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Abstract

A large class of non-smooth practical optimization problems can be written as mini-
mization of a sum of smooth and partly smooth functions. We consider such structured
problems which also depend on a parameter vector and study the problem of differ-
entiating its solution mapping with respect to the parameter which has far reaching
applications in sensitivity analysis and parameter learning optmization problems. We
show that under partial smoothness and other mild assumptions, Automatic Differ-
entiation (AD) of the sequence generated by proximal splitting algorithms converges
to the derivative of the solution mapping. For a variant of automatic differentiation,
which we call Fixed-Point Automatic Differentiation (FPAD), we remedy the memory
overhead problem of the Reverse Mode AD and moreover provide faster convergence
theoretically. We numerically illustrate the convergence and convergence rates of AD
and FPAD on Lasso and Group Lasso problems and demonstrate the working of FPAD
on prototypical practical image denoising problem by learning the regularization term.

1 Introduction

Given a parameter u ∈ U , we consider a composite optimization problem of the form

min
x∈X

F (x,u), F := f + g , (P)

where f : X × U → R is C2-smooth and g : X × U → R is possibly non-smooth with a
simple proximal mapping when the second argument is fixed. Let Ψ: U ⇒ X be such that
Ψ(u) := Argminx∈X F (x,u) gives us the set of solutions of (P) depending on u. Often,
we are interested in computing the variation of Ψ, which has many far-reaching applica-
tions, for example, in Machine Learning, as we discuss in Section 1.1. Clearly, (generalized)
differentiation governs this information.
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Introduction

In general, it can be quite challenging to ensure the differentiability of Ψ on some open set
U ⊂ U . However, in special situations, suitable approaches exist. While there are analysis
tools for generalized differentiation, from a practical and computational perspective the most
frequently used approach is to identify points or neighbourhoods where classical derivatives
are well-defined and efficiently computable. In fact for locally Lipschitz continuous functions,
thanks to Rademacher’s Theorem, differentiability is asserted almost everywhere which is
the foundation for constructing a commonly used generalized derivative, the Clarke subdif-
ferential [37].

In this paper, we consider computational approaches for computing the classical deriva-
tives under special conditions within a generally non-smooth setup and thereby broadening
the understanding of these situations by providing strong theoretical guarantees. Exemplar-
ily when g in (P) is 0 and∇2

xf(x∗,u) is positive definite for {x∗} ⊂ Ψ(u), we can employ the
Implicit Function Theorem on the necessary optimality condition ∇xf(x∗,u) = 0 to estab-
lish the local differentiability of the solution mapping around u. A promising alternative to
the so-called Implicit Differentiation (ID) approach, which has favourable computational as-
pects with fruitful potential to generalization to more complicated problems, is to iteratively
construct a sequence of derivatives with increasing accuracy to the derivative of the solution
mapping. In particular, we first run an algorithm for say K ∈ N iterations to approach
the critical point of interest x(K) ≈ x∗ with the desired accuracy (called forward pass). Af-
ter that we compute the derivative Dux

(K) by performing Automatic Differentiation (AD)
on the generated computational graph of the forward pass. Good convergence, stability or
robustness properties of the algorithm can often be transferred to the derivative sequence.
Nevertheless, AD, which essentially relies on the classic chain rule for differentiation along
the composition of iteration mapping in the forward pass, must be used cleverly to circum-
vent computational bottleneck such as memory overhead. Both convergence and memory
issues have been addressed previously [46, 35, 48, 68, 64, 74, 18] in standard setups.

However, when g is non-zero, which is mostly the case in practical applications in Ma-
chine Learning when low complexity (e.g., sparse or low-rank) solutions are sought through
the formulation of a regularization [80, 85, 44, 73]. Using ID may be possible theoretically
but mostly infeasible computationally. Similarly, using AD on forward–backward splitting
algorithms, which are perfectly suited for problems of the form (P), can be problematic the-
oretically and practically. Such methods involve a proximal mapping which in itself is an op-
timization problem and is not differentiable in general. For example, consider Proximal Gra-
dient Descent (PGD) [60] which is an iterative algorithm expressed as x(k+1) := PGα(x(k),u)
where PGα : X × U → X is defined as

PGα(w,u) := argmin
x∈X

g(x,u) + 〈∇xf(x,u),x−w〉+
1

2α
‖x−w‖2 . (1)

Computing the derivative of x(k+1) with respect to a parameter vector u in terms of the
derivative of x(k) requires differentiating PGα , which clearly depends on the non-smoothness
properties of g.

Nevertheless, non-smoothness in practical problems appears in a structured manner.
In particular, low-complexity regularization is governed by the low-dimensional activity of
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constraint sets associated to the optimal solution x∗ which, under some assumptions, are
stable under minor perturbations. This activity often reveals some hidden smoothness, as it
usually defines a set that is a smooth manifoldM containing x∗, i.e., the problem restricted
to M is smooth. Fortunately, under some assumptions, this activity is identified by the
algorithm in (1) in a finite number of iterations [59, 58]. That is, the sequence generated
by the algorithm eventually lies in M. This is exactly the starting point for the research in
this paper on various theoretical and computational aspects of AD for such algorithms. The
key to enjoy this property is provided by the choice of partly-smooth functions [56]. As an
example, we consider the Lasso problem [80]

min
x

1

2
‖Ax− b‖2

2 + λ‖x‖1 .

Solving this problem yields a sparse solution for large enough λ, a simple but illustrative
example of a low-complexity regularizer. The activity in this case is the support of x∗ given
by supp(x∗) := {i : x∗i 6= 0}. It remains fixed if we change λ slightly and consider the
variation in x∗(λ) and is identified by forward–backward splitting algorithms [59, 58] such
as PGD in a finite number of iterations. This simple idea is lifted to a broad theoretical
and computational grounding with the framework of partly smooth functions. This powerful
framework gives a more general Implicit Function Theorem for (P) that is applicable in some
non-smooth scenarios, i.e., when g and hence F is partly smooth (see Theorem 12). This
not only facilitates ID but also paves way for AD since the update step of PGD is also an
optimization problem of the form (1) with partly smooth objective (see Section 4 for more
detail).

Contributions: The use of AD on Proximal Gradient Descent (PGD) and Accelerated
Proximal Gradient (APG) method (also known as FISTA [13]) requires theoretical justifica-
tion as to whether the derivative of the iterates will converge to the true derivative of the
solution mapping or not. It also begs for a memory-efficient alternative of AD, which we
propose under the name of Fixed-Point Automatic Differentiation (FPAD) and demonstrate
its efficiency in Sections 2.5.1 and 5. FPAD sequences share the same convergence rates
as that of the iterates of the optimization algorithm and are most flexible to explain the
differentiablity of the solution mapping of (P). In particular, our main contributions are the
following:

(i) We show convergence of the sequences obtained by AD and FPAD applied to APG to
the derivative of the solution mapping of (P) when F belongs to a large subclass of
convex partly-smooth functions which encompasses various practical problems [81].

(ii) We also establish convergence rates for FPAD and show that the rates of the iterates
of PGD and APG are simply mirrored in the corresponding FPAD sequences.

(iii) We establish an equivalence of ID applied to the fixed-point equation of PGD and
FPAD applied to PGD.

(iv) We provide experimental demonstration of convergence and convergence rates of FPAD
and AD applied to PGD and APG for different practical applications, including a
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bilevel formulation for learning the regularizer of an image denoising problem [77]
beyond the smooth setting.

1.1 Applications

Consider an optimization problem where the objective of one optimization problem (the
upper or outer problem) depends on the solution of another problem (the lower or inner
problem). Solving such a problem, also called the bilevel problem [40], by gradient based
methods requires computing the derivative of the solution mapping of the inner problem.
Bilevel problems are ubiquitous in Machine Learning. We will discuss two of the major
applications here. For other applications like Meta-Learning and the so-called Learning-to-
Optimize or L2O, we request the reader to go through some recent surveys [33, 52].

Hyperparameter Learning: When training a neural network or any machine learning
model, we always encounter preselecting the values of some parameters before staring the
training process. These so-called hyperparameters play an important role in the output of
the model and therefore have to be selected optimally. They remain fixed during the training
process, i.e., solving the lower-level problem. They are learned by optimizing a different loss
function (since it depends on different dataset called the validation set) which depends on
the trained parameters from the lower problem. They can be learned through grid search
[15] or Bayesian Optimization [66, 27]. More recently the trend has shifted to gradient-
based approach to compensate for the growing number of hyperparameters [14, 41, 54, 39,
62, 72]. This approach involves differentiating the upper level problem with respect to the
hyperparamters by differentiating the solution mapping of the lower-level problem through
Implicit or Automatic Differentiation and has been put to test to solve many practical
problems like image denoising [41, 54], image segmentation [70] and data cleaning [45].

Implicit Models: In recent years, there has been a tendency towards embedding a
function defined by an implicit equation inside the prediction function of the machine learning
model. Training such models is equivalent to solving a bilevel problem with the implicit
equation being the lower problem and the training of the model being the upper problem.
Examples of implicit models include Deep Equilibrium Models [7, 8, 84], Neural ODE’s [32]
and Optimization Layers [4, 65, 2, 16]. When the implicit equation in such a model represents
some inherent structure of the practical application, the learned model may provide better
interpretability and generalization.

1.2 Related Work

We discuss related work whose methodology applies to certain classes of non-smooth prob-
lems. In [39], the authors considered algorithms where the update step is Lipschitz continu-
ous and hence weakly differentiable. This holds for proximal splitting algorithms for solving
problems of type (P) such as PGD in (1). This allowed them to use AD on such algorithms
thanks to the chain rule. Unfortunately, convergence of the sequence of derivatives that is
generated by AD cannot be shown. In particular, it is unclear what exactly would be the
correct generalized derivative concept of the solution mapping. Moreover, weak derivatives
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are not defined pointwise which makes their use in optimization problematic. Ochs et al.
[69, 70] replaced the non-smooth problem with a finite number of steps of a smooth algorithm
or its corresponding fixed-point equation. The smooth algorithm was obtained by carefully
selecting the kernel generating distance function for Bregman Proximal Gradient [26, 10].
They were then able to solve a bilevel problem through AD and ID. The key advantage is
the structure preserving approximation by a classical derivative, which can be employed to
optimization. However, no convergence guarantees for the derivative sequence is shown.

Bolte et al. [20] used the conservative calculus developed in [21, 22] to rigorously study
the implicit differentiation performed by using standard autograd packages like TensorFlow
[1], PyTorch [71], and JAX [25] etc. on possibly non-smooth implicit equations. Thereby,
they provide a mathematical framework for the types of “derivatives” that are used in many
practical applications. The same tools in [21, 22] were applied to study the application of
autograd packages to differentiate the output of a non-smooth iterative algorithm in [23].

Christof [36] considered a class of bilevel-problems where the non-smooth lower problem
is replaced with an elliptic variational inequality [42, Section 2.1[2A]]. He showed that the
solution mapping for this type of inequality is Fréchet differentiable and can be obtained by
solving an analogous elliptic variational equality.

In [18], Bertrand et al. consider bilevel optimization problems with non-smooth, lasso-
like lower-level problems. They compute the derivative of the solution mapping by implicit
differentiation of the fixed-point equation for Proximal Gradient Descent and Proximal Coor-
dinate Descent. They also show linear convergence of forward mode automatic differentiation
of the two algorithms to the derivative obtained by the corresponding fixed-point equations.
However, as opposed to our work, their framework is quite restrictive in the sense that it is
only applicable to the cases where the non-smooth component in (P) is expressed as

RN × R 3 (x, u) 7→ g(x, u) =
N∑
i=1

gi(xi, u) ,

with gi : R × R → R and therefore does not include many interesting practical regularizers
like l∞ norm, l2,1 group norm and nuclear norm [81].

Riis [74] studied the bilevel problems with partly smooth lower problems of the form (P).
In particular, he showed the convergence of AD applied to APG. He showed that when a
non-degeneracy assumption (ND) holds, the derivative sequence converges to the derivative
of the minimizer. He also showed piecewise smoothness [42, Section 2.4[2D]] of the solution
mapping and the update step for APG when (ND) is violated. However, the memory-
overhead of Reverse Mode AD is not addressed. Moreover assumptions on the objective F
such as strongly convex is restrictive and excludes many practical problems like the following
matrix-decomposition optimization problem

min
X,Y ∈RM×N

1

2
‖X + Y − A‖2

2 + γ‖X‖1 + λ‖Y ‖nuc ,

where ‖ · ‖2, ‖ · ‖1 and ‖ · ‖nuc are the Frobenius norm, l1 norm and nuclear norm defined
on matrices in RM×N respectively. The above problem is used in background subtraction
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tasks, e.g., in surveillance camera setup. Assuming that the regularization parameters γ > 0
and λ > 0 are carefully chosen, given a matrix A ∈ RM×N , for example, an image sequence
(each of its rows is a vectorized image frame), solving the above problem yields the sparse
background sequence X∗ and a slowly-changing (hence low-rank) foreground sequence Y ∗.
The above problem is not strongly convex but can still satisfy a weaker condition like As-
sumption 2.

Chambolle and Pock [30] apply a Piggyback-style technique [49] to learn the linear op-
erator K : E → F in the following saddle point problem.

min
x∈E

max
y∈F
〈Kx,y〉+ g(x)− f ∗(y) , (2)

where g : E → R and f ∗ : F → R are assumed to be convex and C2-smooth. Given a linear
operator K and the solution (x∗,y∗) of (2), they show that the gradient of the loss function
L : L(E,F ) → R, given by L(K) := l(x∗,y∗), can be computed through the adjoint states
(X∗, Y ∗) which are obtained by solving yet another saddle-point problem

min
X∈E

max
Y ∈F
〈KX,Y 〉+

1

2

〈
∇2g(x∗)X,X

〉
− 1

2

〈
∇2f ∗(x∗)Y, Y

〉
+ 〈∇l(x∗,y∗), (X, Y )〉 . (3)

While (x∗,y∗) appear in the update step of the primal-dual algorithm applied to (3), the
authors show that at every iteration k ∈ N, they can be replaced by (x(k),y(k)) which are
generated by applying the primal-dual algorithm to (2). More recently, the convergence
guarantees for this technique are given with even weaker assumptions of g and f ∗ being
convex and C1 [19].

2 Notation and Preliminaries

In the rest of the paper, we use N0 := N ∪ {0} and define [K] := {0, . . . , K} for any
K ∈ N. We denote the set of extended real numbers by R := R ∪ {−∞,+∞} and assume
that X and U are Euclidean spaces of dimensions N and P respectively, each equipped
with an inner product 〈·, ·〉 and an induced norm ‖ · ‖. The corresponding dual spaces are
written as X ∗ and U∗. The set of all linear maps from X to U is denoted by L(X ,U). The
elements of R,X (and U) and L(X ,U) are denoted by lower-case normal (e.g., t), lower-
case bold (e.g., x) and upper-case normal (e.g., A) letters respectively. For x ∈ RN we
write x := (x1, . . . , xN) = (xi)i=1,...,N and for A ∈ RN×P we write A = (ai,j)i=1,...,N,j=1,...,P .
In the following subsections, we provide a gentle introduction to the fundamentals of our
contribution to make the results widely accessible.

2.1 Riemannian Geometry

We recap here a few definitions and results from Riemannian Geometry. For further study,
we refer the reader to [55, 31].
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Definition 1 (Manifold). We say thatM⊂ X is a C2-smooth m-dimensional submanifold
of X if for every point x ∈ M there exists an open set X ⊂ X and a C2-smooth map
Φ: X → RN−m such that x ∈ X, the derivative DΦ(x) is surjective, and U ∩M = Φ−1(0) =
{y ∈ U : Φ(y) = 0}.

In the rest of the paper we will refer a C2-smooth m-dimensional submanifold by simply
manifold.

Definition 2 (Tangent and Normal Spaces). Let M ⊂ X be a manifold and x ∈ M.
We say that v ∈ X is a tangent vector of M at x if there exists ε > 0 and a C1-smooth
curve γ : (−ε, ε)→M on M with γ(0) = x and γ̇(0) = v. The set of all tangent vectors of
M at x constitute TxM, the tangent space of M at x. We define the normal space of M
at x by NxM := (TxM)⊥, the orthogonal complement of TxM.

We define the functions Π,Π⊥ : M → L(X ,X ) that provides for any x ∈ M, the pro-
jection onto the tangent space Π(x) := projTxM and the projection onto the normal space
Π⊥(x) := projNxM.

Definition 3 (Riemannian Gradient). Let M ⊂ X be a manifold, f : M → R be a
function and x ∈ M. We say that f is C2-smooth at x if there exists a neighborhood
X ⊂ X of x and a C2-smooth function f̃ : X → R such that f̃ agrees with f on M∩ X.
In this case, we call f̃ a smooth extension of f around x. We call ∇Mf(x) ∈ TxM, the
Riemannian gradient of f at x if for all v ∈ TxM

〈∇Mf(x),v〉 = (f ◦ γ)′(0) ,

where γ : (−ε, ε)→M is any C1-curve with γ(0) = x and γ̇(0) = v.

The Riemannian Gradient of f can alternatively be expressed in terms of the gradient of
the smooth extension f̃ of f by

∇Mf(x) = Π(x)∇f̃(x) . (4)

Note that this gradient does not depend on the choice of both the curve γ and the smooth
extension f̃ .

Definition 4 (Riemannian Hessian). Let M ⊂ X be a manifold, f : M → R be a
function and x ∈ M. We call ∇2

Mf(x) : TxM→ TxM, the Riemannian Hessian of f at x
if for all v ∈ TxM 〈

∇2
Mf(x)v,v

〉
= (f ◦ γ)′′(0) ,

where γ : (−ε, ε)→M is any C1-curve with γ(0) = x and γ̇(0) = v.

We can similarly express the Riemannian Hessian ∇2
Mf(x) ∈ L(TxM, TxM) by using

the smooth extension f̃ , i.e.,

∇2
Mf(x) = Π(x)∇2f̃(x) + W(·,Π⊥(x)∇f̃(x)) , (5)
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which however requires the mapping W(·,w) ∈ L(TxM, TxM) for w ∈ NxM is called the
Weingarten map and is defined by

v 7→W(v,w) := −Π(x)dW [v] ,

where W is a local extension of w to a normal vector field onM. W(·,w) is independent of
the choice of normal field W [31, Proposition II.2.1] and caters for the change of the tangent
space as we move away from x. It vanishes when the manifold is affine, i.e.,M = x+ TxM
reducing the Hessian expression to ∇2

Mf(x) = Π(x)∇2f̃(x). To extend the domain of
∇2
Mf(x) to X , we apply Π(x) before applying ∇2

Mf(x) ∈ L(TxM, TxM).

2.2 Partial Smoothness

We are now ready to define partial smoothness of a function as introduced in [56], which de-
fines large class of functions including the loss and regularization functions that are typically
used in Machine Learning (see [81, Section 3] for an extensive list of examples). The defini-
tion lifts key properties for handling constraint sets (for example, active set approaches) to
the world of non-smooth functions in more generality.

Definition 5 (Partial Smoothness). Let f : X → R be proper and lower semi-continuous
and M ⊂ X be a set. We say that f is partly smooth at a point x ∈ M relative to M if
the following conditions hold:

(i) (Regularity:) f is regular at x and ∂f(x) 6= ∅.

(ii) (Smoothness:) M is a C2-smooth manifold and f |M is C2 around x.

(iii) (Sharpness:) NxM = par ∂f(x).

(iv) (Continuity:) ∂f is continuous at x relative to M.

We call f partly smooth relative toM if f is partly smooth at every x ∈M relative toM.

Remark 6. The first condition in Definition 5 is automatically satisfied when f is convex
on ri (dom f) and x ∈ ri (dom f). However when f is non-convex, this assumption needs
to be verified additionally. For more on regularity, we request the reader to look into [75,
Chapter 8].

2.3 Matrix Analysis

In this section we provide some results which will be useful in the later sections. We start
with showing the convergence of a generalized linear fixed-point iteration sequence.

Lemma 7. Let (Bk)k∈N and (b(k))k∈N be sequences in L(X ,X ) and X with limits B and b
respectively. When ρ(B) < 1, the sequence (x(k))k∈N, with x(0) ∈ X , generated by

x(k+1) := Bkx
(k) + b(k) ,
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converges to x∗ := (I − B)−1b. The convergence is linear when (Bk)k∈N0 and (b(k))k∈N
converge linearly.

Proof. Following [74, Proposition 2.7], we set z(k) := x(k) − x∗ with x∗ := (I − B)−1b,
y(k) := (Bk −B)x∗ + b(k) − b and w(k) := (Bk −B)z(k) which leads to

z(k+1) = (Bkx
(k) + b(k))− (Bx∗ + b)

= Bz(k) +w(k) + y(k) .

Since w(k) = o(z(k)), for any ε ∈ (0, 1−ρ) we can find K ∈ N such that ‖w(k)‖/‖z(k)‖ ≤ ε/2
for all k ≥ K where we abbreviate ρ := ρ(B). Also, there exists a norm ‖ · ‖ε/2 on L(X ,X )
such that ‖B‖ε/2 ≤ ρ+ ε/2. Therefore, for the vector norm ‖ · ‖ : X → R which is consistent
with the norm ‖ · ‖ε/2 : L(X ,X )→ R, we obtain

‖z(k+1)‖ ≤ (ρ+ ε/2)‖z(k)‖ + ‖w(k)‖ + ‖y(k)‖
≤ (ρ+ ε)‖z(k)‖ + ‖y(k)‖ .

Recursive Expansion of the above expression yields

‖z(k+1)‖ ≤ (ρ+ ε)k−K+1‖z(K)‖ +
k∑

i=K

(ρ+ ε)k−i‖y(i)‖ .

Using the fact that y(k) → 0, for any δ > 0, we can make K large enough to obtain
‖y(i)‖ ≤ (1− ρ− ε)δ/2 for all i ≥ K. This allows for the following reduction

‖z(k+1)‖ ≤ (ρ+ ε)k−K+1‖z(K)‖ +
k∑

i=K

(ρ+ ε)k−i(1− ρ− ε)δ
2

≤ (ρ+ ε)k−K+1‖z(K)‖ + (1− ρ− ε)δ
2

∞∑
i=0

(ρ+ ε)i

= (ρ+ ε)k−K+1‖z(K)‖ +
δ

2
.

Also, the quantity (ρ+ ε)k−K+1‖z(K)‖ eventually becomes smaller than δ/2 as k ≥ K grows.
In particular, there exists N ≥ K such that (ρ+ ε)k−K+1‖z(K)‖ < δ/2 and ‖z(k+1)‖ < δ for
all k ≥ N . This concludes the proof for convergence. The proof of linear convergence of x(k)

under the linear convergence of Bk and b(k) (and hence y(k)) follows from [17, Lemma 6.18].

Lemma 7 allows us to prove the following more general statement. We use Painlevé-
Kuratowski notion of set convergence [75, Section 4B] to define the convergence of (Vk)k∈N0

to V . However, the convergence of the projections mappings (projVk)k∈N0 to projV can also
be alternatively used for this purpose since the two definitions are equivalent for subspaces
[75, 4.9 Proposition].
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Corollary 8. Let (Vk)k∈N0 ⊂ X be a sequence of subspaces that converge to V ⊂ X . Let
(Bk)k∈N0 and (b(k))k∈N0 be sequences in L(X ,X ) and X with limits B and b respectively
such that imBk ⊂ Vk+1 and b(k) ∈ Vk+1 for all k ≥ 0. When ρ(B ◦ projV ) < 1, the sequence
(x(k))k∈N, with x(0) ∈ X , generated by

x(k+1) := Bkx
(k) + b(k) ,

converges to (I − B ◦ projV )−1b which lies in V . The convergence is linear when (Vk)k∈N0 ,
(Bk)k∈N0 and (b(k))k∈N converge linearly.

Proof. Since x(k) ∈ Vk for all k ∈ N we can rewrite the iteration mapping as

x(k+1) := (Bk ◦ projVk)x(k) + b(k) .

First note that x∗ := (I−B ◦projV )−1b is well defined and unique. The (linear) convergence
of x(k) to x∗ then follows from Lemma 7 because Bk ◦ projVk → B ◦ projV , ρ(B ◦ projV ) < 1
and the projection onto a subspace is a linear operator. To check if x∗ = (B ◦ projV )x∗ + b
lies in V , we observe that b ∈ V and im(B) ⊂ V , because for any z ∈ X , Bkz ∈ Vk+1 which
implies Bz = limk→∞Bkz ∈ V by assumption of converging sequence of subspaces.

2.4 Automatic Differentiation

Automatic or Algorithmic differentiation, as the name suggests is a way of computing the
derivatives of a function, given as a computer program, automatically. The key is the classic
chain rule and a representation of a function as composition of a finite number of elementary
functions like polynomials, logarithms, exponential and trigonometric functions etc. From
classical Calculus, the derivatives of these elementary functions are known and therefore
are combined via chain rule to obtain the derivative of the given function. There are two
main modes of AD, namely the forward and the reverse mode which we briefly recall here.
For more on AD and its applications, the reader is requested to look into [50, 12] and the
references therein.

Let X , Y , and Z be Euclidean spaces. Consider a function h : X → Z given by

h := (h3h2) ◦ h1 , h1 composed with the product h3h2

where h1 : X → Y , h2 : Y → Z, and h3 : Y → R are functions with known derivatives. We
compute the derivative of h at some x ∈ X via the two modes of AD in Sections 2.4.1 and
2.4.2. We first use some intermediate variables to break down our example in the following
manner

y = h1(x) ,

w = h2(y) , a = h3(y) ,

z = aw .

(6)

This allows us to construct the computational graph for h as shown in Figure 1. A node
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x y

w

a

×
z

Dh1(x)

Dh2
(y)

Dh
3 (y)

a

w

Figure 1: Computational Graph of h(x).

represents a variable while a directed edge shows the dependence of one variable on another
(represented by the nodes it connects) through some elementary function or operation. In the
figure, the nodes are labelled by the variables while the edges are denoted by the derivative
(Jacobian) of the function they represent.

2.4.1 Forward Mode AD

The forward mode derivative ż of z is represented by placing a dot on it and is computed
by starting with some ẋ ∈ X and computing the directional derivative of z with respect to
x along ẋ, i.e.,

ẏ = Dh1(x)ẋ ,

ẇ = h2(y)ẏ , ȧ = Dh3(y)ẏ ,

ż = aẇ + ȧw .

(7)

We can also motivate the forward mode AD in the following manner. Assume that x is

x y

w

a

×
zt

ẋ = Dξ(t) Dh1(x)

Dh2
(y)

Dh
3 (y)

a

w

Figure 2: Depiction of Forward Mode AD of h.

obtained by applying a differentiable function ξ : R→ X on some scalar t ∈ R, i.e., x = ξ(t).
The forward mode derivative ẋ is then interpreted as the derivative of ξ at t, i.e., ẋ = Dξ(t)
(see Figure 2). In other words ẋ is the derivative of the variable x with respect to t, at t,
i.e., ẋ = dx

dt
(t). In fact, all the forward mode derivatives ẏ, ẇ, ȧ and ż are interpreted as the

derivatives dy
dt

(t), dw
dt

(t), da
dt

(t) and dz
dt

(t). The intermediate variables y, w and a need not be
stored since they can be computed alongside the derivatives ẏ, ẇ, ȧ and ż. However, even
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with no memory overhead, forward mode AD becomes impractical when the dimension of
X is significantly larger than that of Z, since, for example, computing the derivative Dh(x)
requires dim(X ) runs of the forward mode, once for each directional derivative.

2.4.2 Reverse Mode AD

The reverse mode derivatives are represented by bars on the variables. In this mode, we
start at the output and move towards the input. That is, given z̄ ∈ Z∗, we compute x̄ ∈ X ∗
by

ā = z̄w , w̄ = az̄ ,

ȳ = āDh3(y) + w̄Dh2(y) ,

x̄ = ȳDh1(x) .

(8)

We can motivate the reverse mode analogously to the forward mode. Assume that z is fed
into a scalar-valued function ζ : Z → R to obtain s = ζ(z). The reverse mode derivative is
then treated as the derivative of ζ at z, i.e., z̄ = Dζ(z) = ds

dz
(z) (Figure 3). Similarly, x̄,

ā, w̄ and ȳ are interpreted as the derivatives ds
dx

(x), ds
da

(a), ds
dw

(w) and ds
dy

(y) respectively.

This scheme is referred to as back-propagation in the Machine Learning community [78]
and is useful when the dimension of the output space is very small, e.g., a (scalar-valued)
loss function. Its computation cost is independent of the size of the input thus making
it the preferred mode in Deep Learning. However, since we are moving backward when
computing the derivatives, we cannot compute the intermediate variables y, w and a in
parallel anymore. We must store them beforehand to efficiently use this mode which causes
a memory overhead, as can be seen by the dependence of each step in (8).

x y

w

a

×
z s

z̄ = Dζ(z)Dh1(x)

Dh2
(y)

Dh
3 (y)

a

w

Figure 3: Depiction of Reverse Mode AD of h.

2.5 AD of Fixed-Point Iterations

Given g : X ×U → X , x(0) ∈ X , and u ∈ U , we consider the following fixed-point iterations
for k ≥ 0

x(k+1) := g(x(k),u) . (IM)

A fixed-point x∗ of g(·,u), i.e., which satisfies x∗ = g(x∗,u) for some given u is guaranteed
to exist and is obtainable by (IM) under certain standard assumptions [5, Theorem 4.1.3].
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Our goal is to compute the derivative of x∗ as a function depending on u. One way to do
so is through Implicit Differentiation. When ρ(Dxg(x∗,u)) < 1, we apply Implicit Function
Theorem [42, Theorem 1B.1] on the fixed-point equation x∗ = g(x∗,u) to obtain

Dux
∗ = (I −Dxg(x∗,u))−1Dug(x∗,u) . (9)

Obviously this requires inverting the linear operator I−Dxg(x∗,u) which become impractical
when dimX become very large. A more favourable strategy to approximate this derivative
would be by running (IM) for a finite number of iterations, say K ∈ N, to obtain x(K) and
computing its derivative with respect to u by unrolling the iterative mapping as depicted in
Figure 4 and applying AD. When g is continuously differentiable, the computational graph

x(0) x(1) x(K−1) x(K)

u

Dxg(x(0),u) Dxg(x(K−1),u)

D
u
g(
x

(0
) ,u

)

Du
g(
x
(K

−2) ,u
)

Du
g(x

(K
−1) ,u

)

Figure 4: Depiction of Unrolling of (IM).

in Figure 4 allows us to apply the two modes of AD from Sections 4.1 and 4.2 to (IM). Thus,
for the forward mode, given ẋ(0) := 0 ∈ X and u̇ ∈ U , we perform the following iterations
for k = 0, . . . , K − 1

ẋ(k+1) := Dxg(x(k),u)ẋ(k) +Dug(x(k),u)u̇ , (IM-F)

to obtain the forward derivative ẋ(K). We similarly apply reverse mode AD to (IM) by

starting with x̄
(K)
K := x̄∗ ∈ X ∗, and ū

(0)
K := 0 ∈ U∗ and computing for n = 0, . . . , K − 1,

x̄
(k)
K := x̄

(k+1)
K Dxg(x(k),u)

ū
(n+1)
K := ū

(n)
K + x̄

(k+1)
K Dug(x(k),u) ,

(IM-R)

where k := K − n − 1. Notice that in (IM-R), we introduce a new index n which increases
as we move from right (output) to left (input) along the graph in Figure 4 to distinguish
it from k. The subscript K in the reverse mode derivatives here is due to the fact that we
are computing the derivative of x(K). The output of reverse mode AD applied to (IM) is

ūK := ū
(K)
K . AD provides the correct estimate for Dux

∗ under certain regularity assumptions
which are independent of the choice of x(0) [46].
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As stated earlier, reverse mode is preferable when the input of the function has a signifi-
cantly larger dimensionality than its output. This happens for instance when x(K) is simply
fed into a real-valued function, e.g., a loss or penalty function [7] and the gradient of this
function with respect to u is being sought. Due to the memory overhead however, reverse
mode AD also becomes impractical since K can get very large depending on the convergence
speed of (IM). This problem has been studied extensively and several techniques have been
proposed to address it, for instance, Checkpointing [82, 38] and Truncating [83]. Neverthe-
less, in the context of fixed-point iteration a better alternative exists [46, 35, 6, 9, 79] which
we call Fixed-Point Automatic Differentiation (FPAD). Surprisingly though, FPAD is hardly
applied in Machine Learning context as it even improves the convergence of the derivative
sequence [64].

2.5.1 Fixed-Point Automatic Differentiation (FPAD)

Since the convergence of ẋ(K) and (IM-R) to Dux
∗u̇ and x̄∗Dux

∗ respectively does not
depend on the starting point x(0), we can choose it anywhere. One way of interpreting
FPAD is by setting x(0) to x∗ (or x such that ‖x−x∗‖ is small). We note that all the nodes
in Figure 4 will contain (approximate) copies of x∗. Therefore, we can simply replace x(k)

with x∗ (or x) at every iteration in (IM-F) to obtain its FPAD variant. That is, we start
with x̂(0) = 0 ∈ X , and u̇ ∈ U and perform

x̂(k+1) := Dxg(x,u)x̂(k) +Dug(x,u)u̇ , (IM-F̂)

for k = 0, . . . , K − 1, which just changes the points where the derivatives are evaluated, to
the fixed-point x∗ (or its estimate x). Similarly for reverse mode, we set x̃(K) := x̄∗ ∈ X ∗,
and ũ(0) := 0 ∈ U∗ and get the following modified iterations of (IM-R) for n = 0, . . . , K − 1

x̃(k) := x̃(k+1)Dxg(x,u)

ũ(n+1) := ũ(n) + x̃(k+1)Dug(x,u) ,
(IM-R̃)

where k := K − n − 1. Notice that, we distinguish FPAD variables from AD variables by
using hat (instead of dot) for forward mode and tilde (instead of bar) for reverse mode.
Also, we omit the subscript K for reverse mode FPAD derivatives for the reason which will
become obvious once we look at a different interpretation of FPAD.

Neumann Series Interpretation: The above motivation for FPAD was taken from
Section 4 of [46]. Another way [70, Section 4.3] to motivate this technique is by comparing
(IM-F̂) and (IM-R̃) with the Neumann Series expansion of I −Dxg(x∗,u) in (9). That is,
one can write Dux

∗ alternatively as

Dux
∗ = (I −Dxg(x∗,u))−1Dug(x∗,u) =

∞∑
i=0

Dxg(x∗,u)iDug(x∗,u) .

For r ∈ N0, the partial sums Xr :=
∑r−1

i=0 Dxg(x,u)iDug(x,u) can be expressed recursively
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in two different ways, i.e.,

Xr+1 =
r∑
i=0

Dxg(x,u)iDug(x,u)

= Dug(x,u) +
r∑
i=1

Dxg(x,u)iDug(x,u)

= Dug(x,u) +Dxg(x,u)
r−1∑
i=0

Dxg(x,u)iDug(x,u)

= Dxg(x,u)Xr +Dug(x,u)

(10)

and

Xr+1 =
r∑
i=0

Dxg(x,u)iDug(x,u)

= Dxg(x,u)rDug(x,u) +
r−1∑
i=0

Dxg(x,u)iDug(x,u)

= Dxg(x,u)rDug(x,u) +Xr ,

(11)

where x is an estimate of x∗, as in (IM-F̂) or (IM-R̃). We further simplify (11) by

Yr+1 = YrDxg(x,u)

Xr+1 = YrDug(x,u) .
(12)

with Y0 := I. Comparing (IM-F̂) with the last equality in (10) and (IM-R̃) with (12) we
conclude that x̂(k) = Xku̇ and ũ(n) = x̄∗Xn.

Remark 9. The index for x̃(k) in (IM-R̃) was borrowed from x̄
(k)
K in (IM-R). However, a

more natural indexing will lead to a following alternate form of (IM-R̃)

ỹ(n+1) = ỹ(n)Dxg(x,u)

ũ(n+1) = ũ(n) + ỹ(n)Dug(x,u) .

This suggests that K has no apparent role to play and (IM-R̃) can be performed indefinitely.
Also, due to ρ(Dxg(x,u)) < 1, x̃(K−n−1) → 0 as n→∞, we get a natural stopping criterion
‖x̃(K−n−1)‖ < ε for reverse mode FPAD.

3 Problem Setting

We aim for a theoretically sound and efficient AD strategy for computing the derivative of
the solution of (P) with respect to the parameter u. LetM⊂ X be a C2-smooth manifold
and Ω ⊂ U be an open set. We consider the composite optimization problem (P) where
f, g : X × U → R satisfy the following assumption. Examples of problems which satisfy this
assumption are given in [81]. A few examples are also provided in Section 7 for numerical
demonstration of our results.

— 15 —



Problem Setting

Assumption 1 (Convex Partly Smooth Objective). f : X × U → R is C2-smooth,
g : X × U → R is partly smooth relative to M× Ω and for every u ∈ Ω, f(·,u) and g(·,u)
are convex and f(·,u) has an L-Lipschitz continuous gradient.

Remark 10. The Lipschitz constant L can be made dependent on u without changing the
following analysis. We assume it to be independent of u for brevity.

The next assumption that we require is reminiscent of conditions for the Implicit Function
Theorem [42, Theorem 1B.1]. Let x∗ ∈ M be a minimizer of F (·,u∗) for u∗ ∈ Ω. A
key requirement for using the implicit function theorem for obtaining the derivative of the
solution mapping at u∗ is the positive definiteness of ∇2

MF (x∗,u∗). However, this alone will
not suffice for proving the convergence of the derivative iterates of (Accelerated) Proximal-
Gradient Descent on Tx∗M (see Theorem 18). We additionally need positive definiteness of
either ∇2

xf(x∗,u) or ∇2
Mg(x∗,u). For this purpose, we impose the following assumption on

f and g at some (x∗,u∗) ∈M× Ω.

Assumption 2 (Restrictive Positive Definiteness). (i) The Hessian∇2
MF (x∗,u∗) is

positive definite on Tx∗M, i.e.,

∇2
MF (x∗,u∗) � 0 . (RPD-i)

(ii) Moreover, Π(x∗)∇2
xf(x∗,u∗) or ∇2

Mg(x∗,u∗) is positive definite on Tx∗M. More pre-
cisely, it holds that

Π(x∗)∇2
xf(x∗,u∗)

∣∣
Tx∗M � 0 or ∇2

Mg(x∗,u∗) � 0 . (RPD-ii)

Finally the solution of (P) must change in a stable manner as the parameter u changes.
This is guaranteed (see Theorem 12) by the following assumption on f and g at some
u∗ ∈ Ω and x∗ ∈ argminx∈X F (x,u∗), which is a standard condition when working with
partly-smooth functions.

Assumption 3 (Non-degeneracy). The non-degeneracy condition is satisfied, i.e.,

0 ∈ ri ∂xF (x∗,u∗) . (ND)

Remark 11. (i) The requirement in (ND) is stronger than the Fermat’s rule

0 ∈ ∂xF (x∗,u∗) ,

and therefore automatically implies optimality of x∗.

(ii) Unlike Assumption 1, Assumptions 2 and 3 are required to be satisfied by f and g at
a specific point in M× Ω.

(iii) Lewis [56] calls x∗ ∈M a strong critical point of F (·,u∗) relative toM when Assump-
tions 2(i) and 3 are satisfied by f and g at (x∗,u∗).
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Under these assumptions, we can differentiate the solution mapping of (P) on an open
subset of Ω. The following result is derived from [56, 81, 74]

Theorem 12 (Differentiation of Solution Mapping). Let f and g satisfy Assumption 1
and (x∗,u∗) ∈M×Ω be such that Assumptions 2 and 3 are satisfied. Then there exists an
open neighbourhood U ⊂ Ω of u∗ and a continuously differential mapping ψ : U →M such
that for all u ∈ U ,

(i) ψ(u) is the unique minimizer of F (·,u),

(ii) (ND) and (RPD-i) are satisfied at (u, ψ(u)), and

(iii) the derivative of ψ is given by

Dψ(u) = −∇2
MF (ψ(u),u)†Du∇MF (ψ(u),u) , (13)

where ∇2
MF (ψ(u),u)† denotes the pseudoinverse of ∇2

MF (ψ(u),u).

Proof. Assumptions 2 and 3 ensure that x∗ is a strong critical point of F (·,u∗) relative to
M [56, Definition 5.6]. The transversal embedding condition is also satisfied forM×Ω [56,
Assumption 5.1]. Thus (i) and (ii) follow from [56, Theorem 5.7]. The expression for the
derivative of the solution mapping follows from [81, Theorem 1] (see also [74, Lemma 7.26]).

Remark 13. Assumption 3 is necessary for the differentiability of the solution mapping in
general. However one can still study the sensitivity analysis of the solution mapping when
(ND) is violated (see [43] or [74, Section 7.4.2]), which however requires other assumptions
and is not pursued in this paper.

Theorem 12 elegantly extends Implicit Differentiation to the setting when the objective
is partly smooth and provides a theoretically justified way to computing the derivative of the
solution mapping. However, it is not practical in the sense that the Riemannian Gradient
and Hessian in general cannot be obtained through autograd packages and computing them
by-hand can become cumbersome. One remedy is to use automatic differentiation on PGD
or APG simply because the derivative of the update step of the two algorithms for various
practical applications can be computed by standard autograd packages [1, 71, 25]. But as
already highlighted in Section 1, this raises two problems: (i) Does the derivative of the
sequence of iterates converge to the derivative of the solution mapping? (ii) If yes, then
is there a way to circumvent the memory-overhead problem of the reverse mode AD? We
answer the first question in Section 4 and use the tools from Section 2.5.1 (FPAD) to address
the second question in Section 5. In Section 6, we show that FPAD applied to PGD is similar
to applying ID to the fixed-point equation of PGD. First we provide a brief overview of APG.
We recall the finite identification and local-linear convergence of APG when the objective in
(P) is partly-smooth [58].
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3.1 Accelerated Proximal Gradient (APG)

Introduced in [13] as Fast Iterative Shrinkage/Thresholding Algorithm or FISTA, the algo-
rithm is the application of the celebrated Nesterov Acceleration [67] to Proximal Gradient
Descent [60]. For convex problems of the form (P), APG in general exhibits convergence like
O(1/k2) in objective values as compared to PGD which converges like O(1/k) [29]. In fact,
APG is the optimal algorithm for the convex problems of type (P) when we only have access
to the first order information of the smooth component f of the objective. Convergence of
the iterates of APG has been established [28] for a specific range of parameters.

Algorithm 1 (Accelerated Proximal Gradient (APG)).

• Initialization: x(0) = x(−1) ∈ X , u ∈ U , 0 < α ≤ ᾱ < 2/L.

• Parameter: (αk)k∈N ∈ [α, ᾱ] and (βk)k∈N ∈ [0, 1].

• Update k ≥ 0:
y(k) := (1 + βk)x

(k) − βkx(k−1)

w(k) := y(k) − αk∇xf(y(k),u)

x(k+1) := Pαkg(w
(k),u) .

(APG)

Algorithm 1 shows the update steps of APG. In (APG), Pαg : X × U → X is defined as

Pαg(w,u) := argmin
x∈X

αg(x,u) +
1

2
‖x−w‖2 . (14)

The iterations in (APG) can be written more compactly as x(k+1) := PGαk
(x(k) + βk(1 +

βk)x
(k−1)) with PGα : X × U → X given by

PGα(x,u) := Pαg(x− α∇xf(x,u),u) .

A good choice of βk which also guarantees the convergence of the iterates is (k − 1)/(k + q)
with q > 2 [28]. Note that by setting βk to 0, Algorithm 1 reduces to PGD.

To be able to differentiate PGα by using Theorem 12, the first thing that we need is to
ensure that the iterates x(k) lie on the manifold. This problem was addressed for PGD in
[59] and later for APG in [58] for partly-smooth objective. It was shown that the iterates
x(k) generated by PGD and APG eventually lie on the manifold M. In particular, there
exists K ∈ N such that for all k ≥ K, x(k) ∈ M. Furthermore, the iterates converge to x∗

at a linear rate. The following lemma summarizes the results in [58].

Lemma 14 (Activity Identification and Linear Convergence of Algorithm 1). Let
f and g satisfy Assumption 1 and (x∗,u) ∈ M × Ω be such that Assumptions 2 and 3
are satisfied. Let αk ∈ [α, ᾱ] and βk ∈ [0, 1] converge to α∗ and β∗ respectively such that
−1/(1 + 2β∗) < λ where λ is the smallest eigenvalue of DxPGα∗(x∗,u). If the sequence
(x(k))k∈N generated by Algorithm 1 converges to x∗ then x(k) eventually lies on M and
converges locally linearly to x∗.
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Remark 15. The authors in [58] consider a more general inertial Forward Backward or
iFB algorithm (see Algorithm 1 in [58]), which encompasses different variants of FISTA. We
stick to the more well-known version, i.e., Algorithm 1. However, it should be noted that
our results lie on the analysis in [58] and with little effort, can be extended to iFB algorithm.

4 Automatic Differentiation (AD) of APG

In many practical applications, analytic solutions to the proximal mapping are known. They
are expressed as compositions of elementary functions which means that Pαg and PGα defined
in (14) and (1) respectively can be differentiated by using standard autograd packages.
Therefore AD appears to be a more natural choice for estimating the derivative of solution
mapping of (P) as opposed to (13). In this section we apply AD on Algorithm 1 and show
convergence of the generated derivative sequence.

4.1 Forward Mode AD of APG

We first perform forward mode AD on APG.

Algorithm 2 (Forward Mode AD of Algorithm 1).

• Initialization: ẋ(0) = ẋ(−1) = 0 ∈ X , u, u̇ ∈ U , 0 < α ≤ ᾱ < 2/L; (x(k))k∈N,
(y(k))k∈N and (w(k))k∈N from (APG).

• Parameter: (αk)k∈N ∈ [α, ᾱ] and (βk)k∈N ∈ [0, 1].

• Update k ≥ 0:

ẏ(k) := (1 + βk)ẋ
(k) − βkẋ(k−1)

ẇ(k) := (I − αk∇2
xf(y(k),u))ẏ(k) − αk∇xuf(y(k),u)u̇

ẋ(k+1) := DPαkg(w
(k),u)(ẇ(k), u̇) .

(APG-F)

The sequence (ẋ(k))k∈N generated by Algorithm 2 is well defined when Pαg is differentiable
for which we refer to the following Lemma. The proximal mapping in (APG) by definition
is a solution mapping of an optimization problem given in (14). Therefore, for computing it
derivative, we resort to a result which is similar to Theorem 12.

Lemma 16. Let f and g satisfy Assumption 1 and (x∗,u∗) ∈ M × Ω be such that As-
sumptions 2 and 3 are satisfied. For any α ∈ [α, ᾱ], the mapping Pαg defined in (14)
is differentiable at any (w,u) sufficiently close to (x∗ − α∇xf(x∗,u∗),u∗) with derivative
given by

DxPαg(w,u) =
(
Π(x) + W(·,Π⊥(x)(x−w)) + α∇2

Mg(x,u)
)†

DuPαg(w,u) = −αDxPαg(w,u)Du∇Mg(x,u) ,
(15)

for x = Pαg(w,u).
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Proof. We prove this result by verifying the assumptions similar to Assumptions 1, 2 and
3 for (14) at (w∗,u∗) for w∗ := x∗ − α∇xf(x∗,u∗) and then using Theorem 12. It is
straightforward to check the validity of Assumption 1. Assumption 2 is satisfied from the
strong convexity of (14). Finally from x∗ = Pαg(w

∗,u∗) and (ND) we note that w∗ ∈
x∗ + riα∂xg(x∗,u∗), i.e., Assumption 3 is also satisfied.

Remark 17. The expressions in (15) only make sense when Pαg(w,u) ∈ M and the non-
degeneracy condition holds for (14) at the given inputs (w,u). The first condition is satisfied
by all the iterates of (APG) after a finite number of iterations thanks to Lemma 14. As
for non-degeneracy, in [74], Pαg is shown to be piecewise smooth under further assumptions
when non-degeneracy condition is violated. Hence, earlier in the iterations of (APG) when
x(k) /∈ M and w(k) is not yet close enough to x∗ − α∇xf(x∗,u), we have that x(k) is
only piecewise C1-differentiable with respect to u. Even for large enough k when Pαg is
differentiable, we cannot guarantee the differentiablity of x(k) due to the non-differentiablity
of the earlier iterates.

Warm-Start: Following Remark 17, we assume that the non-degeneracy condition is
satisfied by (14) for every (w(k),u) in (APG-F) so that the sequence (ẋ(k))k∈N is well-defined.
This is possible, for example, if we initially perform (APG) alone for a large number of
iterations, say N ∈ N, to obtain x(N). We then reset x(N) to x(0) and perform (APG) and
(APG-F) in a normal way from there on. This allows us to provide convergence guarantees
for Algorithm 2 under the given assumptions. We consider this as a sever drawback which we
remedy by our Fixed-Point AD approach, since actually the mapping x(0) 7→ x(N) depends
on u and this cannot be simply ignored for differentiation by warm-starting.

Theorem 18. Let f and g satisfy Assumption 1 and (x∗,u) ∈M×Ω be such that Assump-
tions 2 and 3 are satisfied. Let αk ∈ [α, ᾱ] and βk ∈ [0, 1] converge to α∗ and β∗ respectively
such that −1/(1 + 2β∗) < λ where λ is the smallest eigenvalue of DxPGα∗(x∗,u). For any
x(0) sufficiently close to x∗ with (x(k))k∈N converging to x∗, the sequence (ẋ(k))k∈N generated
by Algorithm 2 converges to Dψ(u)u̇.

Proof. Lemma 14 already ensures that the sequence x(k) eventually lies in M under the
given assumptions. Therefore we assume that x(k) ∈ M for all k ∈ N and define linear
operators Qk, Rk, Sk,Mk and vector b(k) for k ≥ 0 by:

Qk := Π(x(k+1)) + W(·,Π⊥(x(k+1))(x(k+1) −w(k))) + αk∇2
Mg(x(k+1),u)

Rk := Q†k(I − αk∇
2
xf(y(k),u))

Sk := −αkQ†kDu(∇xf(y(k),u) +∇Mg(x(k+1),u))

Mk :=

[
(1 + βk)Rk −βkRk

I 0

]

Tk :=

[
Sk 0

0 Sk

]
,

(16)
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and expand (APG-F) to obtain

ẋ(k+1) = Q†kẇ
(k) − αkQ†kDu∇Mg(x,u)u̇

= Q†k(I − αk∇
2
xf(y(k),u))ẏ(k) − αkQ†k∇xuf(y(k),u)u̇− αkQ†kDu∇Mg(x,u)u̇

= Rkẏ
(k) + Sku̇

= (1 + βk)Rkẋ
(k) − βkRkẋ

(k−1) + Sku̇ .

Thus, by setting ż(k) := (ẋ(k), ẋ(k−1)) and ż(0) = 0 ∈ X ×X , we can write the forward mode
automatic differentiation of (APG) in a compact manner as

ż(k+1) := Mkż
(k) + Tk(u̇, 0) . (17)

To show convergence we will verify, one-by-one, all the conditions in Corollary 8. We start by
noticing that Tk(s, 0) ∈ Vk := Tx(k+1)M×Tx(k)M and imMk = Vk. Also, from the continuity
of the respective functions, as x(k) → x∗, αk → α∗ and βk → β∗, we obtain

y(k) → x∗

w(k) → w∗ := x∗ − α∇xf(x∗,u)

Qk → Q∗ := Π(x∗) + W(·,Π⊥(x∗)(α∗∇xf(x∗,u))) + α∗∇2
Mg(x∗,u)

Rk → R∗ := Q†∗(I − α∗∇2
xf(x∗,u))

Sk → S∗ := −α∗Q†∗Du(∇xf(x∗,u) +∇Mg(x∗,u)) = −α∗Q†∗Du∇MF (x∗,u)

Mk →M∗ :=

[
(1 + β)R∗ −βR∗

I 0

]

Tk → T∗ :=

[
S∗ 0

0 S∗

]
Vk → V := Tx∗M× Tx∗M .

(18)

Finally we need to show that ρ(M∗ ◦ projV ) < 1. This will follow from [58, Corollary 4.9]
once we establish that ρ(R∗Π(x∗)) < 1 since R∗ = DxPGα∗(x∗,u). We therefore rewrite

ρ(R∗Π(x∗)) = ρ(Q†∗(I − α∗∇2
xf(x∗,u))Π(x∗))

= ρ(Q†∗(Π(x∗)− Π(x∗)α∗∇2
xf(x∗,u)Π(x∗)))

≤ ρ(Q†∗)ρ(Π(x∗)− Π(x∗)α∗∇2
xf(x∗,u)Π(x∗)) .

Let µg and µf be the smallest eigenvalues of the self-adjoint linear operators ∇2
Mg(x∗,u)

and Π(x∗)∇2
xf(x∗,u)Π(x∗) respectively. From Assumption 2, either µf or µg is positive.

By noting that µfITx∗M � Π(x∗)∇2
xf(x∗,u)|Tx∗M � LITx∗M and 0 < α∗ < 2/L we find that

ρ(Π(x∗)−Π(x∗)α∗∇2
xf(x∗,u)Π(x∗)) ≤ max(|1−α∗µf |, |1−α∗L|) which is less than 1 when

µf > 0. On the other hand Q∗ = ∇2
M(α∗g(·,u) + 1/2‖ · −w∗‖)(x∗) � (1 + α∗µg)ITx∗M due

to the 1 + α∗µg-strong convexity of (14) from which we conclude that ρ(Q†∗) ≤ 1/(1 + α∗µg)
which is less than 1 when µg > 0.
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It remains to verify that the limit of (17) is the same as (Dψ(u)u̇, Dψ(u)u̇). For that,
we evaluate

(I −M∗ ◦ projV )(Dψ(u)u̇, Dψ(u)u̇) =

[
I −R∗ − βR∗ βR∗

−I I

][
Dψ(u)u̇

Dψ(u)u̇

]

=

[
(I −R∗)Dψ(u)u̇

0

]
.

This simplifies our problem to showing that (I −R∗)Dψ(u) = S∗. But since

I −R∗ = I −Q†∗
(
I − α∗∇2

xf(x∗,u)
)

= I −Q†∗
(
Π(x∗)− α∗Π(x∗)∇2

xf(x∗,u)
)

= Q†∗
(
Q∗ − Π(x∗) + α∗Π(x∗)∇2

xf(x∗,u)
)

= Q†∗
(
W(·,Π⊥(x∗)(α∗∇xf(x∗,u))) + α∗∇2

Mg(x∗,u) + α∗Π(x∗)∇2
xf(x∗,u)

)
= α∗Q

†
∗∇2
MF (x∗,u) ,

we have

(I −R∗)−1S∗ =
1

α∗
∇2
MF (x∗,u)†Q∗

(
− α∗Q†∗Du∇MF (x∗,u)

)
= −∇2

MF (x∗,u)†Du∇MF (x∗,u)
)
.

Remark 19. (i) In [74], there are slight errors that we fix here. In [74, Lemma 7.31]
and afterwards in the proofs, the Weingarten term of (15) is missing. Also in [74,
Proposition 2.7], for linear convergence of (dk)k∈N, the sequences (Ak)k∈N and (bk)k∈N
ought to converge linearly.

(ii) We refer the reader to Section 4 in [58] for a detailed discussion on the spectral prop-
erties of M∗ and how they can affect the convergence and convergence rate of APG
(resp. forward mode AD of APG) as compared to PGD (resp. forward mode AD of
PGD).

4.2 Reverse Mode AD of APG

As mentioned in Sections 2.4 and 2.5, the forward mode AD is not practical when the size
of the input of the function is much bigger than the size of its output. In this case we prefer
to use the reverse mode AD.

Algorithm 3 (Reverse Mode AD of Algorithm 1).

• Initialization: u ∈ U , x̄
(K)
K = x̄∗ ∈ X ∗, ȳ(K)

K = 0 ∈ X ∗ and ū
(0)
K = 0 ∈ U∗,

0 < α ≤ ᾱ < 2/L; (x(k))k∈[K−1], (y(k))k∈[K−1] and (w(k))k∈[K−1] from Algorithm 1.
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• Parameter: (αk)k∈N ∈ [α, ᾱ] and (βk)k∈N ∈ [0, 1].

• Update (n = 0, . . . , K − 1, k := K − n− 1):

w̄
(k)
K := x̄

(k+1)
K DxPαkg(w

(k),u)

ȳ
(k)
K := w̄

(k)
K (I − αk∇2

xf(y(k),u))

ū
(n+1)
K := ū

(n)
K + x̄

(k+1)
K DuPαkg(w

(k),u)− αkw̄(k)
K ∇xuf(y(k),u)

x̄
(k)
K := (1 + βk)ȳ

(k)
K − βkȳ

(k+1)
K .

(APG-R)

The convergence guarantees for reverse mode are similar to that of Theorem 18.

Theorem 20. Let f and g satisfy Assumption 1 and (x∗,u) ∈M×Ω be such that Assump-
tions 2 and 3 are satisfied. Let αk ∈ [α, ᾱ] and βk ∈ [0, 1] converge to α∗ and β∗ respectively
such that −1/(1+2β∗) < λ where λ is the smallest eigenvalue of DxPGα∗(x∗,u). For any x(0)

sufficiently close to x∗ with (x(k))k∈N converging to x∗, the sequence (ū
(K)
K )K∈N generated

by Algorithm 3 converges to x̄∗Dψ(u).

Proof. We already showed the convergence of (APG-F) and because the two modes essen-
tially aim to compute the same quantity in the end, the proof follows.

5 Fixed-Point Automatic Differeniation (FPAD) of APG

The ease of using AD on Algorithm 1 combined with the result shown in Theorem 18 pro-
vides a powerful tool for estimating the derivative of the solution mapping of (P). However,
as already noted in Sections 2.4 and 2.5, the reverse mode AD has a memory overhead and
therefore can become impractical when the optimization algorithm converges slowly and is
required to run for a longer period of time making K very large. Fortunately, in our context
the curse of memory can be easily lifted by using Fixed-Point Automatic Differentiation (see
Section 2.5.1) on Algorithm 1. In particular, we make the following contributions. (i) We
perform both forward and reverse mode FPAD on Algorithm 1 and show the convergence re-
sults for the corresponding derivative sequences separately. (ii) We note that FPAD not only
solves the memory issue for reverse mode, it is also possible to show linear convergence for
the FPAD derivative sequences under Assumptions 1, 2 and 3 as opposed to AD sequences
which require additional assumptions for linear convergence. (iii) We remedy the differentia-
bility issue when truncating the sequence (x(k))k∈N as discussed in Remark 17. (iv) Lastly,
we would like to emphasize that we show the convergence results for FPAD for approximate
fixed-points and not just for exact fixed-points. This is useful in practice because we may
get very close to, while still never attain, the solution of (P) even by running (APG) for
a considerably large number of iterations. In our analysis, the corresponding result at the
fixed-point can be easily recovered.
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5.1 Forward Mode FPAD of APG

Algorithm 4 performs forward mode FPAD of (APG). We make a slight change in the
update step when moving from (APG-F) to (APG-F̂). Instead of using −∇xf(x,u) as
a direction for computing w (see the update for w(k) in (APG)), we instead use ν :=
proj∂xg(x,u)(−∇xf(x,u)) to compute w := x+ αν. Notice that ν is well defined thanks to
the projection theorem [11, Theorem 3.16].

Algorithm 4 (Forward Mode FPAD of Algorithm 1).

• Initialization: x̂(0) = x̂(−1) = 0 ∈ X , u, u̇ ∈ U , x ∈ X with small ‖x − x∗‖,
0 < α ≤ ᾱ < 2/L.

• Parameter: α ∈ [α, ᾱ] and β ∈ [0, 1].

• Define: w := x+ αproj∂xg(x,u)(−∇xf(x,u)).

• Update k ≥ 0:

ŷ(k) := (1 + β)x̂(k) − βx̂(k−1)

ŵ(k) := ŷ(k) − α∇2
xf(x,u)ŷ(k) − α∇xuf(x,u)u̇

x̂(k+1) := DPαg(w,u)(ŵ(k), u̇) ,

(APG-F̂)

Reason for Changing the Direction: The reason for choosing such a peculiar direc-
tion ν = proj∂xg(x,u)(−∇xf(x,u)) in (APG-F̂) becomes apparent when we demonstrate what
we achieve by doing so. Clearly for an exact fixed-point, we have ν = ∇xf(x∗,u). Observe
that Pαg(w,u) = x since w ∈ (I + α∂xg(·,u))(x) and Pαg(w,u) = (I + α∂xg(·,u))−1(w).
Thus the expression for DPαg(w,u) in (15) suggests that the projections Π and Π⊥ are
computed at x and the sequence x̂(k) eventually lie in TxM. This is crucial since we will use
it to approach the expression ∇2

MF (x,u) (see (5)). One may wonder, any subgradient of
g(·,u) at x could have served the purpose. The reason for specifically choosing ν is that ν is
(by definition) the closest subgradient of g(·,u) to −∇xf(x,u). This is important because
we require ν +∇xf(x,u) as small as possible (see Theorem 23, in particular, (19)). In the
following Lemma, we show that ν is close enough to −∇xf(x∗,u) and Pαg is differentiable
at w whenever x is close enough to x∗ relative to M.

Lemma 21. Let f and g satisfy Assumption 1 and (x∗,u) ∈M×Ω be such that Assump-
tions 2 and 3 are satisfied. Then for any sequence (x(k))k∈N inM with limit x∗, the sequence
(ν(k))k∈N defined by

ν(k) := proj∂xg(x(k),u)(−∇xf(x(k),u)) ,

converges to −∇xf(x∗,u). Moreover, for any α ∈ [α, ᾱ], there exists K ∈ N such that the
mapping Pαg is differentiable at x(k) + αν(k) for all k ≥ K.
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Proof. Once we show the first part of the lemma, the differentiability of Pαg will follow from
Lemma 16. Assume that x(k) 6= x∗ because otherwise the proof is trivial. From subdiffer-
ential continuity of g(·,u) relative toM, we note that ∂xg(x(k),u) converges to ∂xg(x∗,u).
Since −∇xf(x∗,u) ∈ ∂xg(x∗,u), from the definition of convergence of ∂xg(x(k),u) [75,
Chapter 4], there exists a sequence (µ(k))k∈N with limit −∇xf(x∗,u) such that for every
k ∈ N,µ(k) ∈ ∂xg(x(k),u). By the definition of projection, we note that for every k ∈ N

dist(−∇xf(x(k),u), ∂xg(x(k),u)) := inf
y∈∂xg(x(k),u)

‖y +∇xf(x(k),u)‖

= ‖ν(k) +∇xf(x(k),u)‖
≤ ‖µ(k) +∇xf(x(k),u)‖ .

But since ∇xf(x(k),u) converges to ∇xf(x∗,u) and ‖µ(k) +∇xf(x(k),u)‖ converges to 0,
the result follows.

Remark 22. In practice, when x is close enough to x∗, one can avoid computing the pro-
jection onto ∂xg(x,u). That is, the original direction −∇xf(x,u) in the gradient step can
be used instead in (APG-F̂) due to Lemma 21.

We are now ready to prove the convergence of Algorithm 4.

Theorem 23. Let f and g satisfy Assumption 1 and (x∗,u) ∈ M × Ω be such that As-
sumptions 2 and 3 are satisfied. Let α ∈ [α, ᾱ] and β ∈ [0, 1] be such that −1/(1 + 2β) < λ
where λ is the smallest eigenvalue of DxPGα(x∗,u). For any x ∈M sufficiently close to x∗,
the sequence (x̂(k))k∈N generated by Algorithm 4 converges to ϕ(x,u)u̇ where

ϕ(x,u) = −
(
∇2
MF (x,u)−W(·, αΠ⊥(x)(ν +∇xf(x,u)))

)†
Du∇MF (x,u) , (19)

which for x = x∗, recovers Dψ(u) in (13). Moreover, the convergence of x̂(k) is linear and
its convergence rate approaches that of Algorithm 1 as x approaches x∗.

Proof. First we argue that ∇2
MF (x,u)−W(·, αΠ⊥(x)(ν+∇xf(x,u))) is bijective on TxM.

When x is arbitrarily close to x∗, ∇2
MF (x,u) is invertible due to Assumption 2 and ‖ν +

∇xf(x,u)‖ is sufficiently small due to Lemma 21. Therefore W(·, αΠ⊥(x)(ν +∇xf(x,u)))
which is also linear in the second argument, has a sufficiently small spectral norm and its
effect on the eigenvalues of ∇2

MF (x,u) becomes arbitrarily small.
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Now, as in Theorem 18, we similarly define the following linear operators

Q := Π(x) + W(·,Π⊥(x)(−αν)) + α∇2
Mg(x,u)

R := Q†(I − α∇2
xf(x,u))

S := −αQ†Du∇MF (x,u)

M :=

[
(1 + β)R −βR

I 0

]

T :=

[
S 0

0 S

]
,

(20)

and ẑ(0) := (x̂(0), x̂(−1)), we can write (APG-F̂) more compactly as:

ẑ(k+1) := M ẑ(k) + T (u̇, 0) . (21)

Note that even though we do not show it explicitly, all the operators in (20) depend on x,u
and α. M additionally depends on β. For small ‖x − x∗‖, we can show that ρ(M) < 1
analogously to the proof of Theorem 18, which implies that the sequence ẑ(k+1) converges
to (I −M)−1T (u̇, 0). Since (I −M)(ϕ(x,u)u̇, ϕ(x,u)u̇) = ((I − R)ϕ(x,u)u̇, 0), our goal
is to show that (I −R)ϕ(x,u) = S. We therefore simplify

I −R = I −Q†
(
I − α∇2

xf(x,u)
)

= Q†
(
Q− Π(x) + αΠ(x)∇2

xf(x,u)
)

= Q†
(
W(·,Π⊥(x)(αν) + α∇2

Mg(x,u) + αΠ(x)∇2
xf(x,u)

)
= αQ†

(
∇2
MF (x,u)−W(·, αΠ⊥(x)(ν +∇xf(x,u)))

)
,

to obtain

(I −R)−1S = −
(
∇2
MF (x,u)−W(·, αΠ⊥(x)(ν +∇xf(x,u)))

)†
Du∇MF (x,u) , (22)

which is by definition ϕ(x,u).
When x = x∗, the term W(·, αΠ⊥(x)(ν +∇xf(x,u))) in (19) vanishes (see Lemma 21)

leaving us with Dψ(u) given in (13).
The convergence of x̂(k) is linear with rate ρ(M) because (21) is a linear fixed-point

iteration. Since the rate of convergence of (APG) is ρ(M∗) [58, Theorem 4.13] and M
approaches M∗ as x approaches x∗, the claim follows.

Remark 24. (i) When M is an affine manifold, the Weingarten term in (19) vanishes
and the expression for ϕ simplifies to

ϕ(x,u) = −∇2
MF (x,u)†Du∇MF (x,u) . (23)

Thus in this case, Algorithm 4 converges to a quantity resembling Dψ(u) in (13) with
x∗ replaced by x.
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(ii) The additional assumption on the sequence w(k) in (APG) in Remark 17 to ensure
the differentiability of the proximal mapping in (APG-F) is not required here. The
iterations in (APG-F̂) are already well-defined under Assumption 3 when x is close
enough to x∗.

5.2 Reverse Mode FPAD of APG

We perform reverse mode FPAD on Algorithm 1 by modifying (APG-R) similarly by using
ν := proj∂xg(x,u)(−∇xf(x,u)) as the direction to compute w := x+ αν.

Algorithm 5 (Reverse Mode FPAD of Algorithm 1).

• Initialization: u ∈ U , x̃(K) = x̄∗ ∈ X ∗, ỹ(K) = 0 ∈ X ∗ and ũ(0) = 0 ∈ U∗,
0 < α ≤ ᾱ < 2/L.

• Parameter: α ∈ [α, ᾱ] and β ∈ [0, 1].

• Define: w := x+ αproj∂xg(x,u)(−∇xf(x,u)).

• Update (n ≥ 0, k := K − n− 1):

w̃(k) := x̃(k+1)DxPαg(w,u)

ỹ(k) := w̃(k)(I − α∇2
xf(x,u))

ũ(n+1) := ũ(n) + x̃(k+1)DuPαg(w,u)− αw̃(k)∇xuf(x,u)

x̃(k) := (1 + β)ỹ(k) − βỹ(k+1) ,

(APG-R̃)

The following result shows the convergence of Algorithm 5.

Theorem 25. Let f and g satisfy Assumption 1 and (x∗,u) ∈ M × Ω be such that As-
sumptions 2 and 3 are satisfied. Let α ∈ [α, ᾱ] and β ∈ [0, 1] be such that −1/(1 + 2β) < λ
where λ is the smallest eigenvalue of DxPGα(x∗,u). For any x ∈M sufficiently close to x∗,
the sequence (ũ(n))n∈N generated by Algorithm 5 converges to x̄∗ϕ(x,u) where ϕ is defined
in (19). Moreover, the convergence of ũ(n) is linear and its convergence rate approaches that
of Algorithm 1 as x approaches x∗.

Proof. We will make use of the linear mappings defined in (20). Since DxPαg(w,u) = Q†,
we write

ỹ(k) = x̃(k+1)Q†(I − α∇2
xf(x,u)) = x̃(k+1)R ,

which gives us

x̃(k) = (1 + β)x̃(k+1)R− βx̃(k+2)R = (x̃(k+1), x̃(k+2))

[
(1 + β)R

−βR

]
.
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By defining z̃(k) := (x̃(k), x̃(k+1)), we get the update z̃(k) = z̃(k+1)M∗ which can be expanded
to z̃(k) = z̃(K)(M∗)K−k = z̃(K)(M∗)n+1 where we set x̃(K+1) = 0. We now write

ũ(n+1) = ũ(n) − αx̃(k+1)Q†Du∇Mg(x,u)− αx̃(k+1)Q†∇xuf(x,u)

= ũ(n) − αx̃(k+1)Q†Du(∇Mg(x,u) +∇xf(x,u))

= ũ(n) − αx̃(k+1)Q†Du∇MF (x,u)

= ũ(n) + x̃(k+1)S .

We similarly define ṽ(n) := (ũ(n), ũ(n+1)) with ũ(−1) := 0 and obtain ṽ(n) = ṽ(n−1) + z̃(k)T .
By recursively expanding this expression, we arrive at

ṽ(n) = ṽ(n−1) + z̃(K)(M∗)nT

= ṽ(0) + z̃(K)T + . . .+ z̃(K)(M∗)nT

= z̃(K)(I + . . .+ (M∗)n)T .

When ρ(M) < 1, we note that ṽ(n) → z̃(K)(I −M∗)−1T . In order to compute the inverse of

I −M∗ =

[
I −R− βR −I

βR I

]
,

we use [61, Theorem 1] to compute the Schur complement of the bottom right block which
equals I −R. The inverse therefore is given by

(I −M∗)−1 =

[
(I −R)−1 (I −R)−1

βR(I −R)−1 I − βR(I −R)−1

]
.

Since z̃(K) = (x̄∗, 0) we get

z̃(K)(I −M∗)−1T = (x̄∗(I −R)−1, x̄∗(I −R)−1)T

= (x̄∗(I −R)−1S, x̄∗(I −R)−1S) ,

which is equal to (x̄∗ϕ(x,u), x̄∗ϕ(x,u)) from (22). The argument for linear convergence is
similar to what we showed in the proof of Theorem 23.

Remark 26. Again, whenM is affine Algorithm 5 converges to an approximation of Dψ(u)
in (13) at x (see Remark 24(i)).

6 Implicit Differentiation of Fixed-Point Equation

In our setting, a promising counterpart to (FP)AD of Algorithm 1 is Implicit Differentiation
applied to the fixed-point equation for PGD, i.e.,

x∗ = PGα(x∗,u) . (24)
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for some (x∗,u) ∈M×Ω with x∗ = argminx∈X F (x,u) where PGα is defined in (1). Implicit
Differentiation is more common in Machine Learning Community [4, 2, 7] for differentiating
through a fixed-point equation. In this section, we show that for computing the derivative
of the solution mapping, both FPAD of Algorithm 1 and ID of (24) solve the same system of
Linear Equation. Following our results from the previous section, we show the equivalence
of the two methods when they are evaluated at any point in some neighbourhood of the
fixed-point.

Differentiating (24) with respect to u yields

Dux
∗ = DxPαg(w

∗,u)
(
(I − α∇2

xf(x∗,u))Dux
∗ − α∇xuf(x∗,u)

)
+DuPαg(w

∗,u) , (25)

where w∗ = x∗−∇xf(x∗,u). When I−DxPGα(x∗,u) is invertible, we obtain an expression
for Dux

∗ which can be shown to be equal to ψ(u) in (13). However, like FPAD, we consider
a more general setting where we want to evaluate Dux

∗ from (25) by using an estimate
x ∈M of x∗, i.e.,

X = DxPαg(w,u)
(
(I − α∇2

xf(x,u))X − α∇xuf(x,u)
)
Dux+DuPαg(w,u) , (26)

where w = x + αν with ν = proj∂xg(x,u)(−∇xf(x,u)) and we replace Dux
∗ with X. The

following result shows that ϕ(x,u) defined in (19) solves (26).

Theorem 27. Let f and g satisfy Assumption 1 and (x∗,u) ∈M×Ω be such that Assump-
tions 2 and 3 are satisfied. For any x ∈ M sufficiently close to x∗ and α ∈ [α, ᾱ], solving
(26) with respect to X yields the solution ϕ(x,u) defined in (26).

Proof. Using definitions of R and S in (20) and noting that DxPαg(w,u) = Q†, we get

X = DxPαg(w,u)
(
(I − α∇2

xf(x,u))X − α∇xuf(x,u)
)

+DuPαg(w,u),u)

= Q†(I − α∇2
xf(x,u))X − αQ†Du∇xf(x,u)− αQ†Du∇Mg(x,u)

= RX − αQ†Du∇MF (x,u)

= RX + S .

Therefore (I −R)−1S solves (26) which we know from (22) is the same as ϕ(x,u).

Remark 28. (i) Similarly, when M is an affine manifold, ID of (24) computes a simpler
quantity (given in (23)) which resembles Dψ(u) in (13).

(ii) Theorems 18, 23 and 27 assert that Fixed-Point Automatic Differentiation of Algo-
rithm 1 and Implicit Differentiation of (25) are equivalent in the sense that they aim
at solving a system of linear equation to compute ϕ(x,u).
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7 Experiments

We now put our results to test by applying them on some practical applications. We first
show, in Section 7.1, the experimental validation of convergence and convergence rates of AD
and FPAD applied to (APG) proved in Sections 4 and 5 on Lasso [80] and Group Lasso [85].
We verify with our experiments that the convergence rate of FPAD of (APG) is at least as
good as that of AD of (APG). In Section 7.2, we solve a bilevel optimization problem where
we learn the parameters of the regularizer for image denoising. The parameter learning in
this case is the upper-level problem and solving it requires to compute the derivative of the
solution mapping of the lower-level problem, i.e., the denoising problem. We perform all the
experiments in PyTorch [71].

7.1 Convergence Rate Demonstration

Given a matrix A ∈ RM×N and a vector b ∈ RM , the lasso problem [80] aims to find a sparse
vector x∗ ∈ RN which roughly solves Ax = b, formulated as the following optimization
problem

min
x∈RN

Fl(x, A, b, λ), Fl(x, A, b, λ) :=
1

2
‖Ax− b‖2

2 + λ‖x‖1 , (L)

for some λ > 0. Here ‖·‖2 and ‖·‖1 correspond to l2 and l1 norms defined on RN . The second
part of the objective in (L) controls the sparsity of the solution x∗ of the problem where
larger λ makes the solution sparser. In a similar setting, given multiple vectors bi ∈ RM for
i = 1, . . . , L, we are often interested in finding sparse solutions x∗i ∈ RN which approximately
satisfy Axi = bi for all i in such a way that all the solutions share the same sparsity pattern.
This amounts to solving the following problem

min
X∈RN×L

Fgl(X,A,B, λ), Fgl(X,A,B, λ) :=
1

2
‖AX −B‖2

2 + λ‖X‖2,1 . (GL)

where we stack the vectors bi as column vectors in the matrix B ∈ RM×L. Here ‖ · ‖2 is the
Frobenius norm and ‖ · ‖2,1 is the l2,1 group norm defined on RN×L by

‖X‖2,1 :=
∑
i

√∑
j

x2
i,j .

The problem of finding the group sparsity pattern is called group lasso [85] in the literature.
In our experiments, we set u := (A, b, λ) for (L) and u := (A,B, λ) for (GL).

Since the l1 norm and the l2,1 group norm are partly smooth [81], the two problems
presented above fit the description of (P) and satisfy Assumptions 1 and 2 for all u when A
is full-rank and M ≥ N . We verify Assumption 3 experimentally by first solving the problem
for given u and check if (ND) is satisfied or not. As an example, we explain this procedure
for (L). Let x∗ be the solution of (L) for some given u. The vector v := −∇xf(x,u)/λ =
AT (b−Ax∗)/λ must be a subgradient of ‖·‖1 at x∗. Therefore for all i, x∗i 6= 0 simply implies

— 30 —



Convergence Rate Demonstration

PGD
APG

PGD-F
APG-F

PGD-R
APG-R

PGD-FF
APG-FF

PGD-RF
APG-RF

0 1250 2500 3750 5000

10 4

10 2

100

102

104

0 250 500 750 1000

10 5

10 4

10 3

10 2

10 1

100

101

102

Figure 5: Error Plots for various sequences obtained from (L) (left) and (GL) (right). The solid lines represent
PGD and its derivative sequences while the dotted lines represent all the APG sequences. The lines without
any markers correspond to the optimization algorithms. The lines with circular markers represent forward
mode sequences while those with square markers represent Reverse Mode sequences. Markers for FPAD
sequences are larger than their AD counterparts. Our FPAD sequences are more stable and show faster
convergence to the true derivative.

vi = 0 and for (ND) to hold at (x∗,u), vi must lie in the open interval (−1, 1) whenever
x∗i = 0.

For both problems, we perform each algorithm from Algorithm 1 to Algorithm 5 twice,
once with βk = 0 (PGD) and once with βk > 0 (APG) to generate 20 sequences in total;
10 for each problem (see Figure 5). For simplicity, we do not construct the full Jacobian
of the iterates of PGD and APG for AD and FPAD. We instead just perform the AD and
FPAD algorithms for some u̇ ∈ RN and x̄∗ ∈ R1×N (a row vector). For computing the
error sequences, for instance ‖x(k) − x∗‖2 for (APG) and ‖ẋ(k) − ẋ∗‖2, we run (APG) for
a long time to compute a very good estimate of x∗ and use it to compute ẋ∗ = Dψ(u)u̇
and ū = x̄∗Dψ(u) where Dψ(u) is defined in (13). Again, as an example, we outline
our approach for computing Dψ(u) for (L). The Riemannian Hessian of ‖ · ‖1 vanishes
everywhere while its Riemannian Gradient is (sign(x1), . . . , sign(xN)) [57, Example 5.2.1]
where sign: R→ {−1, 0, 1} is defined by

sign(t) :=


−1, if t < 0 ;

0, if t = 0 ;

+1, if t > 0 .

The affine manifoldM and Tx∗M are both given by {x ∈ RN : supp(x) ⊂ supp(x∗)}, where
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supp(x) denotes the support of a vector x ∈ RN defined as supp(x) := {i ∈ N : xi 6= 0}. In
other words, for all x,

x ∈M = Tx∗M ⇐⇒ (x∗i = 0 =⇒ xi = 0) . (27)

This allows us to compute the Riemannian Gradient and Hessian of Fl as

∇MFl(x,u) = projTx∗M(AT (Ax− b)) + λ∇M‖ · ‖1(x)

∇2
MFl(x,u) = projTx∗M ◦ ATA ◦ projTx∗M .

Thus from (27), for all i, j /∈ supp(x∗), (∇MFl(x,u))i = 0 and (∇2
MFl(x,u))i,j = 0 and we

can solve a reduced linear system of |supp(x∗)| equations. The derivative Du∇MF (x,u)
can be computed by using autograd package.

For (L), we set M = 1000, and N = 250 and for (GL), we set M = 1000, N = 100, and
L = 40. We generate A by sampling each ai,j from a uniform distribution with parameters 0
and 1 and b and B by sampling each bi and bi,j from a normal distribution with mean 0 and
standard deviation 1. We run each algorithm on (L) for K = 5000 iterations and on (GL) for
K = 1000 iterations. The computed forward mode sequences are (ẋ(k))k∈[K] and (x̂(k))k∈[K]

while the reverse mode sequences are (ū
(n)
K )n∈[K] and (ũ(n))n∈[K]. For a fair comparison, we

use the same initializations for all algorithms. For performing FPAD on an optimization
algorithm, we use its own output as approximate fixed-point. For example, we run PGD on
(L) for K = 5000 iterations and use this x(K) as x in (APG-F̂) and (APG-R̃) for performing
Forward and Reverse Mode FPAD on PGD. We use a constant step size for all iterations
αk = 1/‖ATA‖op, where ‖·‖op is the operator norm and for APG, we set βk := (k−1)/(k+q)
with q = 5 and for FPAD on APG, we set β := βK . For computing x∗, we run (APG) for a
large number of iterations until it satisfies ‖x∗ − PGα(x∗,u)‖2 < 10−12. We use Conjugate
Gradient Method [51] to compute ẋ∗ and ū for the two problems.

In Figure 5, we plot all the error sequences. The left figure shows the sequences com-
puted for (L) while the right one shows those obtained from (GL). In both plots, we note
that APG algorithm (dashed blue lines) converges faster than PGD (solid blue lines). This
acceleration effect is translated to the FPAD sequences; the sequences obtained by apply-
ing FPAD on APG (dashed red lines with circle for forward mode and square markers for
Reverse Mode) converge more quickly as compared to those generated by applying FPAD
on PGD (see corresponding solid red lines). For both problems, PGD requires more time
to converge and therefore does not provide satisfying results for any derivative sequence (all
the solid lines move slowly towards 0). For (GL), the forward and reverse mode AD of APG
(dashed green lines) yield good results but after K iterations, we observe that FPAD gives
a better estimate (dashed red lines). For (L), the behaviour of forward mode AD on APG
(dashed green line with circular marker) in the beginning and that of reverse mode AD on
APG (dashed green line with square marker) becomes bad in the end is quite erratic. One
possibility for this situation might be that (APG) may not behave well in the initial itera-
tions. Note that the derivative is a local quantity and therefore convergence of the generated
sequence of derivatives may be hampered in initial iterates that are far away from this local
neighbourhood.
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In the above experiment we saw that FPAD iterates behave as well as the original iterates
and the convergence for the two types of sequences is very similar. We noted that the FPAD
sequences also benefit from inertia just like the optimization algorithm they are being applied
to. We further found out that AD applied in a naive way may not provide a good result in
the end and the algorithm must be initially run for some time before starting to construct
the computational graph. These findings together with the enormous memory-gain boost
our FPAD as a practical approach for computing derivative in such a setting.

7.2 Learning Regularizers for Image Denoising

We now demonstrate the effectiveness of FPAD by using it to solve a simple yet practical
bilevel optimization problem. Let I := RNx×Ny×Nc and J := RNx×Ny×Nc×Nf , we consider the
following optimization problem

min
y∈I

1

2
‖y − x‖2

2 + λ‖Ay‖r , (28)

where λ > 0 and A ∈ L(I,J ). When Nc ∈ {1, 3}, Nf = 2, A is a convolution operator com-
puting the forward x and y-derivative of its input image with Neumann boundary condition
and ‖ · ‖r is an appropriate norm like the l1 norm or the l2,1 group norm defined by

‖p‖2,1 :=
∑
i,j

√∑
k,r

p2
i,j,k,r ,

the above problem corresponds to total variation image denoising [77] which aims to produce
a denoised image y∗ from a noisy image x. Here the first term in the objective, also known
as the data or the fidelity term makes sure that y∗ is not too far away from x. The second
term, called the regularization term, ensures the sparsity of the derivative of the image which
relies on the assumption that a natural image is “sort of” piecewise constant and is controlled
by regularization parameter λ. In [29], the authors list various variants of this model, for
instance, image deblurring, inpainting and zooming and list appropriate algorithms to solve
the problem, which our experiment easily generalizes to. The best way to solve (28) is by
applying APG to its Fenchel-Rockafellar dual

min
p∈J

1

2
‖x −A∗p‖2

2 s.t. ‖p‖r,∗ ≤ λ ,

and using the dual solution p∗ to compute its primal solution y∗ = x −A∗p∗. Here ‖ · ‖r,∗
is the dual norm of ‖ · ‖r.

Instead of simply using A as the discrete derivative operator, one may instead try to learn
it. This problem has also been well-studied and numerous strategies have been proposed (see
e.g., [76, 34, 54, 53]). We take inspiration from [34] and define A by Au := (A1u, . . . , ANf

u)
where each Ar is a linear combination of Nb basis filters Bs ∈ L(I, I), i.e., Ar =

∑
s θr,sBs

for some Θ ∈ RNf×Nb . Since A is linear in Θ, we can ignore λ by simply absorbing it into
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Ground Noisy (18.58) l = 0 (18.65) l = 1 (19.52) l = 2 (19.33) l = 10 (19.76) l = 20 (19.85) l = 30 (19.82)

Ground Noisy (19.05) l = 0 (20.25) l = 1 (22.34) l = 2 (22.25) l = 10 (22.29) l = 20 (22.35) l = 30 (22.52)

Ground Noisy (18.24) l = 0 (20.44) l = 1 (23.40) l = 2 (23.26) l = 10 (22.83) l = 20 (23.34) l = 30 (23.33)

Ground Noisy (18.06) l = 0 (19.06) l = 1 (21.05) l = 2 (20.82) l = 10 (20.81) l = 20 (21.09) l = 30 (21.14)

Ground Noisy (18.07) l = 0 (19.45) l = 1 (23.15) l = 2 (23.02) l = 10 (22.59) l = 20 (22.81) l = 30 (22.86)

Ground Noisy (18.95) l = 0 (20.26) l = 1 (21.36) l = 2 (21.22) l = 10 (21.47) l = 20 (21.58) l = 30 (21.63)

Ground Noisy (17.99) l = 0 (19.35) l = 1 (21.34) l = 2 (21.19) l = 10 (20.96) l = 20 (21.18) l = 30 (21.16)

Figure 6: Performance of our model depicted over the epochs on train (first five rows) and test images (last
two rows). The first two columns correspond to ground truth ti and the noisy images xi respectively while

the remaining six columns correspond to the recovered image y
(K)
i (Θl) for l ∈ {0, 1, 2, 10, 20, 30}. Below

each image in brackets, we show PSNR value of each image relative to the ground truth.

Θ. An example of Bs is the 2D DCT basis [3]. Our goal is to learn the weight matrix Θ. In
particular, given a training dataset Ttr := {(xi, ti) : i = 1, . . . ,Mtr}, we solve the following
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bilevel problem

min
Θ

Mtr∑
i=1

Ji(Θ) , Ji(Θ) :=
1

2
‖y∗i (Θ)− ti‖2

2

s.t. y∗i (Θ) = argmin
y∈I

1

2
‖y − xi‖2

2 + ‖A(Θ)y‖r , i = 1, . . . ,Mtr .

(BL)

The best way to solve (BL) is by using stochastic algorithms [24], e.g., Stochastic Gra-
dient method. The idea is to randomly sample (xi, ti) from Ttr to compute ∇Ji(Θ) =
DΘy

∗
i (Θ)(y∗i (Θ) − ti) and use the update Θ ← Θ − τ∇Ji(Θ). In practice, stochastic algo-

rithms consist of epochs where each epoch involves randomly shuffling the training dataset
and drawing the samples (xi, ti) sequentially from the shuffled set until it is exhausted [47].
We will use Algorithm 5 to compute ∇Ji(Θ). The following algorithm lists the steps for
solving (BL).

Algorithm 6.

• Initialization: Θ0 ∈ RNf×Nb .

• Parameter: K ∈ N, (τl)l∈N0 .

• Define: l := 0, i := 1 and T := Ttr.

• Update:

• Draw (xi, ti) uniformly from T and set T ← T \{(xi, ti)}.

• Run Algorithm 1 with p
(0)
i := Axi on

min
p∈J

1

2
‖xi −A(Θ)∗p‖2

2 s.t. ‖p‖r,∗ ≤ 1 , (29)

for K iterations to obtain p
(K)
i .

• Compute yi(Θ)(K) = xi −A∗(Θ)p
(K)
i (Θ) and J

(K)
i (Θ) = 1

2
‖y(K)

i (Θ)− ti‖2
2.

• Compute ∇J (K)
i (Θ) by some standard autograd package. Run Algorithm 5

for K iterations for Back-propagation through (29).

• Update Θl+1 := Θl − τl∇J (K)
i (Θl).

• Increment i← i+ 1.

• When i > Mtr; increment l← l + 1, reset i := 1 and replenish T := Ttr.

For our experimental setup, we use a training dataset of 5 images and a test dataset of
2 images, each being a colored image patch normalized to [0, 1] with size 50× 50× 3, taken
from [63]. To each clean image, we add a Gaussian noise with standard deviation 40/255

— 35 —



Learning Regularizers for Image Denoising

Ground Noisy (18.75) Recovered (24.79)

Ground NoisyNoisy (18.92) Recovered (25.4)

Figure 7: Performance of our model after training for 30 epochs on two unseen (larger) examples, with each
row corresponding to one example. The columns respectively show the ground truth t, noisy x and recovered
images y(K)(Θ30).

to generate the noisy images. We run Algorithm 6 for 30 epochs and define the learning
rate sequence τl := 10−4/(bl/4c + 1), i.e., we start with a learning rate of 10−4 and decay
it linearly after every 4 epochs. We use the built-in SGD optimizer of PyTorch for this
purpose and set the momentum to 0.75. We learn Nf = 24 filters by using 5× 5 DCT bases
without the constant basis vector, giving us Nb = 24 basis filters and a weight matrix Θ of
size 24 × 24. For initialization, we draw each entry of Θ from a uniform distribution with
parameters 0 and 0.01. We run Algorithm 1 and Algorithm 5 for K = 500 iterations each.
In the two algorithms, we set βk := (k − q)/(k + 1) and β := (K − q)/(K + 1) with q = 5
and use a constant step size αk := 1/L2 where L is an upper bound on the operator norm of
A. This upper bound can be computed by noting that the operator norm of a convolution
operator with kernel matrix C is bounded from above by ‖C‖1. In our experiments, we use

PyTorch to implement the forward pass which involves running Algorithm 1 to obtain p
(K)
i

for any given Θ followed by computing the recovered image y
(K)
i and the batch loss J

(K)
i .

Algorithm 1 is implemented as a function with custom gradient where we use Algorithm 5
to implement the backward pass.

In Figure 6, we show the evolution of our model over epochs by showing its performance
on train image (first five rows) and test images (last two rows). Before training, the model
outputs an image (third column) which is closer to the noisy image (second column). This
happens because, the entries of Θ are very small and the regularization has close to no
impact on the output. However, after only the first epoch (fourth column), the model starts
to improve and is already close to the ground truth image (first column). We can also see
how only with such a small dataset, the model learns to perform really well on unseen images
like two images of same size as that of the training images (bottom two rows in Figure 6)
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Figure 8: Nf = 24 learned filters after 30 epochs.

and two larger images of size 481× 381× 3 (the two rows in Figure 7). Figure 8 displays the
Nf = 24 learned filters, i.e., the 24 kernels each corresponding to some Ai for i = 1, . . . , Nf .

The above example clearly shows the effectiveness of FPAD because if we had used AD
instead, the memory overhead would have been of the order of KNxNyNc = 3.75×106 which
equates to 28.6 MiB as opposed to NxNyNc = 7500 or 58.6 KiB of FPAD.

8 Conclusion

In this paper, we studied the problem of differentiating the solution mapping of a structured
parametric optimization problem. We showed that when the objective of this problem is
partly smooth and some other minor assumptions are satisfied, the classical derivative of the
solution mapping can be estimated by automatic differentiation of proximal splitting algo-
rithms like Proximal Gradient Descent. We showed that the memory overhead of the reverse
mode AD can be overcome by using our Fixed-Point Automatic Differentiation technique.
We also showed that in terms of convergence speed, FPAD outperforms AD both in theory
and in practice. We also showed the working of FPAD by solving a bilevel optimization
problem to learn the regularizers for image denoising.
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