor expansion:

X (the1) = X (tr) + X (t1) (te1 — tr) + O(12)
= X(tx) + 7X (t) + O(1?)

v

Therefore

Xlier) = X) _ 34,y + O(r) = ~V1(X (1))

T
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Gradient descent dynamical system

Gradient descent dynamical system:
Also known as gradient descent dynamical system.

Given by the differential equation:
X(t) + VF(X(t) =0
X: [0, 4+00) — RY curve with time derivative X.
X € C'is a solution (curve), when it satisfies the differential equation.

If we fix X (0) = X, € RY, existence and uniqueness is a classical result in
the theory of Ordinary Differential Equations.

f is a Lyapunov function, i.e. it decreases along the solution curve:

V(X (t)#0
2 < 0

L (Fo X)) = (VHX®), X)) = ~IVF(X (1)
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Gradient descent dynamical system

Gradient descent dynamical system:

33

a

2ar
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Gradient descent dynamical system

Gradient descent dynamical system:

33

a

2ar
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Gradient descent dynamical system

Gradient descent dynamical system:

1.4

1.2

0.8 r

0.6

0.4

02r
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Gradient descent dynamical system

Gradient descent dynamical system:

1.4
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0.8 r
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Heavy-ball Dynamical System with Friction

Heavy-ball Dynamical System with Friction:
» Differential equation:

X(t) = —yX(t) - VFA(X(t)

Describes the motion of a ball on the graph of the objective function f.

v

X (t) is the second derivative (~ acceleration).
~» models inertia / momentum.

v

» —vX is a viscous friction force (v > 0).
> Lyapunov function: F(t) := f(X(t)) + 3| X ()|?
L(ro X)) = (VIXW), X0) + (X0, X)) = %P "< 0.

v

[Attouch, Goudou, Redont 2000]:
lim X(t) = lim X(¢) = lim Vf(X(#)) =0.

t—o0
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Inertial methods can speed up convergence
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Inertial methods can speed up convergence

Inertial methods can speed up convergence:
» Polyak investigates multi-step methods in the paper:

[Some methods for speeding up the convergence
of iteration methods. Polyak, 1964].

v

A m-step method constructs z(*+1) using the previous m iterations
z®) o glk—mtl)

v

Gradient descent method is a single-step method.

v

Inertial methods are multi-step methods.

v

Heavy-ball method is a 2-step method.
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Heavy-ball method

(Time-discrete) Heavy-ball method:
» Time-continuous dynamical system:

X(@t)+9X@t)+ V(X)) =0.
» Discretization yields:

(k+1) _ 94.(k) (k=1) (k+1) _ (k)
0=72 2962 +z _’_’yx % —i—Vf(x(k))
T 7
& 0= (1+77)z%*D — (77 +2)2® + z*+=D 4 22V f ()
& 0= (1477)z*D — (77 4+ 1)z® — (z® — zE-1) L 227 (")

1
e G AR

&0 =gkt _ gk _ ——Vf(=®)

1477

1 .
47y °

» Seta = = and 3 =

i (momentum S vs. friction )

z* ) = 2®) o F(2®)) 4 f(a®) -z,
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Heavy-ball method

(Time-discrete) Heavy-ball method:
» Update rule:

) = 20 _ v f(2®) 4 ga® — x*-D)
» (z(®))ren: sequence of iterates.

» « > 0: step size parameter.

v

B € 10,1): inertial parameter.

v

For 5 = 0, we recover the gradient descent method.

v

Optimal for strongly convex functions [Polyak 1964]

k+1) (2 2k),.(0) . x|2 .:\E_‘ﬂ
z*|* < g™l z*[%,  quB: it i

o
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Heavy-ball method

Some properties:

» Itis not a classical descent method.

» It avoids zick-zacking.

» Similarity to conjugate gradient method.
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Accelerated Gradient Descent

Nesterov’s Accelerated Gradient Method: f convex
» A differential equations:

Xt + gX(t) +VF(X(t) =0.

[Su, Boyd, Candes, 2015] [Attouch, Peypouquet, Redont 2015]

v

For p > 3: any trajectory converges weakly to a minimizer.

» Convergence rate: O(1/t?). (actually o(1/t2) [Attouch, Peypouquet 2016].)

v

From overdamping to underdamping.

v

Studied before in the following context: [Cabot, Engler, Gadat 2009]

X(8) +9()X(8) + Vf(X(1)) = 0.
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Accelerated Gradient Descent

Nesterov’s Accelerated Gradient Method:
» Update step:

2D = y® — 7V f(y®)

1+ \/1 + 4t2

b1 = —————
YD) = x(k+1) 4= 1( (k+1) _ ()

Th+1

> [Nesterov, 1983]: f € C;'' convex, optimal method

ALlY® — a*P?
(k+2)2

» In the setting of Forward—Backward Splitting: FISTA [Beck, Teboulle 2009].

fa®) - <
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Optimized Accelerated Gradient Descent

Adaptive FISTA: [O., Pock, 2017]
Update step:

y® () = 2 4 B(z®) — z(*k-1)
gt = argininmgn ;™ (B))
Y (x; y™®)(B)): quadratic approximation of f around 3 ().
If fis quadratic, equivalent to (details later)
e = 2 _ A1y f(2®)  (Quasi-Newton step)
with positive definite M (rank-1 modification of a diagonal matrix)

Quasi-Newton Methods are also accelerations of Gradient Descent.
For example: BFGS, DFP, SR1, ...
try to approximate Newton’s method (quadratic convergence).
Some Quasi-Newton Methods converge superlinearly.
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Subspace Acceleration Methods

Subspace Acceleration Methods:
Update step:

D) = ) 4 pRg®) - p®) = (@®) gy 4*) e RV,
s(®) ¢ RM is a multi-dimensional step size that aims at minimizing
s fz® + D®s) .
First such algorithm: Memory Gradient Method [Miele, Cantrell 1960’s]
DW= (= f(z®)), dF=1)y s™*) by exact minimization .

L-BFGS quasi-Newton method: subspace of size 2m + 1, where m is the
limited memory parameter.

Adaptive FISTA tries to minimize w.r.t. the overrelaxation parameter 5.
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Subspace Acceleration Methods

Construction of Subspaces

Acronym Algorithm Set of directions D, Subspace size
MG Memory gradient [23,31] [—gr, dr—1] 2
SMG Supermemory gradient [24] [—gk,dr—1,--  dr—m] m+1
SMD Supermemory descent [32] [Pk B—1s- - Ak m+1
GS Gradient subspace [33,34,37] =9k —Gk—15- > —Gk—m] m+1
ORTH Orthogonal subspace [36] [—gk, @k — WO:ZLO wigi] 3
SESOP Sequential Subspace Optimization [26] | [—gk, zx — o, Zf:o Wigi, dg_1,. A m+3
QNS Quasi-Newton subspace [20,25,38] [=gr.0k—1,- - Ok—m, dr_1,...,dk_m)] o2m 41
SESOP-TN Truncated Newton subspace [27] [df.Gi(df),df —di™ . di_1,... di_m] m+3

from [Chouzenoux, Idier, Moussaoui 2011]
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Subspace Acceleration Methods

Multi-dimensional step size search via Majorization—Minimization:

[Chouzenoux, Idier, Moussaoui 2011]
[Chouzenoux, Jezierska, Pesquet, Talbot 2013]

Approximate minimization of s — f(z*) + D®*)s) by MM procedure.

Sequentially approximate f by quadratic (tangent majorizers) functions
around current trial step size s(*7) and minimize these quadratic
approximations.

Yields monotonically non-increasing objective values, and gradient
vanishes.
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Extended real numbers

Definition:

» Extended real numbers R := [—o0, +00]
a+ (+o00)=4c0+a = +o©
a+(—x)=—-0+a = -—00

a(+00) = (+o0)a = oo

a(—0) = (—o0)a = —o0

a(+o00) = (+o0)a = —o0

a(—o0) = (—o0)a = oo
0(£00) = (£o0)0 = 0

—(—0) = 40

inf) = +oo

supl) = —oo

for
for
for
for
for
for

—o<a< +0
—o0 <a< 400
0<a< 4+
0<a<+4+o0
—0<a<0
—0<a<0

» Operations +oo 4 (—o0) and —oo + (+o0) are not defined.
» Familiar laws of arithmetic, if all binary operations are well-defined:

a+b=b+a, (a+b)+c=a+(b+c),
ab=ba, (ab)c=a(bc),

a(b+c¢) =ab+ ac
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Extended real numbers

» Extend functions f: C — R with C ¢ RY

+00 ---- r- - 400
to the whole space R by | ' f
f(z), ifzeC; : F
f(z) = (@) _ . f
+o00, otherwise. !
\ >
» Definition:
A function f: RN — Ris called proper, if
f(x) < +oo for at least one z € RY and
f(z) > —ocoforall z € RV,
and improper otherwise.
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Domain, Epigraph, and Level Sets

Definition:
» The (effective) domain is the set
dom f := {z € RY| f(x) < 400} .
» The epigraph is the set
epi f = {(z,a) € RN x R|a > f(x)}.

» The lower level set is the set

lev<of = {z e RY| f(z) < a}.
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Semi-continuity

Definition:
The lower limit of a function f: RY — R at z is the value in R defined by

hin_};lf f(z) = }1{%

inf )f(ac)] = sup [ inf f(x)] .

:L‘GB(;(E 6>0 ZEEB(;(f)

f: RY — R is lower semi-continuous (Isc) at z if

f
liminf f(z) > £(z), |
and /sc on RY if this holds for every z. z | ]
Isc / not usc

Theorem: (Characterization of lower semi-continuity)

The following properties of a function f: RV — R are equivalent:
(a) f is lower semi-continuous on RY.
(b) The epigraph epi f is closed in RY x R.
(c) The level sets of type lev <, f are all closed in RV,
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Attainment of minimizers

Definition:
A function f: RN — R is (lower) level-bounded, if for every a € R the set
lev <, f is bounded (possibly empty).

Theorem: (Attainment of minimizers)

Suppose f: RN — Riis Isc, level-bounded, and proper. Then the value
inf,cgn f(2) is finite and the set arg min,cpv f(2) is nonempty and compact.

A @© 2018 — Peter Ochs Part 3: Non-smooth Optimization 8 / 29



Infimal convolution

Definition
The infimal convolution (or inf-convolution) is defined by

(fOg)@) = inf f(@—w)+g(w) = nf fw)+g(@—w).

» f O g is the point-wise infimum of functions h,,(z) = f(w) + g(z — w).
» epi(fOg) =epif+epig, if the infimum in f O g is attained when finite.

Example:
Let f(z) = || and g(z) = 5x|=/*.

1
(09w = it ful+5rlo - wf

B {2])\:1:2., if 2] < A

|z| — 4, otherwise.
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Moreau envelope and proximal mapping

Definition:
For a proper, Isc function f: RV — R and parameter value \ > 0 the Moreau
envelope function e, f and the proximal mapping prox, ; are defined by

exf(@)i= inf f(w)+ s fw — af

weRN

. 1 2
proxy ¢ () : g T flw) + 5|w -z

Remark:
In general, e, f is extended-valued, and prox, ; is set-valued.

Example:

Let ® £ C c RY be a closed convex set and J¢ the associated indicator
function. Then, for any z € R and X > 0, it holds that

_ o1 _2 .
prox,s. (%) = argmin |z — z|* = projo(7) .
zeC 22
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Calculation Rules for the Proximal Mapping

Calculation Rules for the Proximal Mapping:
Let f: RV — Rand g: RY — R be proper, Isc functions and b € R.
> If f(z,y) = fi(z) + f2(y), then prox, s (z,y) = (prox,y, (), prox,, (¥))-

> If f(z) = ag(z) + b with a > 0, then prox;(z) = prox, (z) .
> If f(z) = g(az + b) with a # 0, then prox ;(z) = £ (prox,z,(az +b) —b).
» If f(x) = g(Qz) with Q orthogonal (such that QTQ = Q' Q = id), then
prox;(z) = Q" prox,(Qz) .
> If f(z) = g(x) + (a,z) + b with a € R, then prox(z) = prox,(z — a).
> If f(z) = g(x) + Z|z — a|® withy > 0 and a € RY, then
prox; (¢) = proxs, (7 + ¥1a)
with 5 :=1/(1 + ).

A @© 2018 — Peter Ochs Part 3: Non-smooth Optimization 1 1 / 29



Examples for the Proximal Mapping

Examples for the Proximal Mapping:

> fz) = 3laf*: \
1
prox, ;(z) = aiggn %M? + §|x —z?
Optimality condtion:
&
1+7X°

Az +(x—2)=0 & z=

> Nuclear norm: f(X) = ||X|. := 2, o; with SVD
X:Udiaug(al,...,UN)V—r 0;>0.
We can show that (g(o;) = 0 + 9}, >0)(04))
prox, ;(X) = Udiag([prong(ﬁi)]i]\il)VT with X = Udiag(a1,...,o5)V "
and

1
prox,,(0;) = argmin7o; + - (0; — ;)2 = max(0,5; — 7).
>0 2
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Generalized Projection Theorem

Theorem: (Generalized Projection Theorem)

Let f: RY — R be Isc, proper, and convex, and = € RN, A > 0. Then,
prox, ;(x) € R" is the unique point that satisfies

1
exf(z) = f(prox,,(z)) + 5|PYOX,\f(x) —
Moreover,

p=prox,;(z) & VyeRY: (x—py—p)+Af(p) <Af(y).

The envelope function ey f is continuously differentiable and
1
Verf(z) = X(i’? — prox, ¢(7))
is A~ !-Lipschitz continuous.

The same formula holds locally, for prox-regular functions. (~ later)
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Subgradients of Convex Functions

Definition:
Let f: RV — R be convex.

>

>

f(@) = f(Z) + (v,z - 7),

Subdifferential 9f: RY = RY (set-valued
mapping) of f given by

Graphdf := {(z,v) € RN xR¥|v € af(z)}

v is a subgradient of f at z, i.e. v € 0f(Z), AN
if the following holds:
subgradient inequality:
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Set-valued mapping

Definition:
A set-valued mapping F: RY = RM is a mapping that maps each z € RY to a
subset of RM. The graph of the mapping F' is given by

Graph F := {(z,u) € RN x RM|u € F(z)} c RN x RM .
For a set-valued mapping the (effective) domain is defined by

dom F := {x e RY| F(2) # 0} c RV.
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Subgradients for nonconvex functions

Definition:
» Let f: RY — R be a function and z a point with f(z) finite.

» v is a regular subgradient of f at z, i.e. v € 5f(.i:), if

bint 1@ = @) = (&= 2.0)

oL o — ]

(& f@) 2 £@ + @ -2) +o(le - ).

>0

» v is a (limiting) subgradient of f at z, i.e. v € 9f(Z), if
Ja¥ =z f(a¥) > f(@), vV = v, v € Df(aY)
» v is a horizon subgradient of f at z, i.e. v € 0 f(z), if

Fa¥ =z, AV N\ 0: f(a¥) = f(T), A0 = v, 0" € 5f(x”)
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Subgradients for nonconvex functions

Example: (Subgradients for nonconvex functions)

y ¢

: epi f

(v,—1);v € 8f (z1) = 3f (21 \\
Gz (v1,2, =1); Of (z3) = {v1,v2}

8f (w2) = {V(z2)} = 8 (z2) /. Of (ws) =

Properties:

» f differentiable at z, then 87 (z) = {Vf(z)}, and Vf(z) € 0f ().
» f smooth in a neighborhood of z, then 0f(z) = {V f(z)}.

> f proper, convex, then Of (z) = df ().
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Examples for the Subdifferential

Example:

» The subdifferential of f: RV — R, z — £|z|? is given by
of(x) ={«}.

» The subdifferential of | - | in RY is

o) { {Ixil} if 2 #0;

» The subdiffferential of f: R — R, « — +/|z| is given by
{ﬁ}, ifx>0;

WI @) =0VI-1@) = ({54}, fa<0;

(—o00,00), ifx=0.
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Subdifferential Calculus

Proposition: (Subdifferential Calculus)
> Uf f(z) = fi(ar) + fa(z2) with z = (21, 22), then
8f (@) = 8fi(x1) x Dfo(xz) and f(x) = Ofr(z1) x Ofa(x).
» If f = f1 + fo with proper Isc functions f; and f; and z € dom f, then
9f(2) > 0f1(z) + 0fa(T).
If the only combination of v; € 9°° f;(Z) with vy + vy = 0is v; = v = 0, then
0f(z) C 0f1(Z) + 0f2(%) -
If each f; is regular at z, i.e. §f(f) = Jf(z), then
0f(z) = 0f1(7) + 0f2(Z) .
» If f = f1 + fo with f; finite at z and f> smooth on a neighborhood of z, then

f(®) = 0f1(z) + V(z) and Of(z) = 0f1(Z) + Vfo(T).
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Optimality condition: Fermat’s rule

Theorem: (Fermat’s Rule)

Let f: RV — R be a proper functions with a local minimum at z, then

0e€df(z).
If fis convex, then
T € argmin f(x) 0e€df(z).

z€RN

1 /
= . 1 "2

—1+ .
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Smooth Minimization with Geometric Constraint

Smooth Minimization with Geometric Constraint:
» f: RN — R continuously differentiable and () # C ¢ R" be a closed set.

» Then, we have the following necessary optimality condition

0€9d(f+dc)(x) =Vf(z)+ dc(z) = Vf(z)+ Nc(z)
& —Vf(z) € No(z).
Example:
For C' = [0, +c0)™, we have

(—00,0], ifa;=0
0 otherwise.

(No(@))i = {

or (N¢(x)); = {v; : ; >0and v; <0 and z;v; =0} .
Therefore, —V f(z) € N¢(z) is equivalent to the complementary condition:
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Example: Fermat’s Rule

Example: Fermat’s Rule
» Compute prox, ,(z) for f(z) = |=|.

» Can be computed coordinate-wise. Thus, w.l.o.g. z € R!.
» Optimality condition of min, 7|z|+ % (z — 2)*:

079 |(x)+z—Z
T—T ife>0(ez>71);
S c=z-0|-|(z)=<Kz+7T ifr<0(ez<-—7);
z—7[-1,1 ifx=0(eze[-7,71]).

» The solution is the Soft Shrinkage-Thresholding Operator:

prox, ;(z) = max(0, || — 7) sign(Z) .
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An Algorithm for Non-smooth Functions

An Algorithm for Non-smooth Functions: (Convex Optimization)
» Return to the gradient dynamical system:

X(t)+VF(X(t)=0.

» Explicit discretization yields Gradient Descent: (aka. forward step)

2R+ _ (k)

+VfE")=0 & F =(d-nVf)(=").
Tk

» Implicit discretization yields Proximal Algorithm: (aka. backward step)

gkt _ (k)

+VfE*N) =0 < (d+7Vf)(*D) =",
Tk
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Proximal Algorithm / Proximal Point Algorithm

» Proximal Algorithm can be written as

1
z* Y = argmin f(z) + — |z — 2®)?.
zERN 27'k

» Optimality condition:

0=Vf(z)+ l(3:—:6(’“)) & (d4 7 Vf)z =z®.

Th
» The proximal algorithm does not require f to be differentiable.

» Optimality condition: (f proper, Isc)

0 af(z) + Ti(x ~2®) =0 & o® ¢ (d+nofe
k

f convex
=

z = (id 4+ 70f) " (z®).
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Proximal Point Algorithm (PPA)

Algorithm: (Proximal Minimization Algorithm)
Optimization problem: f: R — R proper, Isc
Iterations (k > 0): Update (z(©) ¢ RY)

. 1
G proxmf(x(k)) = arg min flw) + %hu — )2

Parameter setting: 7. > 0 step size parameter.

Very general (conceptual) algorithm.
Note that a single iteration is usually as hard as solving the original problem.

In a more general form, it applies to maximal monotone operators.
See [Rockafellar 1976].

Many algorithms are actually special cases of the proximal point algorithm.
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Forward—Backward Splitting

Structured Optimization Problems: (Splitting)
» Common Structure in Applications:

RN - R / \ RY - R
smooth non-smooth
V f Lipschitz simple prox

» Lasso, Group Lasso, ...:

1 5
min {Az — b2+ X|z||lp or min —|Az —b]* st |z||i <.
z€R zeRN 2

» Non-negative Least Squares:

1
min 7|A7 — b st.x;>0Vi=1,...,N.
zeRN

A @© 2018 — Peter Ochs Part 3: Non-smooth Optimization 26 / 29



Applications of Forward—Backward Splitting

» Logistic Regression:

min log(1 + exp(—y; (z;, w))) + Al|w]|1 -
weRN

» Low Rank Approximation: (e.g. Matrix completion)

1 ‘
i “1A = X% + M X|
oo oA = X+ ALX

» Regularized Non-linear Regression:

weRN 2

M
1
min = >[N (@) — il? + Ag(w).
1=1
» Feasibility Problem: Find € C'N D for closed set C # () and a closed
convex set D = ().

in e;dp(x t.xel = min dist(z, D)?
mrgﬂl@r}velp(x) s.t.x min ist(z, D)
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Forward—Backward Splitting

Algorithm: (Forward-Backward Splitting (FBS)) (Convex Problem)
» Optimization problem: min, f(z) + g(2)
» f: RNV — R continuously differentiable, convex, with V f L-Lipschitz.
» g: RNV — R proper, Isc, convex with simple proximal mapping.

> Iterations (k > 0): Update (z(¥) € RY), ¢ < 7, < 22 for some & > 0:

) = prokag(x(k) — .V f(z®))

Proposition: [Combettes, Pesquet 2011], [Combettes, Wajs 2005]
If f+ g is coercive, then any sequence generated by FBS converges to a
solution of min, f + g.

Method traces back to:
[P. L. Lions and B. Mercier: Splitting algorithms for the sum of two nonlinear

operators, SIAM J. Numer. Anal., 16 (1979), pp. 964-979.]
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Forward—Backward Splitting

Naming:

2 EHD) =

prox (x(k) — Tka((L‘(k)))

backward step forward step

Tkg

» Other frequently used name: Proximal Gradient Descent.

Equivalent update rules:

kD) = prox

SCCRER T
= (id + 7:09) " (z® — 7V f(a®)))

. 1
= argmin g(«) + f(@®) + (VF(@®),2 —2®)) + —Jz — 2"
z€RN Tk

—o® = [ (o = prox,, (6 ~ V1))

= (id — 7+ Ve, g)(id — Tka)(x(k))
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tojasiewicz and smooth Kurdyka-tojasiewicz inequality

Theorem:[[Lojasiewicz, 1963]]

Let f: U c RN — R be a real analytic, U open, and & € U a critical point of f.
Then, there exists 6 € [1,1), C > 0, and a neighbourhood W of & such that

VeeW:  |f(z) - f@)° < CIVS(@)l.

» Equivalent formulation: ((s) := cs'~? (desingularization function)

o' (f(x) = fF@)IVF(@) = 1,

» or (assume f(z) = 0)
IV(go fll@)| =1
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tojasiewicz Inequality and Gradient System

v

Let X: [0, +00) — W be a gradient trajectory (i.e. X (t) = —Vf(X(t))).
Lyapunov function: A(t) := o(f(X(t)) — f(X)) (X limit point of X).

> h(t) = ' (F(X(®) — SR (VFX®), X®).

v

Lyapunov property (non-increasingness along the trajectory):

h(E) + 1X (0] = h(t) + V(X @)
= h(t) + [V FX OV X ()
< h(t) + ¢ (F(X(1) = F(X) (VHX®), - X (®)) = 0.

This yields X € L*(0, +o0):

v

+oo
length(X) = / X ()] dt < h(0) — lim h(t)

t—+o00

= o(f(X(0)) — f(X)) < +oo.
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Nonsmooth Kurdyka-tojasiewicz (KL) Inequality

Definition:
The Isc function f: R — R has the KL property at & € dom df, if
» there exists 7 € (0, +o0],

» a neighborhood U of z,

» and a continuous concave function ¢: [0,7) — R, with

¢(0) =0
¢ € C*((0,n))
¢'(s) >0 forall se (0,n)

such that the (non-smooth) Kurdyka-tojasiewicz inequality

' (f(z) — f(2)) dist(0,0f (x)) > 1

holds, forallz € U N {z € RY : f(2) < f(z) < f(&) +n}.
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KL inequality
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KL inequality

N
U= 1@y (

\ -
Un{z| f(2) < f(z) < f(Z) +n}
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KL inequality

f(x) = (@) -
f(&) Hn \\k/ 2=

N
U=, @)y (

T =
Un{z| f(2) < f(2) < f(2) +n}
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KL inequality

fx) = f(2) -
F@)Hn ---X\--- k 2

N : T
U=, @)y ( o

\ -
Un{z| f(2) < f(z) < f(Z) +n}

A @© 2018 — Peter Ochs Part 4: Single Point Convergence 6 / 37



What functions have the KL property?

What functions have the KL property?
» Real analytic functions [tojasiewicz '63]

» Differentiable functions definable in an o-minimal structure [Kurdyka 98]
» Non-smooth Isc functions definable in an o-minimal structure
» Clarke subgradients [Bolte, Daniilidis, Lewis, Shiota 2007]

» Limiting subgradients [Attouch, Bolte, Redont, Soubeyran 2010]

~+ nearly any function in practice

(excludes many pathological cases.)
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What functions have the KL property?

Theorem: [Bolte, Daniilidis, Lewis, Shiota 2007]

Any Isc function f: RV — R that is definable in an o-minimal structure O has
the Kurdyka-tojasiewicz property at each point of dom 0f. Moreover, the
function ¢ is definable in O.

Examples:

semi-algebraic functions (Next slides.)
(polynomials, piecewise polynomials, absolute value function, Euclidean
distance function, p-norm for p € Q (also p = 0), ...)

globally subanlytic functions
(e.9. exp|—1,1))

log—exp extension of globally subanalytic structure is an o-minimal structure

An o-minimal structure is closed under finite sums and products,
composition, and several other important operations
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Semi-algebraic Functions

Semi-algebraic Structure:
A set S is semi-algebraic, iff there exists polynomials P; ;, Q; ; such that

P q
S=J{zeRY : Pj(x) =0, Qi; <0}
j=1i=1
f: RY — R is semi-algebraic, iff Graph (f) ¢ RV*! is semi-algebraic.
Finite union, intersection, complementary are again semi-algebraic.

Theorem (Tarski-Seidenberg):
Canonical projection of S € RV*+! onto RY preserves semi-algebraicity.

Composition of semi-algebraic functions: f = ho g, RY — RM — R”:
Graph (f) = {(z,2) € RN*F : 2 = h(g())}
={(z,2) e RV*L . Jy e RM: 2= h(y), y = g(z)}
= v es ({(2:9,2) + v = 9(@)} N {(@,9,2) : 2= hi)})

Desingularization function of the form ¢(s) = cs'=%, 0 € [0,1) N Q.
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Definable Functions

Definable Functions: (Axiomatization of the qualitative properties of
semi-algebraic sets) [van den Dries, 1998]

Definition:

O = {0, }»en is an o-minimal structure, if O, is a collection of subsets of R”,
and

1. Each O,, is a boolean algebra: ) € O,,, A,B€ O, = AUB,ANB,R" \ A € O,.
2. ForalA€ O,, AxRandR x A belongto O,+1.

3. Forall A € Onqq1, II(A) := {(z1,...,2n) ER™ : (z1,...,Zn,ZTny1) € A} € Op.

4. Foralli #jin{1,...,n}, {(z1,...,2,) ER® : z; =z} € Oy.

5. The set {(x1,z2) € R? : x1 < x2} belongs to 0.

6. The elements of O; are exactly finite unions of intervals.

v

A is definable, if A belongs to O.
f: RY — R is definable, if Graph (f) is a definable subset of RV+1.
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Single Point Convergence

Single Point Convergence:
» Generalize the result for the gradient trajectory to many other algorithm.

» [Attouch et al. 2013] formulate an abstract descent algorithm.
» Use the (non-smooth) KL inequality.

» Prove a finite length property and single-point convergence.
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Abstract descent algorithms [Attouch et al. 2013]

Abstract descent algorithms: [Attouch et al. 2013]
min f(x)

z€ERN

f: RN — R proper, Isc; a, b > 0 fixed.
Let (z(®))en be a sequence that satisfies the following conditions:

(h1) (Sufficient decrease condition). For each k € N,
f@®D) + ala®™HD — WP < f@®);
(h2) (Relative error condition). For each k € N,
lof (®FD)||- < bl — B ;

(h3) (Continuity condition). There exists K C N and z such that

a® 5z and fa®) o f(&@) ask " .
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An abstract convergence theorem

Theorem: [Attouch et al. 2013]

» Let f: RY — R be a proper, Isc.

» If (M) ey satisfies (h1), (h2), and (h3), i.e.,
» Sufficient decrease condition,

» Relative error condition,
» Continuity condition, and

» f has the Kurdyka-tojasiewicz property at the cluster point z,
then

» (2(F)) ey converges to 7 = &
» z is a critical point of f, i.e., 0 € 9f(z), and

» (z(®))en has a finite length, ie.,

Z |z — 2 (®)] < 400,
k=0
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Convergence of Forward—Backward Splitting

Convergence of Forward—Backward Splitting:
» Vfis L-Lipschitz, g: RN — R is proper, Isc., inf f + g > —o0

» Use this theorem to prove convergence of FBS:

1
z# Y ¢ argmin g(z) + f(2®) + <Vf(1:(k)),x - :r(k)> + —|z—z®)2.
zERN 2T

» or an inexact version: Fix 7 < 1/L. Find z(**1) 4(*+1) sych that
g(a®+Dy 4 <Vf($(k)),x(k+l) _ x(k)> n %|x(k+1) — 2 W2 < g(z®)

v(k+1) e ag(x(k+l))
|v(k+1) + Vf(:n(’“))| < b|x(k+1) _ x(k)|

» Let (z*)),cn be a bounded sequence generated by (inexact) FBS.
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Convergence of Forward—Backward Splitting

Sufficient Decrease Conditions:
» Add update step and Descent Lemma:

F@%+D) < Fa®) + <Vf(x<k>),x<k+1> _ x(k)> i %w(m) _ g2

gz D) < g(a®) — <Vf(m(k)),x(’“+1) _ x(k)> _ 2i|x<k+1> O

= (F+a)E*D) < (7 +9)E®) — (5~ 2

= (k+1) _ ,.(k)|2
27 2)|x 2
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Convergence of Forward—Backward Splitting

Relative Error Condition:
» Inexact Algorithm:

[0( + )@ ® D)l = 19g(x D) + V f (™))
< D+ VIO + V@) = V)] < b+ D)@ - 20

» Exact Algorithm: Use optimality of z(*+1):

(k) _ p(k+1)
T 7% L viE®) e aga®+D).
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Convergence of Forward—Backward Splitting

Continuity Condition:
» Inexact Algorithm: Assume that g is continuous on dom g.

» Exact Algorithm:

» Let2® "S # with K ¢ N.
> Since ((f + ¢)(z®))ren is monotonically non-increasing, we have

1 L
(E - 5) 2®+) — B2 < (f + )(=™®) = (f + g)(=**D) - 0.
> Then limsup ex g(x*+1)) < ¢(Z) by taking lim sup on both sides of
g@®+D) & <Vf<x(k)),x(k+1) _ x(k)> n 2i|x(k+1) _ a2
T

1
< g(Z) + <Vf<;1;(k)))j _ x(k)> + 27‘0% O
T

~ Combined with lower semi-continuity lim, vexc__ g(a™) = g(2).
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Convergence of Forward—Backward Splitting

Theorem:

Let (z(®)),cn be a bounded sequence that is generated by FBS or inexact

FBS. Then (2(*)),cn converges to a critical point z* of f + g. Moreover,
(z®).cn has the finite length property:

o0
Z |z*+D — 20| < 400,
k=0
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Generalized Abstract Descent Algorithm

Generalized Abstract Descent Algorithm: [O. 2016]
Let 7: RN x R — R be proper Isc with inf F > —oo.

(Sufficient decrease condition) For each k& € N:
Fa®+D o*+D) 4 g d? < Flz® o®).
(Relative error condition) For each k£ € N: (set d; = 0 for j < 0)

D4 [|OF (@ uF DY Z <6 " Oidiga—i + exrr -
iel
(Continuity condition) There exists K C N and (z, ):
@® u®) L (5,4) ask S .
(Distance condition) d;, — 0 = |[z(**1) — 2(®)| — 0 and
I VE> K dy =0= 3K VE > k" gD = gk
(Parameter condition)

(bk)wen & 01, sup(agby) ™' <oo, infayr=:a>0, (cx)ken €.
keN kEN

A @© 2018 — Peter Ochs Part 4: Single Point Convergence 1 9 / 37



Generalized Abstract Descent Algorithm

Theorem:

Suppose F is a proper, Isc, Kurdyka-tojasiewicz function with inf 7 > —oo.

Let (7)) ren, (u™)ren be bounded and satsify (H1)—(H5). Assume that

converging subsequences of (z(*), u(¥), y converge F-attentive. Then:
The sequence (di)ren satisfies

idk < 400.
k=0

If d;, satisfies |2+ — z(¥)| < &y, for some &/, then

oo

Z lz*+D) — 23*)| < oo
k=0

and (z(®),cy converges to z.

If (u¥))en converges, then (z("), u™), oy converges to a critical point of .
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Inertial proximal algorithm for nonconvex optimization

Algorithm: (iPiano, [O., Chen, Brox, Pock 2014])

» Optimization problem: min,cpv h(z), h(z) = f(z)+ g(z)
» Vfis Lipschitz
» g is proper, Isc, convex and simple

» lterations (k > 0): Update (z~! := 2° € dom g)

2D = prox (a:(k) — oszf(x(k)) + ﬂk(x(k) — a:(kfl)))

akg

» Parameter setting for o, and 5., see convergence analysis

Remark:
» Extension: g non-convex in [Bot, Csetnek, Lazlé 2016], [O. 2015].

» Other suitable names: “proximal Heavy-ball method”
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Convergence results — iPiano

A Lyapunov function: Define Hs, (z,y) := h(x) + dx|z — y|? (0 > 0).
» (Hs, (2™, 2(k=))% s non-increasing: (v > 0)

H;s (m(kH)’x(k)) < Hj, (x(k)’x(kfl)) _ 'yk|x(’“) _ x(k71)|2.

k41

12 .

;h(xk)
— H;, («*, 71|

10

0 50 100 150 200
k
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Convergence Results — Lyapunov Function for iPiano

Proof of the Lyapunov Property.
» Update step: z(**1) ¢ argmingcpy G*)(z) with

G¥)(z) := g(z)+ <Vf(a?(k)), B = :c(k)> +

» Optimality of z(*+1):

1
EW— (B ==

G (DY 1 L 24D _ a2 < ) (500 = g(5R)

20,
» Descent Lemma:
L
et ) I (O el O
» Combination of optimality and descent lemma:

Ba*) < h@®) + (V1(a™0),a®D —o®) 4 %\N“) — ™

_ 1
_ Vf(m(k)) _ %(m(k) _ pk 1)),m(k+1) _ x(k)> _ gu(’#l) _ x(k)\2 .
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Convergence Results — Lyapunov Function for iPiano

» Use 2 (a,b) < |a|? + |b|? for vectors a,b € RY:

h(x(k:-&-l)) + 6k|$(k+1) _ .Z’(k)‘Q S h(x(k)) + (Sk‘x(k) o $(k_l)|2 _,yk‘x(k) _ w(k—l)‘Q

Hs, (x(k+1) g (k) Hs, (@(F) g(k=1))
i.e.
H6k+l(w(k+1)7x(k)) < Hs, (a®, 2=D) — g ®) — gk-1)2

where v, > 0 and (Jx)xen monotonically non-increasing with

1/1-2
Vi = = ﬁk—Lk and ¢ :=%+ﬁ
2 o 20
Yields step size restrictions: (L, = L)
g convex: 0<a< 228 geo1)
g— 2| 2convex: 0<a< 2= geo1)
g non-convex: O<a< 28 geiol)
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Convergence Results of iPiano

Theorem: Convergence Results of iPiano:
» The sequence (h(z*)))ien converges.

» There exists a converging subsequence (z*i);cy.
» Any limit point z* := lim 2"/ is a critical point » and h(z%i) — h(z*) as
J—00

J — oo.

If Hs(x,y) has the Kurdyka-tojasiewicz property at (z*, z*), then
» (z(®))en has finite length, i.e.,

Z |z®) — ;1| < 0o,
k=1

» () - 2* as k — oo,

» (z*,2*) is a critical point of Hs, and z* is a critical point of A, i.e.,
0 € Oh(z™).

A @© 2018 — Peter Ochs Part 4: Single Point Convergence 25 / 37



Diffusion based Image Compression

Diffusion based Image Compression:

¢

Encoding:

store image g only in some small number of

pixel: ¢; = 1 if pixel i is stored and 0 otherwise Jdencoding
Decoding:

use u; = g; for all s withc;, =1

use linear diffusion in unknown region (c; = 0)

(solve Laplace equation Lu = 0)

solve for u in Jdecoding

where C' = diag(c), and I the identity matrix

Clu-—g)-(I-C)Lu=0 r \
'
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Diffusion based Image Compression

Diffusion based Image Compression:

Our goal:

Find a sparse vector c that yields the best ‘
reconstruction. Jdencoding

Non-convex optimization problem:
in_ 2 llu(e) — gl + Ale]
min —jju(c) —
ceRN ueRN 2 & !
0

st.Clu—g)— (I —-C)Lu= ldecoding

€
¢

or equivalently (setting A := C + (C —I)L):

gmeAng gll”> + Allellx
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Results for Trui
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Results for Trui

AR © 2018 — Peter Ochs Part 4: Single Point Convergence 27 / 37



Results for Trui
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Results for Walter

A @© 2018 — Peter Ochs Part 4: Single Point Convergence 28 / 37



Results for Walter
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Results for Walter
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KL Exponent: A measure for the convergence rate

KL Exponent: A measure for the convergence rate:
» Reminder: KL inequality for h: RY — R at # € dom 0h:

There exists [...] and ¢: [0,1) — R with [...] such that
¢’ (h(z) — h(z))dist(0,0h(z)) > 1

for z close to z and h(Z) < h(x) < h(Z) +n.

> If o(s) = 5% for 6 € (0, 1], then 6 is known
as the KL exponent. It holds that

= h(z) = max(z,0) ~ 6 =1

----- h(z) = max(z,0)2 ~ 0 =

— T

1

2

— 4 _1

===+ h(z) = max(z,0)* ~ 0 =
¥

1 _\\1-6 [ 0000 ': 5 |
[lOh(z)||- > E(h(x) —h(z)) . 0.5 oo
4 Q q
4
4 U
» Fact: e.g. when h is semi-algebraic. '," s
See [Kurdyka, 1998] and . i
[Bolte, Daniilidis, Lewis, Shiota 2007]. 0 htas et = |
| |
0 0.5 1
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Convergence for iPiano

Theorem: (Local convergence rates for iPiano) [O. 2018] analogue to

[Frankel-Garrigos—Peypouquet, 2014], [Johnstone—Moulin, 2016], [Li—Pong,
2016]

Let 6 be the KL-exponent of Hj.

» If § = 1, then z(*) converges to z* in a finite number of iterations.
» If 3 <0 <1, then Hs(zk+1) 2®)) — h(z*) and z®) — 2* linearly.

> If0<0< 1, then Hs(zk+D), 2(0))—h(z*) € O(k=T) and |z®) —z*| € O(kT-1).

Remark: [Liang—Fadili-Peyré, 2016]: local convergence rates using partial
smoothness.
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Gradient of the Moreau envelope

Theorem: (Local convergence) [O. 2018]

Let 2* be a local (or global) minimizer of 4 and a certain growth condition
holds at =*.

Then, if 2(%0) is sufficiently close to z*, then there exists r > 0:
™ e B.(z*) forallk > k.

Reminder/Fact:
If fis prox-regular, then, locally, e, f € C** with

Vexf(x) = %(m — prox, ;(z)) .

being A~ !-Lipschitz continuous (for A small enough).
If fis convex, e, f is finite-valued, and the formula above holds globally.
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Gradient of the Moreau envelope

Assume from now on:

The gradient of the Moreau envelope can be expressed as above.

Remark:
Can be true globally or on a neighborhood of a local (or global) minimum.

All iterates of iPiano stay within a neighborhood of a local minimum.
Proximal mappings derived via Ve, f are single-valued.

Proximal mapping in the backward-step of iPiano may be multi-valued.

We present some informal results on the next slides.
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Heavy-ball method on the Moreau envelope

Heavy-ball method on the Moreau envelopeof a function:

xnelﬂlg}v F(x), F(z)=exf(z) = wnel]ierlV flw) + %W —z|2.

» Heavy-ball update step (using 0 := aA™1!)

2D = 2B _ Ve, f(2®) + B(z®) — z*-1)
=z —ax71(z® — prox,\f(x(k))) + B(z® — k=1
=(1-60)z® + 9pr0x/\f(x(k)) + B(z®) — gDy,

— inertial proximal point algorithm for 6 = 1.
» f prox-regular: local convergence.

» f convex: global convergence.
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Heavy-ball method on the sum of two Moreau envelopes

Heavy-ball method on the sum of two Moreau envelopes:

F(z) = 3 (exg(z) + exf(z)

— iy, 5 (92 + £w) + gl =l + gro = aP)
Heavy-ball update step:

e+ = (1 - 9)2® + g (prox,\g(x(k)) - profo(x(k))> + B(z® — k=D,
inertial averaged proximal minimization method for 6 = 1.

inertial averaged projection method, if f and g are indicator functions.
Obvious extension to the weighted sum of Moreau envelopes.

f, g prox-regular: local convergence.

f, g convex: global convergence.
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iPiano on an objective involving a Moreau envelope

iPiano on an objective involving a Moreau envelope:

min g(z) + F(z), F(z) =exf(xz) = min f(w)+%|w—ac|2.

TERN weRN

iPiano update step:

) = proxag(y(k) — aVey f(zM))
= proxgy, (1 — 0)a™ + Oprox, (™) + B(a® — z+~))

inertial alternating proximal minimization method for 6 = 1.
inertial alternating projection method, if f and g are indicator functions.
f prox-regular: local convergence.

f convex: global convergence. (also non-convex g with multi-valued prox)
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A Feasibility Problem

A Feasibility Problem:
Find X € RV*M of rank R that satisfies a lin. sys. of eq. A(X) = b:

find X in {XeRVM AX)=0b}n{X e RV*M|1k(X) =R} .

E4 =R

The projection onto each set is easy:
R
proj,(X) = X — A*(AA*) 1 (A(X) —b) and proju(X) = Zaiuw; ,
=1

USV T is (ordered) singular value decomposition of X (o1 > 03 > ... > o).
200 randomly generated problems with M = 110, N = 100, R = 4, D = 450.

max. 1000 iterations.
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A Feasibility Problem

\ Precision 10° =] —2] —4] —6] =8| —10]—12] =2 | —4] 6] —8 | —10] —12 [ —2] —4[—6]—8]-10]-17]
|

|Method | iterations I time [sec] I success [%]
alternating 235(886| — | — | — | — ||1.88|7.03| — | — | — | — |[100{97.5/ 0 | O | O | O
projection

averaged projection ||639| —|—|—|— | — |[5.13| — | — | — | — | — ||]100 O | O | O | O 0
Douglas-Rachford 4| — | —|— | —|—|810| — | —| — | — | — 210(0]01]O0 0
Douglas-Rachford 209(449(696(949| — | — |/1.68|3.62(5.63| 7.66 | — | — |[100| 100 |100{100| 0 | O
75

glob-altproj, a =|/238/894|—|—|— |— |[1.92|7.18] — | — — — [|100({96.5] 0 | O | O 0
0.99

glob-ipiano-— — === == | === = | = | = 0|0 [0]0|O0 0
altproj, 8 =0.45

glob-ipiano- 45169 | 90 {115/ 140 | 166 ||0.65(1.03[1.52| 2.08 | 2.63 | 3.20 |[100| 100 |100|100| 100 | 100
altproj-bt, 8 =045

heur-ipiano- 59 1212(386 (567|749 | 925 ||0.79(2.82|5.14| 7.52 | 9.93 [12.22|[100| 100 [100|{100| 100 | 91
altproj, 8 =0.75

loc-heavyball- 126|297(502| 717|929 | — |/2.29|5.47(9.24|13.21|17.17| — ||/100| 100 |100{100|93.5| 0
avrgproj-bt, 8 =0.75

loc-ipiano- 66 [101[138(176| 214 | 252 |/1.32|2.06(2.80| 3.56 | 4.31 | 5.06 |[100| 100 |100|100| 100 | 100
altproj-bt, 8 =0.75

Non-convex version of Douglas—Rachford splitting [Li, Pong 2016].
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FISTA

FISTA: [Beck, Teboull 2009]
Fast Iterative Shrinkage-Thresholding Algorithm

Extension of Nesterov’s Accelerated Gradient to convex FBS setting:

mﬂiQn f(x)+g(x), f,gconvex, Vfis L-Lipschitz.
z€RN

Algorithm:
1+ /1 +4t2
b= ——5
®) — ) (BN ) _ k-1
y® = z® 4 (=) (@® - oD
th+1

1
x(k"!‘l) — prOXg/L (y(k) _ EVf(y(k))>
Optimal Algorithm O(1/k?): Convergence rate:

2L|z©) — z*|?

(F +9)e®) = (F +9)") < s
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FISTA for non-convex problems

FISTA for non-convex problems: [Wen, Chen, Pong 2015]
» Problem:

min S f(@) Hg(z)

with g convex and f (non-convex) satisfies for some I, L. > 0, L > |
l
f@) 2 (@) + (V@) - 2) - glo - > Va,z,

flz) < f(@)+(VfE@),z—2)+ §|x —z* Vz,z.

» For 0 < infy, B < supy, B < L%z the following algorithm

y B = g(®) 4 gy (x*) — (k1))
1
) = DEOXCY (y(k) - EVf(y(k)))

converges to a critical point of f + g:
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Adaptive FISTA

Update Scheme: FISTA
y® = 2®) 4 g (2 — zk-D)

. k 1 (k)2
2D = argming(x) + f(y5)) + <Vf(y5k ),z — yék)> + ol =y, |
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Adaptive FISTA

Update Scheme: FISTA
y® = 2®) 4 g (2 — zk-D)

g+l = argmin g )+ fySs)) + <Vf(y5k)

Equivalent to

. 1 k
) = argmin g(a) + [z — (yék) TVf(ng)))l

zERN

(k) 1 (k)
— Y, > + 27-| ~ Y,

=: prox, (yﬁk -7V f(

| 2

yé’?))
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Adaptive FISTA

Update Scheme: Adaptive FISTA (also non-convex) [O., Pock 2017]
ygz) = x(k) + c13k<x(k) o .’E(k_l))

.o y i k 1 .
2+ = argmin r%}ng(w) + F5)) + <Vf(y.;(’ak))7 = yfak)> +gole - y5
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Adaptive FISTA

Update Scheme: Adaptive FISTA (f quadratic) [O., Pock 2017]
ygz) = x(k) + ‘ﬁk(l'(k) o .’E(k_l))

N k k k 1
2 = argminmin g(@) + () + (VIS e =y ) + o-lo =y

... Taylor expansion around z(*) and optimize for 8, = B (z) ...

. 1 -
2*+Y) = argmin g(z) + §|~T = =17, lvf(x(k)))ﬁ’k
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Discussion about Solving the Proximal Mapping

Update Scheme: Adaptive FISTA (f quadratic)

. 1 _
#*+1) = argmin g(x) + §|m — (x(k) -V lVf(x(k)))ﬁ/h
TeRN

= prox;/k (z® — Vv f(z®))

with V. € S, (V) as in the (zero memory) SR1 quasi-Newton method:

V =T —uu' (identity minus rank-1).

» SR1 proximal quasi-Newton method proposed by [Becker, Fadili '12]
(convex case).

» Special setting is treated in [Karimi, Vavasis '17].

» Unified and extended in [Becker, Fadili, O. '18].
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Solving the rank-1 Proximal Mapping

Solving the rank-1 Proximal Mapping: (g convex)
» For general V, the main algorithmic step is hard to solve:

1
&= prox;/ := argmin g(z) + §|:c —z%

r€RN

» Theorem: [Becker, Fadili'12] V = D+ uu' €S, foru € RY and D
diagonal. Then

12 ProX,,p-1/2 (DY?z F v*)

proxg‘]/(gﬁ) =D
where v* = o* D~1/2y and o* is the unique root of
l(a) = <u,§: —-D %, ProX,,p-1/2 O D2z aDilu)> +a,

which is strictly increasing and Lipschitz continuous with 1 + >, u?d;.
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Solving the rank-1 Proximal Mapping for ¢;-norm

Example:
> Let g(z) = |z, = XN, |2i|?, D = diag(d), u € RV,

» V=D—wu'.

» Using the theorem, the proximal mapping

. 1 2
argmin |z|; + = |z — Z|y,
z€RN 2

can be solved by
prox;/(a’:) =D %0 ProX o p-1/2 (DY?% 4 v*).

where v* = o* D~'/2y and o* € R is the unique root of

(o) = <u7i“ —-D %0 ProX,,p-1/2 © DY?(z + aD_lu)> +a.
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Solving the rank-1 Proximal Mapping for ¢;-norm

Example: (Solving the rank-1 prox of the /;-norm)
» The proximal mapping wrt. the diagonal matrix is separable and simple

—1/2

1
ProX,,p-1/2(z) = argmin [D~"/%z|; + ,|x — z|?

z€RN

argmlnz |zi|/\/d; + — z)?

zeRN 5

(argmln\xzv\/»"' )2>z—1 N

z;ER i=1,...,

(o i)

=1 N

~~~~~
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Solving the rank-1 Proximal Mapping for ¢;-norm

The root finding problem in the rank-1 prox of the ¢;-norm:
» «o* is the root of the 1D function (i.e. [(a*) = 0)

l(a) = <u, - D20 ProX o p-1/2 O DY?(z anlu)> +a
= (u,z — PLin(z F aD 'u)) + a
which is a piecewise linear function.
» Construct this function by sorting K > N breakpoints. Cost: O(K log(K)).

» The root is determined using binary search. Cost: O(log(K)).
(remember: l(«) is strictly increasing)

» Computing I(«) costs O(N).

~ Total cost: O(K log(K)).
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Solving the rank-1 Proximal Mapping for ¢;-norm

from [S. Becker]
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Discussion about Solving the Proximal Mapping

Function ¢ Algorithm

¢1-norm Separable: exact
Hinge Separable: exact
{so-ball Separable: exact
Box constraint Separable: exact
Positivity constraint Separable: exact

Linear constraint
/1-ball

loo-norm
Simplex

Nonseparable: exact

Nonseparable: Semi-smooth Newton

+ ProXgop-1/2 exact

Nonseparable: Moreau identity
Nonseparable: Semi-smooth Newton

+ ProXg,p-1/2 exact

From [Becker, Fadili ’12].
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Discussion about Solving the Proximal Mapping

Discussion about Solving the Proximal Mapping: (g convex)

» For general V, the main algorithmic step is hard to solve:

1
&= proxs‘]/ = argm}in g(x) + §|x —z[4
Tz€R

» (L-)BFGS uses a rank-r update of the metric with » > 1.

» Theorem: [Becker, Fadili, O. 18]
V=P+QeSi+,PeSi,Q=Y_,uu,rank(Q) =r. Then

proxg‘]/ (z)=P %o ProX o p-1/2 P2z P 'Uo)
where U = (uq,...,u,) and a* is the unique root of
l(a)=U" (i - P20 ProX,,p—1/2 © P2z T Pionz)) + Xa,

where X :==U"Q*"U € Sy (r).
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Example: Lasso

—£— FISTAW/ BB —%— SPG/SpaRSA —¢— 0-mem SR1 = aFISTA
ASA @ CGIST —-®— FPC-AS
—— L-BFGS-B - OWwWL —— PSSas

T T T T

102

10-1

objective value error

10~9 | ! ! !
0 20 40 60 80 100
time in seconds time in seconds
dense problem sparse problem
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Variants with O(1/k?)-convergence rate

Adaptive FISTA: Variants with O(1/k?)-convergence rate: (convex case)

Adaptive FISTA cannot be proved to have the accelerated rate O(1/k?).
For each point z, aFISTA decreases the objective more than a FISTA.

However, global view on the sequence is lost.
aFISTA can be embedded into schemes with accelerated rate O(1/k?).
Monotone FISTA version: (Motivated by [Li, Lin '15], [Beck, Teboulle *09].)

Tseng-like version: (Motivated by [Tseng '08].)
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Nesterov’'s Worst Case Function

f(@®) —min f

10-3

10—4

LTTTITS
N

10t

—4—  FISTA MFISTA
—e— aFISTA —+— aMFISTA
—— aTseng —-— CG
---  lowerbound ---ee- O(1/k?)
T T \\J.‘\H‘ T \\H: \\HH‘ T \\HH‘ T \:
4 107%f E
1 107°F |
107tk E
1075 E
é i
Lol 10_6 Lol Lol I n\
102 10-3 10—2 10—t
iteration k time [sec]
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LASSO

1
min h(z), h(z)= §|Agc — b2+ A=z|1,

Tz€RN
—A—  FISTA MFISTA
—o— aFISTA —»— aMFISTA
—6— aTseng
T T T T TTI T T TTTI T T T T T T T T T T T T T T T T
100 |- N 100 - N
=
I
£ 1072f 1072 .
:E/ L
1074 |- a 10-4 - a
pl il [T B AW N )
100 10t 102 103 10-3 1072 107! 10°
iteration k time [sec]
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Proposed Algorithm

Proposed Algorithm: (non-convex setting)

» Current iterate z(*) ¢ RY. Step size: 7 > 0.

v

Define the extrapolated point yék) that depends on £:

g = 2® 4 B — gD

v

Exact version: Compute z(**1) as follows:

1
(k+1) _ in min 9 (z: 4 _
2 argmmmﬂm f(m,yﬁ )—1—27_\:10 y

(k)|2
)
zeRN p

(z557) = 9@) + £y + (VI —yi)

Inexact version: Find z(**1) and j such that

v

1
@Dy + 1™ — g < £(a®) + g
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Neural network optimization problem / non-linear inverse problem

N 2
- 1/2
° 2 2
min E <|(W20'2(W]_0'1(WOX+BO>+B])+BQ_Y)1)1‘| +6) —l—)\é HWJHI
Wo, W1, W24 °
bo,b1,by =1 J=0
—— FBS —%— iPiano
MFISTA —e— aFISTA
T T T T T T T T T T T T T T LLLLL B B E L L
10° 10°
e
&
=
P
S
&
S 10—05 10—0.5 L |
i
T T T 1 T T T
10 10t 102 103 10% 10=3 1072 10~ 10° 10!
iteration k

time [sec]
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Forward—Backward Envelope

Forward—-Backward Envelope: [Stella, Themelis, Patrinos 2017]
» Forward—Backward Envelope: (g convex)

_ _ 1 _
e:BS(x) = min g(z)+ f(Z) + (Vf(:v),x—x>+%|x_$|2.

z€RN

::Z?(z;i)
» Using
1
PFBS () .— 9 Ll AP
788 (@) i= argmin €423 7) + 5|z —al
REBS(J?) =71 (x - PVFBS(J’:))
the FBS envelope is equivalent to

£75(2) = g(PIPS(2)) + f(2) — 7 (V (@), BP5(@) ) + 2R (@)

> eFBS(z) is always finite-valued, but not necessarily convex.
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Forward—Backward Envelope

f+8
FBS

e,y(f)

FBS

ey(x) [

=

modified from [Stella, Themelis, Patrinos 2017]
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Forward—Backward Envelope

Properties 1 (Relation of objective values):
> efBS(z) < (f +g)(z) — Z|RFBS(2)| for all v > 0.

> (f +9)(PFBS(z)) < efBS(z) — 2(1 —~L)|REBS(z)|? for all v > 0.

> (f +9)(P{P3(2)) < €58(2) for all v € (0,1/L).

Properties 2 (Relation of optimality):
> (f +9)(z) = €5BS(2) for all y > 0 and z with 0 € 9(f + g)(2);

» inf(f + g) = inf eEBS and argmin(f + g) C argmin S for y € (0,1/L];

» argmin(f + ¢g) = argmin ef/BS forall v € (0,1/L).
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Forward—Backward Envelope

Properties 3 (Differentiability of the forward—backward envelope):

Assume f is twice continuously differentiable. Then 6533 is continuously
differentiable and we have

VePS(z) = (I — V2 f(z)) RIS (2).
If v € (0,1/L), then the set of stationary points of efBS equals zerd(f + g).
efBS serves as an exact penalty formulation for the original objective.
Apply variable metric Gradient Descent to ¢S

x(k+1) _ x(k) o 7(1 o ’yVQf(x(k)))’lVesBS(x(k))
— k) _ ,nyYBS(x(k))

__ pFBS k
= PrBS(z®))

leads to Forward—Backward Splitting.
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Forward—Backward Envelope

Accelerations using the Forward—-Backward Envelope:

Using the Forward—Backward Envelope, a non-smooth problem is
transformed into a smooth problem.

Machinery from smooth optimization can be applied.
Opens the door for Quasi-Newton Methods and also Newton’s method.

To improve the (weak) convergence properties of quasi-Newton methods,
MINFBE interleaves descent steps over the FBE with forward—backward
steps, which yields global convergence.
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Forward—Backward Envelope

10°

_ 102
Bl
=
*
7104
= —e— FBS
—m— Fast FBS
10-6 —a— BFGS
—0— MINFBE(BFGS)
0 500 1,000 1,500 2,000

matrix-vector products

LASSO problem from [Stella, Themelis, Patrinos 2017]
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Forward—Backward Envelope

A =30,rank(x,) =8 A =20, rank(x,) =38 A = 15,rank(x,) =74

107!

HXJC_X*“/HX*H
—
f=3
L

1073

0 100 200 300 0 200 400 600 0 200 400 600 800

—m—  FastFBS  —a— L-BFGS —o— MINFBE(L-BFGS)
—{1— ADMM, y = 10 —&— ADMM, y = 100

Matrix completion problem from [Stella, Themelis, Patrinos 2017]
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Generalized Forward—Backward Splitting

Generalized Forward-Backward Splitting: [Raguet, Fadili, Peyré 2013]
» Convex optimization problem:

min f(z) + Zgz

» f,gconvex; V[ is L-Lipschitz; g; are proper Isc convex and simple.

Application Examples:
» Elastic net regularization; e.g. for Linear Regression

min *IAw—b|2 + plaly + plal3

zeRN 2 ——
=:f(z) =:91(x) =:g2(x)

» Block-decomposition: Reformulate

i h as i h o T8 = Y <
min f(z) + h(z) e f@)+hly) stz=y

A © 2018 — Peter Ochs Part 5: Acceleration and Variants of FBS 27 / 30



Generalized Forward—Backward Splitting

Algorithm: (GFBS)
> Fixw e (0, 1M with 307, w; = 1,7 € (0,2/L), A € (0,min(3, 3 + %)) -
> Initialize: -’ € RN and set z(© = "M ,2(0).
» Update for k& > 0:
» Fori=1,..., M:

zgkﬂ) = zi(k) + A (proxwi/wi (2$(k) - Zi(k) - “va(x(k))) - x(k))

» Compute:

M
20D = 3 4D
1=1
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Generalized Forward—Backward Splitting

Theorem: (Convergence of Generalized Forward-Backward Splitting)

Under a qualification condition, the sequence (z(*)),cy generated by GFBS
with erroneuous update steps (with summable error terms) converges to a
solution.

Properties:
For f = 0: Relaxed Douglas—Rachford Splitting.

For M = 1: Relaxed Forward—Backward Splitting.
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Generalized Forward—Backward Splitting

Follow-up work applied to Semantic Labelling of 3D Point Clouds:

Random Forest Classification

[Raguet 2017]
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Generalized Forward—Backward Splitting

Follow-up work applied to Semantic Labelling of 3D Point Clouds:

Regularized Labelling

[Raguet 2017]
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Generalized Forward—Backward Splitting

Follow-up work applied to Semantic Labelling of 3D Point Clouds:

Ground Truth Labelling

[Raguet 2017]
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Facts about Gradient Descent

Smooth optimization problem: (f continuously differentiable)

I

Update step with step size 7 > 0:
2+ = 20 g f ()

Step size selection:

f continuously differentiable
= line-search is required.

V f Lipschitz continuous
= feasible range of step sizes can be
computed.
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Facts about Gradient Descent

» Equivalent to minimizing a quadratic function:

1
25D = argmin f(2®) + <Vf(x(k)), x — x(k)> + §|x —z®))2,

zERN

» Optimality condition:
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Facts about Gradient Descent

Another point of view:
» Minimization of a linear function

fow (@) = f(=™) + <Vf(:v(k)), T — x(k)>
with quadratic penalty on the distance to z(*):
1
Dp(z,z®) = —|z — 2®)2.
2T

» Update step:
l'(k+1) — argmin f:v(k) (I’) + Dh(xa ‘T(k))
z€RN
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Facts about Gradient Descent

Generalization to non-smooth functions f:
» Minimization of a convex model function

fowr (@) With  |f(2) = fo0 (@)] < w(|lz —a®))
———

growth function
with quadratic penalty on the distance to z(*):
1
Dy(z,z®) = §|x —z®)2,

» Update step:
z**tD = argmin fro () + Dp(z, :z:(k))
z€RN
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Facts about Gradient Descent

Generalization to non-smooth functions f:
» Minimization of a convex model function

Far (@) With | £(2) = fo0 (@)] < w(|a — ™)
——

growth function
with penalty on the distance to z(*):
Dy(z,z®)).
» Update step:

™+ = argmin £, () + Dp(z,2®))
z€ERN

A © 2018 — Peter Ochs Part 6: Bregman Proximal Minimization
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Model assumption / Growth function

f(@) —w(le =@

’
1
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Contribution

Key Contribution:

The growth function and the distance function
determine
the convergence properties.

Types of growth functions:

(i) growth function: w(0) = w'(0) =0

B oo 70 ’ ~ 1. / _
(i) proper growth function: }{I(l)w (t) = }{% w(t)/w'(t) = 0.

(iii) global growth function (does not require line-search).
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Abstract Algorithm

Abstract Algorithm:

™ = argmin f,u (z) + Dy (z, ).
z€RN

Find n*) > 0 using (inexact) line-search along

20D = 5B () (30 _ (00

to satisfy an Armijo-like condition along.

Remark: (Alternative Line-Search Strategy)
» Replace line-search for n*) > 0 by scaling of & in Dy, (z, z(F).
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Outline

1: Examples for Model Functions
Gradient Descent, Forward—Backward Splitting, ProxDescent
Presented with Euclidean distance measure.
However any distance measure from PART 2 can be used.

2: Examples for Distance Functions
Bregman distance generated by Legendre functions.

3: Convergence Analysis
Subsequential convergence to a stationary point.

4: Numerical Examples
Robust non-linear regression.
Image deblurring under Poisson noise.
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Forward—Backward Splitting

» Optimization problem:

min  fo(z) + fi(z)
——

zER N——
non-smooth diff.
convex non-convex
» Update step:
i®) = argmin fo(z) + f1 (z(k))+<x —z®) Vfl(x(k))>+i\x — ()2
rERN 2T
» Model function:

fz(x) = fo(z) + f1(T) + (= — 2,V f1(Z))
Model assumption/error:
|f(z) = fz(@)| = |f1(2) = /1(Z) = (z — 2,V 1(2)) | < w(|z —Z)

FBS case was considered by [Bonettini et al., 2016].

v

v
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Variable Metric Forward—Backward Splitting

» Optimization problem:

rnirllV folz) + fi(z)
—

z€R N——
non-smooth twice diff.
convex non-convex

» Model function:
fz(@) = fo(z) + A1(@) + (z — &, Vf1(Z)) + % (z — &, B(x — I))

B is a positive definite approximation to the Hessian V2 f; ()
» Update step: (Damped (approx.) Newton Method)
#®) = argmin fo(z)+f1(2®) + <3: — ) Vfl(x(k))>
z€RN

1
<m —z® Bz — w(k))> + 2—|x — ™2
T

DN | =

+
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ProxDescent

» Optimization problem:

o+ o 1)

TE

non-smooth iff.

coﬁvgft non-smooth @
. convex
finite-valued

» Model function: (DF(z) is the Jacobian matrix of F' at z)
fz(x) = fo(z) + g(F(z) + DF(z)(z — 7))
» Model assumption:

|[f(z) = fz(2)| = |g(F(2)) — g(F(2) + DF()(z — 7))|
<{|F(z) — F(z) - DF(Z)(z — 7)|
<w(|z—z[)
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ProxDescent

» Update step:
1
) = argmin fo(@) + 9(F(«™) + DF(@®)(z - 28)) + |z — 2™
zERN T

» [Lewis and Wright, 2016], [Drusvyatskiy and Lewis, 2016]

A Special Case of ProxDescent:
» Optimization problem: (Non-linear least-squares problem)

1
i [

» Update step: (Levenberg—Marquardt Algorithm)

1 1
i® = argmin Z|F(2®) + DF(2®)(z — 2®))? + = |z — ™2
rERN 2 2T
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Composite Optimization: lterative Reweighting

» Optimization problem:

min fo(z) + 9( F(z) )

zeR N~ S~~~
nog(—)snr\rllg)?th e Lipschitz

(Vg): non-negative £ Convex

» Model function:
fz(@) = folz) + g(F(2)) + (Vg(F(2)), F(z) — F(2))

» Model assumption:

(@) — fo(@)| = |9(F(x)) — 9(F(2)) — (Vg(F(2), F(a) — F(2)) |
<w(F(z) - F(z)])
<w(z - g
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Composite Optimization: lterative Reweighting

Update step:

7 = argmin fo(z) + <V9(F(x(’“)))7 F(z) - F(w(k))> + %Im —z®2.

zERN

Example: (image deblurring with non-convex regularization)

1
min §|Au —f]2 + PZlOgO + p[(Du)i ;1)

.9

clean burry/noisy reconstruction
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Distance Measures

Class of Distance Measures:
» Bregman distance D;, generated by Legendre functions h.
Examples:
: . 1
» Euclidean Distance Measure: D, (z, %) = 5|:z: —z/?

» Scaled Euclidean Distance Measure:
1 2 1 _ _
Dp(z,z) = §|$ —Z|3 = B} (z -z, Az — T))
» Burg’s Entropy: (e.g. for non-negativity constraints)

N 2 q
Dy (z,z) = Z (i: —log (%) - 1)

i=

» h(z;) = —log(x;) (Barrier) has domain (0, +00) and grows towards +oo for
for z; — 0.
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Convergence Results

Seek for stationary point z*, i.e. |V f|(z*) = 0. (Limiting Slope)

Termination of Backtracking Line-Search:
» Backtracking terminates after a finite number of iterations.

Stationarity for Finite Termination:
» Fixed-points of the algorithm are stationary points of f.

Convergence of Objective Values:
> (f(z™))ren is non-increasing and converging.
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Stationarity of Limit Points

Assumption to avoid technical details: D) has full domain.

Prove Stationarity of Limit Points in Three Settings:

(i) wis a growth function: w(0) = w’(0) = 0 and |V f|(z*)) — 0.

(i) wis a proper growth function: }i{%w (t) = hm w( )/ (t) =

(i) w is a global growth function (does not require line-search).
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Robust Non-linear Regression

Non-smooth non-convex optimization problem:
V. — Z 1Fi(uw) = yilly,  Fi(u) = ij exp(—a;z;)

(z;,y:;) € R x R noisy non-negative input-output.
yi = F;(u) + n; with impulse noise n;.

Model function linearizes the inner functions F;.

Convex subproblems of the form: (solved using dual ascent)
M

@ = argmin ZHICufyz ||1Jr—|ufu|2 vy =y — F(a) + K.
u€RFP xRP 5

KC; := DF;(u) is the Jacobian of F; at a.
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Robust Non-linear Regression

T T T T T = =

1,200 ==== ProxDescent |-
o - === ProxDescent2
T:; LD «==aeee ProxDescent-LS
>
2 800 i
©
0
) 600 N
Seemccrcmnn.
400 . e L et £ T
| | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4
subproblem iterations -10°

Objective value vs. number of subproblem iterations.
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Image Deblurring under Poisson Noise

Constrained smooth optimization problem:

Ny
min Dk (f, Au) + log(1 + p|(Du st.u;; >0
WER"® X1y | KL ZZ g ,U| )l]l ) ij =

Kullback—Leibler
divergence

=1 1
7= smooth non-convex regularizer

Even for convex regularization, it is hard to minimize.
Difficulty comes from the lack of global Lipschitz continuity.

For convex regularizer: Use generalized Descent Lemma and Burg’s
entropy. [Bauschke et al., 2016]

Burg’s entropy is not strongly convex and cannot be used by current FBS.
Subproblems in our framework have simple analytic solution.
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Image Deblurring under Poisson Noise

noisy and blurry reconstruction
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Summary

Summary:

eeececee e
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Gradient Descent

Gradient or Steepest Descent
Convergence of Gradient Descent
Convergence to a Single Point
Speed of Convergence
Applications

Structured Optimization Problems
Unification of Algorithms

Acceleration Strategies

Time Continuous Setting
Heavy-ball Method
Nesterov's Acceleration
Quasi-Newton Methods
Subspace Acceleration

(o]

LR SN

4.

CRCIC

.

Non-Smooth Optimization

Basic Definitions

Infimal Convoution

Proximal Mapping

Subdifferential

Optimality Condition (Fermat’s Rule)
Proximal Point Algorithm
Forward-Backward Splitting

Single Point Convergence

tojasiewicz Inequality
Kurdyka-t.ojasiewicz Inequality
Abstract Convergence Theorem
Convergence of Non-convex
Forward-Backward Splitting

A Generalized Abstract Convergence
Theorem

Convergence of iPiano

Local Convergence of iPiano

o

o .

Variants and Acceleration of
Forward-Backward Splitting

FISTA

Adaptive FISTA

Proximal Quasi-Newton Methods

Efficient Solution for Rank-1 Perturbed Proximal
Mapping

Forward-Backward Envelope

Generalized Forward-Backward Splitting

Bregman Proximal Minimization

Model Function Framework
Examples of Model Functions
Examples of Bregman Functions
Convergence Results
Applications
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