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ABSTRACT

We introduce an autonomous system with closed-loop damping for first-order convex
optimization. While, to this day, optimal rates of convergence are only achieved by
non-autonomous methods via open-loop damping (e.g., Nesterov’s algorithm), we show
that our system is the first one featuring a closed-loop damping while exhibiting a rate
arbitrarily close to the optimal one. We do so by coupling the damping and the speed
of convergence of the system via a well-chosen Lyapunov function. We then derive
a practical first-order algorithm called LYDIA by discretizing our system, and present
numerical experiments supporting our theoretical findings.

1 Introduction

We consider the unconstrained minimization of a smooth convex real-valued and lower-bounded func-
tion f over a Hilbert spaceH:

min
x∈H

f(x).

One of the most famous algorithms for such optimization problems is Nesterov’s Accelerated Gradient
method (NAG) [25], which is known to achieve the optimal rate of convergence for first-order methods
on convex functions with Lipschitz-continuous gradient. Among several ways to explain the efficiency
of NAG, Su et al. [31] studied the algorithm through the lens of Ordinary Differential Equations (ODEs)
and proposed the following model:

ẍ(t) +
a

t
ẋ(t) +∇f(x(t)) = 0, ∀t ≥ t0, (AVDa)

where a > 0, t0 ≥ 0 and ∇f denotes the gradient of the smooth real-valued convex function f .
Here, ẋ def

= dx
dt

, respectively ẍ
def
= d2x

dt2
, denotes the first, resp. second, time-derivative (or velocity,

resp. acceleration) of the solution x of the ODE. AVD stands for Asymptotically Vanishing Damping
∗
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and relates to the coefficient a/t. NAG is obtained by (non-straightforward) discretization of (AVDa).
Conversely (AVDa) can be seen as NAG with infinitesimal step-sizes. Following [31], many works
studied the system (AVDa), and notably proved that when a > 3, the function values along a solution
(or trajectory) of (AVDa) converge with the asymptotic rate o

(
1
t2

)
to the optimal value as t → +∞

[31, 6, 24]. This matches the rate of NAG in the case of discrete (or iterative) algorithms [25]. We
further discuss additional results for (AVDa) and other possible choices of a later in Section 2.

The interest in the connection between ODEs (or dynamical systems) and algorithms comes from
the abundance of theory and tools for analyzing ODEs and the insights that they provide for under-
standing algorithms. In particular, continuous-time analyses relying on Lyapunov functions can often
be adapted to the discrete setting, see e.g., [6]. In this work, we are interested in a special case of the
Inertial Damped Gradient (IDG) system:

ẍ(t) + γ(t)ẋ(t) +∇f(x(t)) = 0, ∀t ≥ t0, (IDGγ)

where γ is a positive function and is called “damping” by analogy with mechanics. There are two
inherently different ways of designing the damping coefficient γ: the so-called open- and closed-loop
manners. While obtaining fast convergence rates o

(
1
t2

)
with open-loop damping is known, for example,

when γ(t) = a
t

with a > 3, which exactly yields (AVDa), we propose the first closed-loop damping
that provides (IDGγ) with near-optimal rate of convergence. Our special instance of (IDGγ) is called
(LD) and is introduced hereafter. We first discuss the problem setup in more details.

1.1 Problem setting

The damping a
t

in (AVDa) depends explicitly on the time variable t, making the system non-
autonomous. We say that a damping with such explicit dependence on the time t is open-loop. In
contrast, a damping γ that does not explicitly depend on t is called closed-loop and makes (IDGγ) an
autonomous ODE (since the ODE is then independent of t0): the feedback for the system, in terms of
γ, may only depend on the state x (and its derivatives) but not explicitly on the time t. For optimization,
autonomous ODEs are often preferable over non-autonomous ones, since the dependence on the time
t, and hence on the initial time t0, is removed. For example, even though the asymptotic rate of conver-
gence of (AVDa) does not depend on t0, the trajectory does depend on the choice of t0: when choosing
a large t0, the damping a/t is very small at all time and the “damping effect” is almost completely lost.
We illustrate this in Figure 1 where we show how the choice of t0 heavily influences the solution of
(AVDa). Additionally some important tools for analyzing ODEs only hold (or are simpler to use) for
autonomous ODEs, see e.g., the Hartman–Grobman Theorem [20, 19], which relates the behavior of
autonomous ODEs around their equilibrium points to that of a linear system. Another such example
is the so-called ODE method [23, 13], which formally states that algorithms with vanishing step-sizes
asymptotically behave like solutions of corresponding ODEs.

In this work we therefore tackle the following open question:

Can one design the damping γ in (IDGγ) in a closed-loop manner (so as to make the ODE
autonomous) while still achieving the same optimal convergence rate as (AVDa)?

This question hides a circular argument that makes it hard to solve. Indeed, according to Cabot
et al. [16], a sufficient condition on γ for the convergence of the function values is that

∫ +∞
t0

γ(t)dt =
+∞. The straightforward choice is then the constant damping γ(t) = a > 0, which in (IDGγ) yields
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Figure 1: Comparison of our autonomous system (LD) and the non-autonomous one (AVDa) for differ-
ent initial times t0 on the 2D function f(x1, x2) = x41 + 0.1x42. The left plot shows the evolution of the
function values over time. The right plot shows the trajectories in the space (x1, x2). Different initial
times heavily affect the solution of (AVDa), but not (LD). We approximated the solutions using NAG
for (AVDa) and LYDIA (see Algorithm 1) for (LD), both with very small step-sizes.

the Heavy Ball with Friction (HBF) algorithm [28], known to be sub-optimal for convex functions. We
therefore seek a closed-loop damping that converges to zero, but not “too fast”. In the open-loop setting,
the natural choice is γ(t) = a

t
, a > 0 because this is the fastest polynomial decay that converges to

zero while being non-integrable. Further [4] showed that any damping of the form a
tβ

with β ∈ (0, 1)
yields a sub-optimal rate. Therefore we formally seek to design a closed-loop damping γ that behaves
like 1

t
. Because it cannot depend directly on the variable t, our closed-loop damping γ must be built

from other quantities of the system that may converge to zero, for example ∥ẋ(t)∥. However, the rate
at which such quantities converge to zero depend themselves on the choice of γ. To escape this loop
of thought, we design γ using quantities that are known to behave asymptotically like 1

t
in the case

of (AVDa) and investigate whether this choice of γ still gives fast convergence rates. This idea takes
inspiration from [9] which used ∥ẋ(t)∥ as damping, with a key difference that we now explain.

1.2 Our contribution

In the case of (AVDa) with a > 3, it is known that under standard assumptions the quantity E(t) def
=

f(x(t))−f ⋆+1
2
∥ẋ(t)∥2 (where f ⋆ def

= minH f ) is such thatE(t) = o
(

1
t2

)
[24]. Therefore, following the

aforementioned intuition, we propose a closed-loop damping defined for all t ≥ t0 by γ(t) def
=
√
E(t).

Our version of (IDGγ) then reads:

ẍ(t) +
√
E(t)ẋ(t) +∇f(x(t)) = 0, ∀t ≥ t0, (LD)
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and is called (LD) for Lyapunov Damping, since it will turn out later that E is non-increasing, making
it a so-called “Lyapunov function” for (LD). Note that (LD) assumes the availability of the optimal
value f ⋆, we further discuss this later in Remark 4.10. Our main result is then that our system (LD)
which features a closed-loop damping yields the following rate of convergence.

Theorem 1.1. Assume that f is a continuously differentiable convex function and that argminH f ̸= ∅.
Then, for any bounded solution x of (LD) and for any δ > 0,

f(x(t))− f ⋆ = o

(
1

t2−δ

)
.

This means that the rate of our method is arbitrarily close to o
(

1
t2

)
, the optimal one achieved by

(AVDa) with a > 3. To the best of our knowledge, this is the first system with closed-loop damping
featuring such rate. Additionally, note that (LD) does not make use of the hyper-parameter a, whose
choice is crucial in (AVDa).

1.3 Organization

In Section 2 we review related work regarding ODEs for optimization, closed-loop damping, and known
results in the open-loop case. In Section 3 we make the setting precise and show the existence of
solutions to (LD). Section 4 is devoted to showing our main result. In Section 5 we derive a practical
algorithm from (LD) and use it to perform numerical experiments. We finish by drawing conclusions
and further discussing our results.

2 Related Work

ODEs for optimization. There is a long line of work in exploiting the interplay between ODEs and
optimization algorithms, going back, at least, to the work of Polyak’s [28] Heavy Ball with Friction
(HBF) method for acceleration. As previously stated, Su et al. [31] linked NAG [25] to the differential
equation (AVDa), hence providing a new view on the heavily used, yet not perfectly understood algo-
rithm. NAG is however obtained via a non-straightforward discretization of (AVDa) since the gradient
of f is evaluated at an “extrapolated point”. Recently, Alecsa et al. [2] proposed a model with “implicit
Hessian”, whose Euler explicit discretization yields NAG. Higher-order ODEs have also been intro-
duced to better understand NAG: Attouch et al. [7] proposed a model with “Hessian damping” based
on [3], while Shi et al. [30] similarly considered higher-resolution ODEs allowing to better distinguish
NAG from other (IDGγ) systems.

Closed-loop damping. The closest work to ours is [9], which proposed a closed-loop damping of
the form γ = ∥ẋ∥p for several values of p ∈ R. Our work builds on [9] since our damping

√
E also

involves ∥ẋ∥. Yet, Attouch et al. [9] could provide counterexamples for which their systems do not
achieve near-optimal rates, unlike ours. A key difference is that our damping

√
E is non-increasing,

while ∥ẋ∥ may oscillate heavily. They nonetheless derived rates under additional assumptions (e.g.
strong convexity or the Kurdyka-Łojasiewicz (KL) property).

Lin and Jordan [22] introduced more complex systems of closed-loop dampings relying on the
gradient ∇f and the speed ẋ. This was followed by Attouch et al. [10] who considered a system that
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is shown to generalize the systems in [22]. Further Attouch et al. [10] showed that their system can
be interpreted as a time-rescaled gradient flow combined with so-called “time averaging” techniques.
Their time-scaling is expressed in terms of the inverse of the norms of the speed ẋ and the gradient
∇f . However, the improvement achieved by time rescaling cannot carry through discretization since
it amounts to following the same trajectory but faster, which for discrete algorithms would boil down
to increasing the step-size, yielding numerical instabilities. Nonetheless, by combining time rescaling
and time averaging, they managed to build a practical method achieving acceleration compared to the
O
(
1
t

)
rate of gradient flow, but still sub-optimal compared to (AVDa).

Adly et al. [1] proposed to replace the term γ(t)ẋ(t) in (IDGγ) by a “non-smooth” potential.
Their non-smooth potential provides the solutions of their differential inclusion with finite length and
convergence to a point very close to a minimizer of f (if such a point exists). However, since the
solution does not converge to the minimal value, it does not have the optimal rate that we seek.

Our damping makes use of the optimality gap f(x(t)) − f ⋆ (see Remark 4.10 for further discus-
sion). This idea is not new and is used, for example, in the Polyak step-size f(xk)−f⋆

∥∇f(xk)∥2
[27]. In our

system (LD) the optimality gap is rather used for designing the damping γ rather than the step-size.

Open-loop damping and proof techniques. The convergence properties of (AVDa) (and more gen-
erally (IDGγ) in the open-loop setting) have been intensively studied. First, for (AVDa) with a > 3,
following [31], the convergence rate o

(
1
t2

)
for function values and the convergence of the trajectories

were proved in [24, 6, 17]. In the setting a < 3, [11, 8] derived the sub-optimal rate O
(

1

t
2a
3

)
. For

the critical value a = 3 only the rate O
(

1
t2

)
is known and whether this rate can be improved to o

(
1
t2

)
and whether the trajectories converge remains open. Rates have also been derived under additional
assumptions such as the KL property [12].

Regarding (IDGγ), Attouch and Cabot [4] developed general conditions for the convergence of the
values and of the trajectories, which unify several results mentioned above. All these results have in
common that they rely on the analysis of Lyapunov functions, like E previously introduced. We refer
to [32, 33] for more details on Lyapunov analyses. The proof of our main result takes inspiration from
those in [15] where sufficient conditions to derive optimal rates are provided. They must nonetheless
be significantly adapted since some of the conditions in [15] do not hold generally for closed-loop
dampings like ours. We replace them by using a specific property of our system (see Lemma 4.1
hereafter). A more detailed comparison follows our main analysis in Remark 4.9.

3 Preliminaries and Existence of Solutions

Throughout the paper we fix a real Hilbert spaceH with inner product ⟨·, ·⟩ and induced norm ∥·∥.
We make the following assumptions on the function f .

Assumption 1. The function f : H → R is

(i) convex and continuously differentiable with locally Lipschitz-continuous gradient ∇f ;

(ii) bounded from below by f ⋆ def
= infH f.

We also fix an initial time t0 ≥ 0 and initial conditions x(t0) = x0 ∈ H, and ẋ(t0) = ẋ0 ∈ H.

5



Definition 1. A function x : [t0,+∞[→ H, which is twice continuously differentiable on ]t0,+∞[ and
continuously differentiable on [t0,+∞[, is called a (global) solution or trajectory to (IDGγ), resp. (LD),
if it satisfies (IDGγ), resp. (LD), for all t > t0 and satisfies the initial conditions previously mentioned.

Given the setting above, we can ensure the existence and uniqueness of the solutions of (LD).

Theorem 3.1. Under Assumption 1, there exists a unique solution x to (LD) with initial conditions
(x0, ẋ0) ∈ H ×H and initial time t0 ≥ 0.

The proof relies on the Picard–Lindelöf Theorem and is postponed to Appendix A.

Remark 3.2. The local Lipschitz-continuity of ∇f is only required to guarantee the existence and
uniqueness of the solutions on [t0,+∞[ (see below), but is not used elsewhere in our analysis.

We finally recall a special case of the Landau notation for asymptotic comparison that we use
heavily in the sequel.

Definition 2. For any non-negative function g : R→ R and ∀α ≥ 0,

g(t) = o

(
1

tα

)
⇐⇒ lim

t→+∞
tαg(t) = 0.

4 Main Result: Convergence Rates for (LD)

This section is devoted to proving our main result Theorem 1.1, which states that the solution of (LD)
achieves a convergence rate that is arbitrarily close to the optimal one for convex functions. First we
show that E is indeed a Lyapunov function for the system (LD).

4.1 The Lyapunov function of (LD)

Throughout what follows, let x be the solution of (LD) with the initial conditions stated in Section 3.
Recall that the damping coefficient in (LD) is

√
E(t) where for all t ≥ t0, E(t) = f(x(t)) − f ⋆ +

1
2
∥ẋ(t)∥2. We first show identities that are specific to (LD) and that play a crucial role in what follows.

Lemma 4.1. Under Assumption 1 the solution x of (LD) is such that E is continuously differentiable
for all t ≥ t0 and

dE(t)

dt
= −

√
E(t) ∥ẋ(t)∥2 , (1)

so in particular E is non-increasing. Furthermore, for all t ≥ t0 it holds that

d
√
E(t)

dt
= −1

2
∥ẋ(t)∥2 , or equivalently,

∫ t

t0

∥ẋ(s)∥2 ds = 2
√
E(t0)− 2

√
E(t). (2)

Proof. We apply the chain rule and use the fact that x solves (LD) to obtain:

dE(t)

dt
= ⟨∇f(x(t)), ẋ(t)⟩+ ⟨ẍ(t), ẋ(t)⟩

=
〈
∇f(x(t))−

√
E(t)ẋ(t)−∇f(x(t)), ẋ(t)

〉
= −

√
E(t) ∥ẋ(t)∥2 , (3)
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which proves (1). As for the second part, the chain rule and (1) imply

d
√
E(t)

dt
=

1

2
√
E(t)

dE(t)

dt
= − 1

2
√
E(t)

√
E(t) ∥ẋ(t)∥2 = −1

2
∥ẋ(t)∥2 .

Finally, by the Fundamental Theorem of Calculus and the continuity of ẋ this is equivalent to∫ t

t0

∥ẋ(s)∥2 ds = 2
√
E(t0)− 2

√
E(t).

The function E describes a quantity which is non-increasing along the trajectory x, and note that
E(t) = 0 if, and only if, f(x(t)) = f ⋆ and ẋ(t) = 0. Such a function is called a Lyapunov function for
the system (LD).

4.2 Preliminary convergence results

We make the following assumptions, which are consistent with those in Theorem 1.1.

Assumption 2. We assume that

(i) argminH f ̸= ∅;
(ii) the solution x of (LD) is uniformly bounded on [t0,+∞[.

Remark 4.2. Assumption 2-(ii) holds, for example, when f is coercive.

We begin our analysis by showing that the trajectory x minimizes the function f . We do so by
showing that E(t) tends to zero as t→ +∞.

Theorem 4.3. Under Assumptions 1 and 2, E(t) converges to zero as t → +∞. This implies in
particular that f(x(t)) −−−−→

t→+∞
f ⋆ and ∥ẋ(t)∥ −−−−→

t→+∞
0.

We make use of the following classical result to prove Theorem 4.3.

Lemma 4.4. If g is a non-negative continuous function on [t0,+∞[ and
∫ +∞
t0

g(t)dt is finite, then either
lim

t→+∞
g(t) does not exist or lim

t→+∞
g(t) = 0.

The proof of Lemma 4.4 is postponed to Appendix B. We now prove Theorem 4.3.

Proof of Theorem 4.3. Let z ∈ argminH f , and for all t ≥ t0 define the so-called “anchor function”
hz(t)

def
= 1

2
∥x(t)− z∥2. Then hz is twice differentiable for all t ≥ t0 and we have:

ḣz(t) = ⟨x(t)− z, ẋ(t)⟩ . (4)

ḧz(t) = ∥ẋ(t)∥2 + ⟨x(t)− z, ẍ(t)⟩
(LD)
= ∥ẋ(t)∥2 +

〈
x(t)− z,−

√
E(t)ẋ(t)−∇f(x(t))

〉
= ∥ẋ(t)∥2 +

〈
x(t)− z,−

√
E(t)ẋ(t)

〉
− ⟨x(t)− z,∇f(x(t))⟩

(4)
≤ ∥ẋ(t)∥2 −

√
E(t)ḣz(t) + f ⋆ − f(x(t)),

(5)
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where we used the first-order characterization of the convexity of f in the last step. So hz(t) fulfills the
following differential inequality:

ḧz(t) + f(x(t))− f ⋆ +
1

2
∥ẋ(t)∥2︸ ︷︷ ︸

=E(t)

≤ ∥ẋ(t)∥2 + 1

2
∥ẋ(t)∥2 −

√
E(t)ḣz(t),

or equivalently,

E(t) ≤ 3

2
∥ẋ(t)∥2 − ḧz(t)−

√
E(t)ḣz(t). (6)

We integrate (6) from t0 to T > t0:∫ T

t0

E(t)dt ≤ 3

2

∫ T

t0

∥ẋ(t)∥2 dt−
∫ T

t0

ḧz(t)dt−
∫ T

t0

√
E(t)ḣz(t)dt

= 3
(√

E(t0)−
√
E(T )

)
− ḣz(T ) + ḣz(t0)−

√
E(t)hz(T ) +

√
E(0)hz(t0)

− 1

2

∫ T

t0

∥ẋ(t)∥2 hz(t)dt,

(7)

where we performed integration by parts on the last integral and used Lemma 4.1. Note that by the
boundedness of E and the continuity of f , f(x) − f ⋆ and ∥ẋ∥ are uniformly bounded on [t0,+∞[.
This implies together with Assumption 2 that hz and ḣz are uniformly bounded as well. Therefore,
ḣz(T ),

√
E(T ) and

√
E(T )hz(T ) are uniformly bounded from above for all T ∈ [t0,+∞[. Further

−
∫ T

t0
∥ẋ(s)∥2 hz(s)ds ≤ 0 and ḣz(t0) and

√
E(t0)hz(t0) are constants. So the right-hand side in (7) is

uniformly bounded from above for all T ∈ [t0,+∞[. Therefore we deduce that∫ +∞

t0

E(t)dt < +∞. (8)

Finally, E is non-negative and non-increasing by (1), so it converges to some value E∞ ∈ [0, E(t0)] as
t→∞. Further since E is continuous we can conclude by Lemma 4.4 that lim

t→+∞
E(t) = 0.

4.3 Rates of convergence for E

The proof of our main result Theorem 1.1 relies on the following lemma.
Lemma 4.5. Let α ≥ 0: If

∫ +∞
t0

tαE(t)dt < +∞, then lim
t→+∞

tα+1E(t) = 0.

This result follows from standard calculus arguments and is proved later in Appendix B.
Observe that (8) already provides us with a first rate by applying Lemma 4.5 with α = 0.
Proposition 4.6. Under Assumption 1 and 2, it holds that

E(t) = o

(
1

t

)
.

Since E is a sum of non-negative quantities, any convergence rate of E translates into a rate for
f , hence in particular Proposition 4.6 implies f(x(t))− f ⋆ = o

(
1
t

)
. The proof of Theorem 1.1 follows

similar steps as that of Theorem 4.3. The main idea is that by combining (8) with (2) we can improve
the rate from o

(
1
t

)
to o

(
1

t3/2

)
and iteratively repeat this process. This is stated in the following theorem.
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Theorem 4.7. Under Assumptions 1 and 2 for all 0 < ε < 1
2

and all n ∈ N≥1 it holds that

E(t) = o

(
1

tαn−αn−1ε

)
, where αn

def
= 2−

(
1

2

)n−1

. (9)

Before proving Theorem 4.7, we show that Theorem 1.1 is a direct consequence of this result.

Proof of Theorem 1.1. For any 0 < δ < 1, choose 0 < ε < δ
2

and observe that

lim
n→+∞

αn = 2, hence lim
n→+∞

(αn − αn−1ε) = 2− 2ε > 2− δ,

which shows that there exists N ∈ N≥1, such that αN − αN−1ε > 2− δ and therefore by Theorem 4.7

0 = lim
t→+∞

tαN−αN−1εE(t) ≥ lim
t→+∞

t2−δE(t) ≥ 0,

hence
lim

t→+∞
t2−δE(t) = 0.

Finally the case δ ≥ 1 is covered by Proposition 4.6 and, as previously discussed, the following impli-
cation holds for all δ > 0:

E(t) = o

(
1

t2−δ

)
=⇒ f(x(t))− f ⋆ = o

(
1

t2−δ

)
.

It now only remains to prove Theorem 4.7. We make use of the following lemma.

Lemma 4.8. Let g be continuous and non-negative on [t0,+∞[. Then for any β > 1,

lim
t→+∞

tβg(t) exists and is finite =⇒
∫ +∞

t0

g(t)dt < +∞.

The proof of Lemma 4.8 is postponed to Appendix B

Proof of Theorem 4.7. Fix 0 < ε < 1
2
. We show (9) by induction over n ∈ N>1. The case n = 1 holds

from Proposition 4.6. Observe that for all n ≥ 1, we have the following:

αn − 1 = 1−
(
1

2

)n−1

=
1

2

(
2−

(
1

2

)n−2
)

=
αn−1

2
. (10)

Let us now assume that there exists n ≥ 1 such that:

E(t) = o

(
1

tαn−αn−1ε

)
⇐⇒

√
E(t) = o

(
1

t
αn
2

−αn−1
2

ε

)
. (I.H.)

To proceed by induction we need to show that (I.H.) implies

E(t) = o

(
1

tαn+1−αnε

)
. (11)
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To this aim, it is actually sufficient to prove that∫ +∞

t0

t
αn
2

−αnεE(t)dt < +∞. (12)

Indeed, according to Lemma 4.5 if (12) holds, then

0 = lim
t→+∞

t
αn
2

+1−αnεE(t)
(10)
= lim

t→+∞
tαn+1−αnεE(t),

which is equivalent to (11).

To show (12) we multiply both sides of (6) by t
αn
2

−αnε and integrate from t0 to T ≥ t0:∫ T

t0

t
αn
2

−αnεE(t)dt ≤ 3

2

∫ T

t0

t
αn
2

−αnε ∥ẋ(t)∥2 dt−
∫ T

t0

t
αn
2

−αnεḧz(t)dt

−
∫ T

t0

t
αn
2

−αnε
√
E(t)ḣz(t)dt. (13)

Now it only remains to show that the limit as T → +∞ of each term on the right-hand side of (13)
is uniformly bounded from above for T ∈ [t0,+∞[, which will imply that the left-hand side remains
uniformly bounded as T → +∞. This approach is similar to the proof of Theorem 4.3, but the key
equation (2) allows deducing further integrability results for ∥ẋ(t)∥2 by using the induction hypothesis
(I.H.), which is new and specific to the system (LD).
We first make the following observation using (10):

t1+ε

t1−
αn
2

+αnε

√
E(t) = t

αn
2

−αn−1
2

ε
√
E(t)

(I.H.)−−−−→
t→+∞

0.

Therefore according to Definition 2, we have

1

t1−
αn
2

+αnε

√
E(t) = o

(
1

t1+ε

)
, (14)

and using Lemma 4.8 with g(t) = 1

t1−
αn
2 +αnε

√
E(t) and β = 1 + ε,∫ +∞

t0

1

t1−
αn
2

+αnε

√
E(t)dt < +∞. (15)

We now use (15) to show the integrability of t
αn
2

−αnε ∥ẋ(t)∥2, which shows the uniform boundedness
of the first term on the right-hand side of (13) as T → +∞. For any T ≥ t0:∫ T

t0

t
αn
2

−αnε ∥ẋ(t)∥2 dt I.P.,(2)
=

[
−2t

αn
2

−αnε
√
E(t)

]T
t0
−
∫ T

t0

(αn

2
− αnε

)
t
αn
2

−1−αnε(−2
√
E(t))dt

(10)
= −2T

αn
2

−αnε
√
E(T ) + 2t

αn
2

−αnε

0

√
E(t0) + 2

(αn

2
− αnε

)∫ T

t0

1

t1−
αn
2

+αnε

√
E(t)dt,

10



where the second term is constant, the last integral is finite as T → +∞ by (15) and

−2 lim
T→+∞

T
αn
2

−αnε
√
E(T ) ≤ 0.

Therefore the first term in (13) is bounded:∫ +∞

t0

t
αn
2

−αnε ∥ẋ(t)∥2 dt < +∞. (16)

Looking at the second term in (13) we have:

−
∫ T

t0

t
αn
2

−αnεḧz(t)dt
I.P.
= −

[
t
αn
2

−αnεḣz(t)
]T
t0
+
(αn

2
− αnε

)∫ T

t0

t
αn
2

−1−αnεḣz(t)dt

I.P.
= −T

αn
2

−αnεḣz(T ) + t
αn
2

−αnε

0 ḣz(t0) +
(αn

2
− αnε

) [
t
αn
2

−1−αnεhz(t)
]T
t0

−
(αn

2
− αnε

)(αn

2
− 1− αnε

)∫ T

t0

t
αn
2

−2−αnεhz(t)dt. (17)

Recall that there exists a 0 ≤ M < +∞ such that ∀t ≥ t0 hz(t) ∈ [0,M ], since by Assumption 2, x
is bounded. Due to −

(αn

2
− αnε

)
︸ ︷︷ ︸

>0

(αn

2
− 1− αnε

)
︸ ︷︷ ︸

<0

> 0 and αn

2
− 2 − αnε < −1, we can bound the

limit of the last term in (17) as T → +∞:

−
(αn

2
− αnε

)(αn

2
− 1− αnε

)∫ +∞

t0

t
αn
2

−2−αnεhz(t)dt

≤ −M
(αn

2
− αnε

)(αn

2
− 1− αnε

)∫ +∞

t0

t
αn
2

−2−αnεdt < +∞.

Again by boundedness of x and by the definition of ḣz we get:

− lim
T→+∞

T
αn
2

−αnεḣz(T )
C.S.
≤ lim

T→+∞
T

αn
2

−αnε ∥x(T )− z∥ ∥ẋ(T )∥

≤
√
M lim

T→+∞
T

αn
2

−αnε ∥ẋ(T )∥ = 0.

Indeed,

0
(I.H.)
= lim

t→+∞
tαn−αn−1εE(t) = lim

t→+∞
tαn−αn−1ε

(
f(x(t))− f ⋆ +

1

2
∥ẋ(t)∥2

)
≥ lim

t→+∞
tαn−αn−1ε ∥ẋ(t)∥2 ≥ 0,

hence:

lim
t→+∞

tαn−αn−1ε ∥ẋ(t)∥2 = 0 ⇐⇒ lim
t→+∞

t
αn
2

−αn−1
2

ε ∥ẋ(t)∥ = 0

⇒ lim
t→+∞

t
αn
2

−αn−1
2

ε−ε ∥ẋ(t)∥ = 0
(10)⇐⇒ lim

t→+∞
t
αn
2

−αnε ∥ẋ(t)∥ = 0.

11



To conclude that the limit T → +∞ of the right-hand side of (17) is bounded from above, we observe
that two of the three remaining terms are constant and

lim
T→+∞

(αn

2
− αnε

)
T

αn
2

−1−αnεhz(T ) = 0,

since αn

2
− 1−αnε < 0 and hz is bounded. We finish the proof by bounding the third term of (13). For

T ≥ t0 we have:

−
∫ T

t0

t
αn
2

−αnε
√
E(t)ḣz(t)dt

I.P.,(2)
= −

[
t
αn
2

−αnε
√
E(t)hz(t)

]T
t0

+

∫ T

t0

((αn

2
− αnε

)
t
αn
2

−1−αnε
√
E(t)− 1

2
t
αn
2

−αnε ∥ẋ(t)∥2
)
hz(t)dt

= −T
αn
2

−αnε
√
E(T )hz(T ) + t

αn
2

−αnε

0

√
E(t0)hz(t0) +

(αn

2
− αnε

)∫ T

t0

t
αn
2

−1−αnε
√
E(t)hz(t)dt

− 1

2

∫ T

t0

t
αn
2

−αnε ∥ẋ(t)∥2 hz(t)dt. (18)

Only the third term on the right-hand side of (18) is neither constant nor non-positive. Using again the
boundedness of hz, it holds that:∫ +∞

t0

t
αn
2

−1−αnε
√
E(t)hz(t)dt ≤M

∫ +∞

t0

t
αn
2

−1−αnε
√
E(t)dt

(15)
< +∞.

Hence the limit as T → +∞ of the third term of (13) is bounded from above as well. Therefore all
limits as T → +∞ of the terms on the right-hand side of (13) are bounded from above, hence (12)
holds. By induction, we conclude that (9) holds for all n ∈ N≥1.

Remark 4.9. The induction step of Theorem 4.7 resembles the proof of [15, Lemma 3.10]. Yet, their
result is not directly applicable to (LD) because it requires the knowledge of an asymptotic lower-bound
on the damping, which we do not know a priori. Furthermore, Cabot and Frankel [15] showed how to
iteratively repeat the application of this result but their proof relies on a strong integrability statement
on ∥ẋ(t)∥ that may not hold in general. The specific nature of our system (LD) allows us to deduce
this integrability statement instead of assuming it.

4.4 Drawbacks of the approach

Now that we presented the main benefits of using a Lyapunov function as damping in (LD), we discuss
some drawbacks of our approach, starting with the following remark.

Remark 4.10. Our system (LD) makes use of the optimal value f ⋆. The latter might be unknown in
general but is known in several practical cases such as over-determined regression with squared loss, or
empirical risk minimization of some over-parameterized machine learning problems [18]. We refer to
[14] for more examples and further discussion. All the results above do not require the knowledge of
f ⋆, only its existence. However Algorithm 1 presented in Section 5 is only practical when f ⋆ is known.

12



The second drawback of our approach is that we can lower bound the convergence rate of our
damping

√
E(t). This not surprising as the bound actually matches the sufficient condition from [16]

mentioned in the introduction.

Proposition 4.11. The convergence rate of the damping
√
E of the dynamical system (LD) cannot be

asymptotically faster than 1
t
, i.e., there exists no α > 1 such that

√
E(t) = o

(
1
tα

)
for a non-constant

bounded solution of (LD).

Remark 4.12. Proposition 4.11 expresses that E can never vanish faster than o( 1
t2
). However, this

does not mean that the convergence rate of f(x(t))− f ⋆ can never be faster than the worst-case o( 1
t2
);

one can sometimes obtain faster convergence of function values, as we will observe in the numerical
experiments.

Proof of Proposition 4.11. Assume that
√
E(t) = o

(
1
tα

)
for some α > 1, then by Lemma 4.8,∫ ∞

t0

√
E(t)dt < +∞. (19)

Let us make a similar computation as in [16, Prop. 3.5]:

dE(t)

dt
+ 2
√
E(t)E(t)

(1)
= −

√
E(t) ∥ẋ(t)∥2 + 2

√
E(t)

(
f(x(t))− f ⋆ +

1

2
∥ẋ(t)∥2

)
= 2
√
E(t)(f(x(t))− f ⋆) ≥ 0.

(20)

Multiply (20) by e2
∫ t
t0

√
E(s)ds

> 0 to obtain

0 ≤ e
2
∫ t
t0

√
E(s)dsdE(t)

dt
+ 2
√
E(t)e

2
∫ t
t0

√
E(s)ds

E(t) =
d

dt

[
e
2
∫ t
t0

√
E(s)ds

E(t)
]
. (21)

Now integrate 21 from t0 to t:

0 ≤ e
2
∫ t
t0

√
E(s)ds

E(t)− E(t0)

⇐⇒ E(t) ≥ e
−2

∫ t
t0

√
E(s)ds

E(t0).

This implies that

lim
t→∞

E(t) ≥ e
−2

∫∞
t0

√
E(s)ds

E(t0)
(19)
> 0,

which contradicts Proposition 4.3, since lim
t→∞

E(t) = 0. Therefore, we conclude that

∫ ∞

t0

√
E(t)dt =∞, (22)

and by Lemma 4.8 the limit of tα
√
E(t) for t → +∞ does not exist or is not finite for any α > 1,

hence E(t) ̸= o
(

1
tα

)
for α > 1.
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5 Algorithms and Numerical Experiments

5.1 Practical algorithms from (LD)

We first detail how we discretize (LD). We use an explicit discretization with fixed step-size
√
s > 0:

for k ∈ N we approximate the solution x of (LD) at times tk = k
√
s and define xk

def
= x(tk). We use

the approximations ẋ(t) ≈ xk−xk−1√
s

and ẍ(t) ≈ xk+1−2xk+xk−1

s
. We also define the discrete version of

the damping accordingly by first defining

Ek
def
= f(xk)− f ⋆ +

1

2

∥∥∥∥xk − xk−1√
s

∥∥∥∥2 . (23)

and our damping then reads γ(xk, xk−1)
def
=
√
Ek. Using this in (LD) we then propose the following

discretization scheme for all k ∈ N:
xk+1 − 2xk + xk−1

s
+ γ(xk, xk−1)

xk − xk−1√
s

+∇f(yk) = 0

⇐⇒ xk+1 = xk +
(
1−
√
sγ(xk, xk−1)

)
[xk − xk−1]− s∇f(yk),

(24)

where the gradient∇f is evaluated at yk = xk + (1−
√
sγ(xk, xk−1)) [xk − xk−1], in the same fashion

as it is done in NAG. One can optionally rather evaluate the gradient at xk.

We call the resulting algorithm LYDIA, for LYapunov Damped Inertial Algorithm, which is sum-
marized in Algorithm 1.
Algorithm 1: LYDIA
input: x0, x−1 ∈ Rn, step-size s > 0, kmax ∈ N

1 for k = 1 to kmax do
2 yk ← xk +

(
1−

√
Ek√
E0

)
[xk − xk−1]

3 xk+1 ← yk − s∇f(yk)
4 end

Note that compared to (24), we actually scaled the damping term
√
s
√
Ek by

√
s
√
E0 in Algo-

rithm 1. This scaling is optional but improves numerical stability1 as it ensures that the coefficient in
front of [xk − xk−1] remains non-negative. More specifically, we have the following lemma that shows
that Ek is non-increasing under standard assumptions.
Lemma 5.1. Let f be a continuously differentiable convex functions whose gradient is Lipschitz con-
tinuous with constant L > 0. Let (xk, yk)k∈N be the sequence generated by Algorithm 1, where s < 1

L
.

Then, for all k ∈ N,
Ek+1 ≤ Ek −

s

2
∥∇f(xk)−∇f(yk)∥2 . (25)

In particular (Ek)k∈N is non-increasing, hence it is a “discrete” Lyapunov function for Algorithm 1.

Proof. Consider for any x, y ∈ H and s ∈ (0, 1/L] the following refined version of the Descent Lemma
[5, Remark 5.2.]:

f(y − s∇f(y)) ≤ f(x) + ⟨∇f(y), y − x⟩ − s

2
∥∇f(y)∥2 − s

2
∥∇f(x)−∇f(y)∥2 . (26)

1An alternative to scaling is to choose s so that
√
s
√
E0 ≤ 1.
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Take y = yk and x = xk in (26) and subtract f ⋆ on both sides:

f(xk+1)− f ⋆ ≤ f(xk)− f ⋆ + ⟨∇f(yk), yk − xk⟩ −
s

2
∥∇f(yk)∥2 −

s

2
∥∇f(xk)−∇f(yk)∥2 . (27)

Observe that we have the following identities:

∥xk+1 − xk∥2 = ∥s∇f(yk)− (yk − xk)∥2

= s2 ∥∇f(yk)∥2 − 2s ⟨∇f(yk), yk − xk⟩+ ∥yk − xk∥2 , and, (28)

∥yk − xk∥2
(1)
=

∥∥∥∥(1− √Ek√
E0

)
(xk − xk−1)

∥∥∥∥2 . (29)

Therefore,

⟨∇f(yk), yk − xk⟩ =
s

2
∥∇f(yk)∥2 −

1

2s
∥xk+1 − xk∥2 +

1

2s
∥yk − xk∥2

=
s

2
∥∇f(yk)∥2 −

1

2s
∥xk+1 − xk∥2 +

1

2s

∥∥∥∥(1− √Ek√
E0

)
(xk − xk−1)

∥∥∥∥2 .
Substitute this in (27) to get

f(xk+1)− f ⋆ +
1

2s
∥xk+1 − xk∥2 ≤ f(xk)− f ⋆ +

1

2s

∥∥∥∥(1− √Ek√
E0

)
(xk − xk−1)

∥∥∥∥2
− s

2
∥∇f(xk)−∇f(yk)∥2 . (30)

Observe that for the first iteration k = 0, (30) reads

f(x1)− f ⋆ +
1

2s
∥x1 − x0∥2

≤ f(x0)− f ⋆ +
1

2s

∥∥∥∥(1− √E0√
E0

)
(x0 − x−1)

∥∥∥∥2 − s

2
∥∇f(x0)−∇f(y0)∥2

which is equivalent to E1 ≤ f(x0)− f ⋆ − s
2
∥∇f(x0)−∇f(y0)∥2 and therefore

E1 ≤ f(x0)− f ⋆ +
1

2s
∥x0 − x−1∥2 −

s

2
∥∇f(x0)−∇f(y0)∥2

= E0 −
s

2
∥∇f(x0)−∇f(y0)∥2 .

So E1 ≤ E0. Let k ∈ N>0 such that ∀ 1 ≤ i ≤ k, Ei ≤ Ei−1, then in particular Ek ≤ E0 and we
deduce from (29) that: ∥∥∥∥(1− √Ek√

E0

)
(xk − xk−1)

∥∥∥∥2 ≤ ∥xk − xk−1∥2 , (31)

which simplifies (30) into

f(xk+1)− f ⋆ +
1

2s
∥xk+1 − xk∥2 ≤ f(xk)− f ⋆ +

1

2s
∥xk − xk−1∥2 −

s

2
∥∇f(xk)−∇f(yk)∥2 .

This is exactly (25) after using (23), hence by induction, (25) holds for all k ∈ N.
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Figure 2: Rate of convergence of LD, AVD, HBF and GD on the test-function fflat. Left: Evolution of
the function values. Right: Evolution of the Lyapunov function.
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Figure 3: Rate of convergence of LD, AVD, HBF and GD on the test-function fnon-KL. Left: Evolution
of the function values. Right: Evolution of the Lyapunov function.

5.2 Numerical experiments

Methodology. We evaluate the performance of our system and empirically corroborate Theorem 1.1.
We consider the following 1-dimensional test functions, defined for all x ∈ R by:

fflat(x)
def
= x24, fnon-KL(x)

def
=

{
0, if x = 0;

exp
(
− 1

x2

)
, else,

funeven(x)
def
=

{
x3, if x > 0;

x2, if x ≤ 0,
fcontmin(x)

def
=


(x− ε)2, if x > ε;

(x+ ε)2, if x < ε;

0, else.
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Figure 4: Rate of convergence of LD, AVD, HBF and GD on the test-function funeven. Left: Evolution
of the function values. Right: Evolution of the Lyapunov function.
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Figure 5: Rate of convergence of LD, AVD, HBF and GD on the test-function fcontmin. Left: Evolution
of the function values. Right: Evolution of the Lyapunov function.

Since (LD) and (AVDa) are second-order ODEs that do not have closed-form solutions in general, we
approximate them by using the LYDIA algorithm and NAG respectively, both with small step-sizes. We
take a = 3.1 in NAG. We also consider Gradient Descent (GD) and the HBF algorithms mentioned in
the introduction. For each test function2, we present the evolution of the optimality gap f(x(t))− f ⋆ as
a function of the time t. Since this value is not monotonous and may oscillate heavily, we also display
the evolution of the (discretized) Lyapunov function E.

Results. The function fflat is a convex polynomial that is very flat around its minimizer. As discussed
in [6, Example 2.12] such polynomials of large degree allow emphasizing the worst-case bounds on
the rates of convergence. Indeed, we observe on the right of Figure 2 that the rate for GD and HBF

2Some of these functions do not have a globally Lipschitz continuous gradient which could cause numerical instabilities.
We overcome this by using small-enough step-sizes to ensure boundedness of the iterates of all the algorithms considered.
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is asymptotically close to O
(
1
t

)
while that of LD and (AVDa) gets close to O

(
1
t2

)
which empirically

validates our main result Theorem 1.1.

Some convex functions are not strongly convex but possess the KL property which allows deriving
faster rates of convergence (as done in the closed-loop setting by [9]). Since Theorem 1.1 does not
assume such a property, we evaluate the algorithms on a function that is known for not having the KL
property on Figure 3. The results again match the theoretical ones. Similarly, properties such as f
being even (i.e., f(−x) = f(x), ∀x) or argminH f being a singleton can allow one to derive faster
convergence results than for general convex functions. Our last-two test functions in Figures 4 and 5
illustrate that the rate of (LD) also holds without such properties.

Finally, while Figures 2 and 3 evidence cases where the solution of (LD) yields very fast mini-
mization of function values, Figure 4 shows a case where (LD) is faster than GD and HBF but not as
fast as (AVDa) and Figure 5 shows a case where (LD) is behind all other methods. Nonetheless, in all
cases observe that E is non-increasing and that it exhibits the rate predicted by Theorem 1.1.

6 Conclusions and Perspectives

We introduced a new system (LD) which, as initially intended, is independent of the choice of the
initial time t0, unlike (AVDa), and which does require the hyper-parameter a > 3 compared to the
latter, but however assumes knowledge of the optimal value f ⋆. We showed that it is possible to
design closed-loop dampings that achieve near-optimal rates of convergence for convex optimization.
The key ingredient is the coupling between the damping and the speed of convergence of the system.
This yielded in particular the identity (1), specific to (LD) and essential to adapt the proofs from the
open-loop to the closed-loop setting. This coupling provides a new understanding on how to choose
the damping term in second-order ODEs for optimization which may prove to be useful beyond the
specific cases of (LD) and (AVDa). We provided numerical experiment corroborating our theoretical
results as well as a new practical first-order algorithm LYDIA, derived from (LD), and for which we
showed that E a still a (discrete) Lyapunov function.

As for future work, it remains open to know whether we can improve the rate from “arbitrarily
close to optimal” to optimal (i.e., can we take δ = 0 in Theorem 1.1?). We also suspect that one can
drop Assumption 2-(ii) as it is not required for (AVDa) [24, 21], but we could not yet do it in the closed-
loop setting. On the algorithmic side, our experiments suggest that the rate of (LD) is transferred to the
LYDIA algorithm, which remains to be shown. One might also consider other discretization schemes.
Finally, it is worth investigating whether one can find systems and algorithms with the same properties
that do not require the optimal value f ⋆.
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Appendices

A Proof of Existence and Uniqueness

This section is devoted to proving Theorem 3.1. We recall some result from the theory of ODEs.

Theorem A.1. [29, Theorem 4.2.6] (Classical Version of Picard–Lindelöf)
Let H be a Hilbert space, let Ω ⊆ R×H be open. Let G : Ω→ H be continuous and let (t0, x0) ∈ Ω.
Assume that there exists L ≥ 0 such that for all (t, x), (t, y) ∈ Ω we have

∥G(t, x)−G(t, y)∥ ≤ L ∥x− y∥ .

Then, there exists δ > 0 such that the initial value problem{
u′(t) = G(t, u(t)) (t ∈ (t0, t0 + δ)) ,
u (t0) = x0,

admits a unique continuously differentiable solution u : [t0, t0 + δ[→ H, which satisfies (t, u(t)) ∈ Ω
for all t ∈ [t0, t0 + δ[.

Definition 3. [26, Definition 3.20] Let ϕ : I → Rn, n ∈ N, be a solution to an ODE defined on some
open interval I ⊂ R.

(a) We say ϕ admits an extension or continuation to the right (resp. to the left) if, and only if, there
exists a solution ψ : J → Rn to the same ODE, defined on some open interval J ⊃ I such that
ψ|I = ϕ and

sup J > sup I (resp. inf J < inf I)

An extension or continuation of ϕ is a function that is an extension to the right or an extension
to the left (or both).

(b) The solution ϕ is called a maximal solution if, and only if, it does not admit any extension in
the sense defined in (a).

Theorem A.2. [26, Theorem 3.22] Every solution ϕ0 : I0 → Rn to some ODE, defined on an open
interval I0 ⊂ R, can be extended to a maximal solution of this ODE.

Remark A.3. Definition 3 is easily generalized to Hilbert spaces and Theorem A.2 is valid for an ODE
in an infinite dimensional space as well, since the proof relies on Zorn’s Lemma.

Proof of Theorem 3.1. We first reduce the system (LD) to an equivalent first-order system:

d

dt

(
x(t)
ẋ(t)

)
=

(
ẋ(t)

−
√
f(x(t))− f ⋆ + 1

2
∥ẋ(t)∥2ẋ(t)−∇f(x(t))

)
def
= G(t, (x(t), ẋ(t))). (32)

We first show the claim in the case argminH f ̸= ∅ and later for the case argminH f = ∅.
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First, if (x0, ẋ0) ∈ argminH f × {0}, then (x(t), ẋ(t)) ≡ (x0, 0) is the unique global solution,
since ẍ(t) = 0 for all t ≥ t0. Now assume that (x0, ẋ0) ̸∈ argminH f × {0} and let us check that for
all t ≥ t0, the function

(u, v) 7→ G(t, (u, v)) =

(
v

−
√
f(u)− f ⋆ + 1

2
∥v∥2v(t)−∇f(u)

)

is Lipschitz continuous on the open set

A def
= (H×H) \ (argmin

H
f × {0}).

The first coordinate of G is clearly locally Lipschitz continuous w.r.t. (u, v) and therefore it suffices to
check that the second coordinate of G is also locally Lipschitz continuous w.r.t. (u, v) on A.
The square root function is locally Lipschitz continuous everywhere except at 0 and f(u) − f ⋆ +
1
2
∥v∥2 ̸= 0 for all (u, v) ∈ A. Therefore (u, v) ∈ A 7→

√
f(u)− f ⋆ + 1

2
∥v∥2v is locally Lipschitz

continuous as a product of locally Lipschitz-continuous functions. Finally ∇f is locally Lipschitz
continuous by Assumption 1-(i) , hence G is locally Lipschitz continuous on A. We can now apply
the Picard–Lindelöf Theorem A.1 to any open and bounded neighborhood of the initial conditions
(t0, (x0, ẋ0)) to find some δ > 0 and a unique solution (x, ẋ) to (32) on [t0, t0 + δ[.

It now remains to show that the solution exists on [t0,+∞[. Let T ∈ ]t0,+∞] be the maximal time
of existence (as stated in Theorem A.2) of the solution (x, ẋ) of (32). Assume that T < +∞, then the
limits of x and ẋ(t) exist as t → T . Indeed, first note that the uniform boundedness of E implies that
ẋ is bounded on [t0, T [ and by (LD) ẍ is bounded on [t0, T [ as well. Now consider a Cauchy sequence
(tn)n∈N converging to T and let m,n ∈ N. Then by the mean value Theorem we have:

∥x(tn)− x(tm)∥ ≤ sup
s∈]t0,T [

∥ẋ(s)∥ |tn − tm| , and

∥ẋ(tn)− ẋ(tm)∥ ≤ sup
s∈]t0,T [

∥ẍ(s)∥ |tn − tm| .

Therefore (x(tn))n∈N and (ẋ(tn))n∈N are Cauchy sequences which implies that lim
t→T

x(t) and lim
t→T

ẋ(t)

exist.

Then, if (x(T ), ẋ(T )) ∈ A then we can extend the solution by applying Picard–Lindelöf to an open
and bounded neighborhood of ((T, (x(T ), ẋ(T ))) which contradicts the fact that T was the maximal
time of existence. If (x(T ), ẋ(T )) ∈ ∂A ⊂ argminH f × {0}, where ∂A denotes the boundary
of A, then ẍ(T ) = 0 and we can extend the solution on [T, T + δ[, for some δ > 0, by taking
(x(t), ẋ(t)) = (x(T ), 0). This is again a contradiction, therefore we necessarily have T = +∞.

Finally, in the case where argminH f = ∅, we see similarly to before that G(t, (u, v)) is locally
Lipschitz continuous w.r.t. (u, v) everywhere on H×H. So the Picard–Lindelöf Theorem implies the
existence of a unique local solution for any initial value, which we can again extend to a global solution
on [t0,+∞[.
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B Missing Proofs of Lemmas

Proof of Lemma 4.4. Assume that there exists c > 0 such that lim
t→+∞

g(t) = c, which implies the

existence of t1 ≥ t0 such that ∀t ≥ t1, g(t) ≥ c
2
. Then∫ +∞

t0

g(t)dt ≥
∫ +∞

t1

g(t)dt ≥
∫ +∞

t1

c

2
dt = +∞,

which contradicts the assumption that
∫ +∞
t0

g(t)dt < +∞.

Proof of Lemma 4.5. Denote the positive and negative parts of a function g by

[g(·)]+
def
= max(g(·), 0) and [g(·)]−

def
= max(−g(·), 0) ≥ 0,

so that ∀x ∈ H,
g(x) = [g(x)]+ − [g(x)]− .

Then note that[(
tα+1E(t)

)′]
+

(1)
=
[
(α + 1)tαE(t)− tα+1

√
E(t) ∥ẋ(t)∥2

]
+
= (α + 1)tαE(t), (33)

and that,∫ +∞

t0

(
tα+1E(t)

)′
dt =

∫ +∞

t0

[(
tα+1E(t)

)′]
+
−
[(
tα+1E(t)

)′]
−
dt

≤
∫ +∞

t0

[(
tα+1E(t)

)′]
+
dt

(33)
= (α + 1)

∫ +∞

t0

tαE(t)dt
Ass.
< +∞.

(34)

Therefore by definition of the improper integral, lim
t→+∞

tα+1E(t) admits a finite limit l ∈ R≥0.

Now, assume that l > 0, then for any ε ∈]0, l[ there exists t1 ≥ t0 such for all t ≥ t1 we have
E(t) > l−ε

tα+1 . Then,∫ +∞

t0

tαE(t)dt ≥
∫ +∞

t1

tαE(t)dt >

∫ +∞

t1

tα
l − ε
tα+1

dt = (l − ε)
∫ +∞

t1

1

t
dt = +∞,

which contradicts the integrability assumption on tαE(t).

Proof of Lemma 4.8. Let l def
= lim

t→∞
tβg(t) ≥ 0. Then for any ε > 0 we can find t1 ≥ t0 such that

∀t ≥ t1,

g(t) ≤ (l + ε)

tβ
.

Therefore, ∫ +∞

t0

g(t)dt =

∫ t1

t0

g(t)dt︸ ︷︷ ︸
def
= I<+∞

+

∫ +∞

t1

g(t)dt ≤ I + (l + ε)

∫ +∞

t1

1

tβ
dt < +∞,

since β > 1, which proves the result.
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