
Bregman Proximal Framework for
Deep Linear Neural Networks

Mahesh Chandra Mukkamala ∗ Felix Westerkamp †

Emanuel Laude ‡ Daniel Cremers § Peter Ochs ¶

Abstract

A typical assumption for the analysis of first order optimization methods is the Lipschitz continuity of
the gradient of the objective function. However, for many practical applications this assumption is violated,
including loss functions in deep learning. To overcome this issue, certain extensions based on generalized
proximity measures known as Bregman distances were introduced. This initiated the development of
the Bregman proximal gradient (BPG) algorithm and an inertial variant (momentum based) CoCaIn
BPG, which however rely on problem dependent Bregman distances. In this paper, we develop Bregman
distances for using BPG methods to train Deep Linear Neural Networks. The main implications of our
results are strong convergence guarantees for these algorithms. We also propose several strategies for their
efficient implementation, for example, closed form updates and a closed form expression for the inertial
parameter of CoCaIn BPG. Moreover, the BPG method requires neither diminishing step sizes nor line
search, unlike its corresponding Euclidean version. We numerically illustrate the competitiveness of the
proposed methods compared to existing state of the art schemes.

2010 Mathematics Subject Classification: 90C26, 26B25, 90C30, 49M27, 47J25, 65K05, 65F22.

Keywords: Composite non-convex non-smooth minimization, non Euclidean distances, Bregman distance,
Bregman proximal gradient method, inertial methods, deep learning, matrix factorization, global convergence.

1 Introduction

The analysis of many first-order optimization methods relies on the Lipschitz continuous gradient property for
the involved objective. Such a property allows for uniform quadratic upper and lower bounds at each point.
These bounds enable the usage of a constant step size rule, thus resulting in better performance compared
to diminishing step sizes. However, remarkably, even the simplest (one hidden layer linear) neural network
does not allow for uniform quadratic bounds. The same is true for many problems, e.g., phase retrieval and
matrix factorization.

A remedy with a general class of upper and lower bounds, induced by so-called Bregman distances was
proposed in [5]. Such bounds can be exploited algorithmically via the Bregman Proximal Gradient (BPG)
algorithm [10] and its inertial variant CoCaIn BPG [27] (based on Nesterov’s momentum). In particular,
BPG enables the usage of a constant step size, which is efficient to implement in practice (see Section 5),
instead of diminishing step sizes or line search. However, in order to use BPG methods, an appropriate
problem dependent Bregman distance must be developed.
∗Department of Mathematics, Saarland University, Germany, E-mail: mukkamala@math.uni-sb.de
†Department of Informatics, Technical University of Munich, Germany, Email: felix.westerkamp@tum.de
‡Department of Informatics, Technical University of Munich, Germany, Email: emanuel.laude@tum.de
§Department of Informatics, Technical University of Munich, Germany, Email: cremers@tum.de
¶Department of Mathematics, Saarland University, Germany, E-mail: ochs@math.uni-sb.de

1

ar
X

iv
:1

91
0.

03
63

8v
1

 [
m

at
h.

O
C

]
 8

 O
ct

 2
01

9

Key contribution. We consider deep linear neural networks with a squared loss, for which we propose a
novel class of Bregman distances. This is key to illustrate the applicability and also to transfer the global
convergence (to a stationary point) results of BPG and CoCaIn BPG algorithms. To enable an efficient
implementation of the update step, we propose closed form analytic expressions for various practical settings.
We also propose a novel variant of CoCaIn BPG, to further improve the efficiency for large scale problems.

The developed Bregman distance yields a base algorithm (BPG) that allows for modifications in analogy to
the development of alternating, stochastic or inertial variants of the base Proximal Gradient (PG) method.
The provided BPG based algorithms are usually competitive and often superior to their Euclidean variants
(PG) whenever both are applicable. We discuss several such situations in Section 5.

1.1 Related Work

Extensions of Lipschitz Continuity of the Gradient. For many practically relevant problems includ-
ing poisson inverse problems [5], structured low-rank matrix factorization problems [26], quadratic inverse
problems [10] or cubically regularized problems [27], the corresponding objective functions are not L-smooth.
This hinders us from a straight application of proximal gradient related schemes, unless a line search is in-
corporated. However, line search typically involves multiple objective evaluations in a single iteration, which
may be prohibitive in large scale setting. To overcome this limitation, in [5, 10] the notion of a L-smooth
adaptable (L-smad) function is introduced which extends the classical L-smoothness property by means of a
problem-dependent Bregman distance. This includes a much larger class of functions, in particular those that
grow with a higher-order than quadratic. However, the choice of the problem-dependent Bregman distance
is typically non-trivial.

Bregman Proximal Minimization. The L-smad property can be characterized in terms of a generalized
non-Euclidean Descent Lemma [10]. In analogy to the Euclidean case this yields a non-quadratic global
upper-bound whose minimization corresponds to a generalized proximal gradient iteration called Bregman
proximal gradient (BPG), see [5, 10]. In [27] an inertial variant of BPG, called CoCaIn BPG has been
introduced, which relies on a Nesterov’s momentum like update strategy. Inertial variants were also explored
in [35, 19]. The mirror descent algorithm, (a special case of BPG when the second term in the problem is
zero) has been extended to a stochastic setting under convexity in [18]. Later in [12] the BPG algorithm for
non-convex composite problems has been generalized to a stochastic setting as well, where the smooth term
is assumed to be smooth adaptable and the non-smooth term is convex.

Matrix Factorization. Bregman distances for matrix factorization problems has become an active research
area [23, 1]. In [13] a low-rank semidefinite program is reformulated in terms of a symmetric matrix factor-
ization problem which is solved with BPG. To this end the authors prove that the corresponding objective
is L-smad relative to a quartic kernel. More recently, in [26] this idea has been extended to a more general
regularized matrix factorization problem, for which the authors design a novel Bregman distance to guarantee
the L-smad property of the corresponding objective. However, such Bregman distances are not valid for deep
linear neural network training (resp. deep matrix factorization) involving an arbitrary number of factors.

Deep Linear Neural Networks. The main contribution of this work is to derive Bregman distances suitable
for training deep linear networks with a quadratic loss, which is an important and interesting optimization
problem due to the following reasons: Fristly, as remarked by [16] and in view of [11, 20, 34, 32] it is well
justified to first study the theoretically more tractable deep linear networks instead of the more challenging
deep nonlinear networks. Secondly, even though deep linear networks essentially describe a linear model,

2

mirror descent eventually inherits the implicit regularization bias observed for gradient descent optimization
[17, 15, 2] which has turned out to be beneficial and important for practical applications, for e.g., [7].

2 Bregman Proximal Minimization

In this section, we revisit required concepts from related works [5, 10]. Most importantly this includes the
definition of a smooth adaptable function (L-smad), originally due to [5], which builds upon the notion of
a Bregman distance. We motivate with a simple one-dimensional example for which classical L-smoothness
fails. Finally we illustrate that the L-smad property gives rise to a global upper bound that can be exploited
algorithmically to derive an iterative minimization scheme, called Bregman proximal gradient method [10].
This generalizes the classical proximal gradient descent scheme to non-Euclidean geometry.

We use the notation of [31].

2.1 Smooth Adaptable Functions

Let g be a continuously differentiable function over Rd. Then g is said to be (classically) L-smooth (has
Lipschitz continuous gradient), if there exists L > 0, such that for all x, y ∈ Rd, we have

‖∇g(x)−∇g(y)‖2 ≤ L ‖x− y‖2 .

This implies that the functions L‖·‖
2

2 −g and L‖·‖
2

2 +g are convex on Rd, which is equivalent to the statement
of the well-known Descent Lemma (as shown in [28, Lemma 1.2.3]).

However, the L-smoothness assumption can be too restrictive, which we illustrate by the following example.

Example 1. The simple two dimensional function g(x, y) = (x2 + y2)2 is not L-smooth in R2, as it lacks a
global quadratic upper bound. As long as the initialisation is unknown, this means that proximal gradient
algorithms (with constant step size) cannot be used for optimization. Notably, this issue persists even if we
resort to alternating, Gauss–Seidel like algorithms such as PALM [9], iPALM [30], BCD [33], which rely on
the L-smoothness of the objective with respect to one (block) variable. In the above example, even if we fix
y = c, for some constant c ∈ R, the function g1(x) = (x2 + c2)2 fails to be L-smooth.

Likewise, quadratic inverse problems, matrix factorization problems and many other practical problems,
lack L-smoothness. To overcome this limitation, recent works [5, 10, 24, 22] consider an extension of L-
smooth functions called L-smooth adaptable functions, which relies on the concept of a Bregman distance.
Such distances are constructed from a kernel generating distance, defined below. The rest of the section
introduces the concepts of [10], specialized to our unconstrained setting.

Definition 2. Let C 6= ∅ be a convex and open subset of Rd. Associated with C, a function h : Rd →
(−∞,+∞] is a kernel generating distance if:

(i) h is proper, lower semicontinuous and convex, with domh ⊂ C and dom ∂h = C .

(ii) h is C1 on int domh ≡ C.

Denote the class of kernel generating distances by G(C). For every h ∈ G(C), the associated Bregman
distance for (x, y) ∈ domh× int domh is given by

Dh (x, y) = h (x)− h (y)− 〈∇h (y) , x− y〉 , (2.1)

and is set to +∞ otherwise. Henceforth, we assume the following.

3

Assumption A. (i) h ∈ G(Rd) with C = Rd.

(ii) g : Rd → R is continuously differentiable.

For non-convex functions, the extension of Lipschitz continuity is referred to as the L-smad property which
we record below.

Definition 3. A pair (g, h) is L-smooth adaptable (L-smad) on Rd if there exists L > 0 such that Lh − g
and Lh+ g are convex on Rd.

Remark 4. Note that we can always always assume that L = 1 by absorbing the constant L into h. Also,
if a pair (g, h) is L-smad on Rd, we can equivalently say that g is L-smad on Rd with respect to h.

The L-smad property can be reformulated in terms of Bregman distances, which yields the extended Descent
Lemma (see [10, Lemma 2.1, p. 2134]).

Lemma 5 (Extended Descent Lemma). The pair of functions (g, h) is L-smooth adaptable on Rd if and only
if for all x, y ∈ Rd the following holds

|g (x)− g (y)− 〈∇g (y) , x− y〉| ≤ LDh (x, y) . (2.2)

For h = (1/2) ‖·‖2, the notion of L-smoothness and the classical Descent Lemma are recovered.

2.2 Bregman Proximal Gradient

In analogy to the Euclidean case the extended Descent Lemma motivates us to consider the following iterative
majorize-minimize scheme, which minimizes the following upper bound at each iteration k.
Let xk ∈ Rd. The extended Descent Lemma yields:

g(x) ≤ g(xk) +
〈
∇g
(
xk
)
, x− xk

〉
+ LDh

(
x, xk

)
=: Mk(x), (2.3)

with Mk(x
k) = g(xk). Then clearly for xk+1 given as

xk+1 ∈ argmin
x∈Rd

Mk(x), (2.4)

we have g(xk+1) ≤ Mk(x
k+1) ≤ Mk(x

k) = g(xk), i.e. a descent on the objective function. Notably, for
h = (1/2)‖ · ‖2 we recover the classical gradient descent method and more generally the mirror descent [6]
algorithm. Like in the classical proximal gradient method the majorization property of Mk still holds if we
add a second convex non-smooth term f to both sides of the inequality (2.3). Minimization of Mk + f then
yields the Bregman proximal gradient scheme for non-convex additive composite problems given as

(P) inf
{

Ψ(x) := f (x) + g (x) : x ∈ Rd
}
, (2.5)

where g, h satisfy Assumption A. The complete BPG algorithm is given in Algorithm 1. It is formulated in
terms of the Bregman Proximal Gradient (BPG) mapping given by

Tλ (x) := argmin
u∈Rd

{
f (u) + 〈∇g (x) , u〉+

1

λ
Dh (u, x)

}
. (2.6)

This generalizes the proximal gradient mapping, by replacing the Euclidean distance with a Bregman distance.

4

Algorithm 1 (BPG: Bregman Proximal Gradient [10]).
Input. Choose h ∈ G(Rd) such that g satisfies L-smad with respect to h on Rd.
Initialization. x1 ∈ int domh and 0 < λ < (1/L).
General Step. For k ≥ 1, compute xk+1 ∈ Tλ(xk).

For convergence and well-definedness we require the following standard assumption.

Assumption B. (i) f : Rd → (−∞,+∞] is a proper, lower semicontinuous, convex function.

(ii) v(P) := inf
{

Ψ (x) : x ∈ Rd
}
> −∞.

(iii) h is σ-strongly convex on Rd.

(iv) For all λ > 0, the function h+ λf is supercoercive, thus satisfying

lim
‖x‖→∞

h(x) + λf(x)

‖x‖
=∞ .

Assumption B(iv) ensures the well-definedness of the Tλ, in the sense that Tλ is non-empty and compact.
We provide below the condensed global convergence result from [10], which states the convergence of the full
sequence generated by BPG to a stationary point. The global convergence of Bregman proximal algorithms
relies on the standard non-smooth Kurdyka–Łojasiewicz (KL) property [8, 3]. The KL property is satisfied
for semi-algebraic functions (see for example [4]). Note that g in (3.1) is a real polynomial function, thus
semi-algebraic. For the remainder of this paper, we restrict ourselves also to semi-algebraic f , for e.g.,
standard L1 norm and squared L2 norm (see [33]).

Theorem 6 (Global Convergence of BPG). Let Assumptions A,B hold and let g be L-smad with respect to
h. Assume ∇g,∇h to be Lipschitz continuous on any bounded subset. Let

{
xk
}
k∈N be a bounded sequence

generated by BPG with 0 < λL < 1, and suppose Ψ satisfies the KL property, then, such a sequence has finite
length, and converges to a critical point.

By a critical point, we mean a point for which the limiting subdifferential of the objective contains zero, i.e.,
Fermat’s rule is satisfied [31, Theorem 10.1]. The boundedness assumption in the statement is automatically
satisfied, if, for example, the objective is coercive (lower level-bounded).

3 Bregman Distance for DLNN

This section is the main part of our paper, where we specialize g to be a quadratic loss function with a deep
linear neural network (DLNN). In view of Example 1 such a cost function is not classically L-smooth and
therefore lacks a quadratic upper bound even for the two layer case. Therefore our main goal is to derive a
novel kernel generating distance h that allows us to obtain a global upper bound. More precisely in the first
part we show that g satisfies the L-smad property for a certain non-trivial choice of h. In the second part
we derive closed form solutions of the Bregman proximal gradient map (2.6) for popular choices of f such as
the L1- and the squared L2-norm. To this end we consider the following optimization problem

min
Wi∈Wi ∀i∈[N]

g(W) :=
1

2
‖W1W2 · · ·WNX−Y‖2F , (3.1)

where N denotes the number of layers. Furthermore we denote byWi = Rdi×di+1 where di ∈ N for all i ∈ [N].
Let dN+1 = d and X ∈ Rd×nT be fixed, where nT ∈ N, which typically corresponds to the number of training

5

samples. Similarly we have fixed Y ∈ Rd1×nT , which typically corresponds to the labels of the inputs in X.
We denote by W := (W1, . . . ,WN), meaning W lies in the product space W :=W1 × · · · ×WN , equipped
with the norm ‖W‖2F :=

∑N
i=1 ‖Wi‖2F . We focus on N ≥ 2 in this paper.

3.1 Smooth Adaptable Property for DLNN

To prove the L-smad property we consider its characterization via the Hessian. More precisely, Lh − g

and g + Lh are convex if and only if L∇2h(x) � ∇2g(x) and −L∇2h(x) � ∇2g(x), i.e. the eigenvalues of
the Hessian of g are bounded by eigenvalues of the Hessian of Lh. The analysis suggests that h and the
corresponding Bregman distance involve polynomials of degree 2N and N . We consider the odd and the
even case separately.

3.1.1 Even Number of Layers

Let N be even and define the following functions

H1(W) :=

(
‖W‖2F
N

)N
, H2(W) :=

(
‖W‖2F
N

)N
2

.

Then, we have the following result, which shows that for an appropriate linear combination of H1 and H2

we obtain the L-smad property for g in (3.1).

Proposition 7. Let H1, H2 be as defined above and let g be as in (3.1). Then, for L = 1, the function g

satisfies the L-smad property with respect to the following kernel generating distance

Ha(W) = c1(N)H1(W) + c2(N)H2(W) , (3.2)

where we have

c1(N) =
(2N − 1)NN

2N !
‖X‖2F , c2(N) =

‖Y‖F ‖X‖F (N − 1)N
N−2

2

(N − 2)
N−2

2

.

The proof is given in Section A.3 in the appendix.

Note that Ha is a polynomial of order 2N as a linear combination of a degree 2N and a degree N polynomial.
Moreover, observe that the resulting Bregman distances are data-dependent. More precisely, the coefficients
c1(N) and c2(N), are not only dependent on the number of layers but also on X and Y.

We remark, that for N = 2 and ‖X‖F = 1, this matches the results from [26] for the matrix factorization
problems.

3.1.2 Odd Number of Layers

Let N be odd and denote

H3(W) :=

(
‖W‖2F + 1

N + 1

)N+1
2

. (3.3)

As the following proposition reveals, the loss function for the odd case is L-smooth adaptable with respect
to a degree 2N polynomial Hb which is given as a linear combination of H1 and H3.

6

Proposition 8. Let H1, H3 be as defined above and let g be as in (3.1). Then, for L = 1, the function g

satisfies the L-smad property with respect to the following kernel generating distance

Hb(W) = c1(N)H1(W) + c3(N)H3(W) , (3.4)

where we have

c1(N) =
(2N − 1)NN

2N !
‖X‖2F , c3(N) =

‖Y‖F ‖X‖F (N − 1)(N + 1)
N−1

2

(N − 1)
N−1

2

.

The proof is given in Section A.5 in the appendix.

Like in the even case H1 is a polynomial of order 2N . But, here H2 is not applicable as N is odd. We fix this
issue using H3, a polynomial of order N+1. Note that the analysis of the objective results in a polynomial of
degree only N . This is automatically resolved with H3, because the constant term 1 in H3 allows for certain
terms to be of order N , while preserving the convexity of H3. Note that this is just one potential way to
obtain polynomials of order N . Considering the practical applicability we show that the proposed Bregman
distances are efficient to implement in practice.

Strong convexity of h. The global convergence results of Bregman proximal algorithms, provided in the
next section, rely on the strong convexity of h. We denote σ as the strong convexity parameter. Notably,
for N = 2 the strong convexity is satisfied directly by Ha. For the general case denote H4(W) =

‖W‖2F
N . For

N > 2 and if N is even, then with any ρ > 0, we use the following h

h(W) = Ha(W) + ρH4(W) ,

for which σ = 2ρ
N . For N > 2 and N being odd, we use the following h

h(W) = Hb(W) + ρH4(W) ,

with any ρ ≥ 0, where σ = 1

(N+1)
N−1

2

+ 2ρ
N . We fix ρ in the initialization phase of the algorithms.

3.2 Closed Form Updates for BPG

While closed form solutions of Euclidean proximal mappings are typically available for common choices of
f , it is in general difficult to compute the Bregman proximal mapping (Tλ in (2.6)) in closed form, even
for common f . Typically this involves the computation of the convex conjugate function of the problem-
dependent h which can be hard to derive. In our case we show in Proposition 9, that the computation of
the Bregman proximal gradient map (2.6) can be reduced to a simple projection problem and a simple one-
dimensional nonlinear equation, more precisely a polynomial equation with a unique real root. We remark
that this closed form solution is also valid for any other Bregman proximal algorithm including, stochastic
BPG [12]. We denote g = Ψ from (3.1) and f := 0 and we set h as in Section 3.

Proposition 9. In BPG, with above defined g, f, h, denoting Pk
i := λ∇Wi

g
(
Wk

)
−∇Wi

h(Wk) , the update
steps in each iteration are given by

Wk+1
i = −r

√
N Pk

i

‖P‖F
,

for all i ∈ [N], where ‖P‖2F =
∑N

i=1

∥∥Pk
i

∥∥2
F
. Then for N = 2, r ≥ 0 satisfies

2c1(2)r3 + c2(2)r −
‖P‖F√

2
= 0 , (3.5)

7

if N > 2 and even, r ≥ 0 satisfies

2c1(N)r2N−1 + c2(N)rN−1 +
2ρ

N
r −
‖P‖F√
N

= 0 , (3.6)

and, if N > 2 and odd, r ≥ 0 satisfies

2c1(N)r2N−1 + c3(N)

(
Nr2 + 1

N + 1

)N−1
2

r +
2ρ

N
r −
‖P‖F√
N

= 0 . (3.7)

The proof is given in Section B.1 in the appendix.

Weight decay or L2-regularization. Consider

min
Wi∈Wi ∀i∈[K]

{
Ψ1(W) := Ψ(W) +

λ0
2
‖W‖2F

}
, (3.8)

where λ0 > 0 and the term λ0
2 ‖W‖

2
F is the L2-regularizer. The closed forms are obtained by replacing 2ρ

N

with
(
2ρ
N + λλ0

)
in Proposition 9, by setting f(W) := λ0

2

∑N
i=1 ‖Wi‖2F .

L1-Regularization. It is also possible to obtain the closed form solutions when L1-regularization is
used, where we set f(W) :=

∑N
i=1 µi ‖Wi‖1. Then using the element wise soft-thresholding operator

Sθ(x) = max{|x| − θ, 0}sgn(x), the closed form updates are obtained by replacing −Pk
i with Sλµi(−Pk

i)

in Proposition 9. Proof is given in Section B.3, in the appendix.

4 Closed Form Inertial BPG

In this section, we present an important contribution for efficiently using a momentum based BPG method.
We focus on the recently introduced Convex-Concave Inertial (CoCaIn) BPG [27], which uses Nesterov-type
extrapolation in BPG for non-smooth non-convex optimization problems. It is given in Algorithm 2. Besides
inertia, the key feature of CoCaIn BPG is the usage of different constants for the upper bound L̄h − g and
lower bound Lh+g. Since the amount of extrapolation is closely tied to the lower bound, tight approximations
are desirable.

Moreover, CoCaIn BPG provides the possibility to adapt the upper and lower bound locally via a back-
tracking line search strategy. The maximal extrapolation is restricted by the inequality in (4.1), which can
be incorporated into the same backtracking loop. Note that CoCaIn BPG does not require nested loops to
satisfy all conditions. The following convergence result analog to Theorem 6 holds.

Theorem 10 (Global Convergence of CoCaIn BPG). Let Assumptions A,B hold, let g be L-smad with respect
to h. Assume ∇g and ∇h to be Lipschitz continuous on any bounded subset in Rd. Let

{
xk
}
k∈N be a bounded

sequence generated by CoCaIn BPG, and suppose f, g satisfy the KL property, then, such a sequence has
finite length, and converges to a critical point.

CoCaIn BPG uses an extrapolation strategy where in each iteration we need to solve (4.1), for a certain
constant κ > 0, the following condition has to be satisfied

Dh

(
xk, yk

)
≤ κDh

(
xk−1, xk

)
, (4.2)

which involves finding γk ∈ [0, 1], where yk = xk + γk(x
k − xk−1). For large scale applications, including

deep learning, checking the condition in a backtracking loop may be expensive. Hence, we contribute to an

8

Algorithm 2 (Convex-Concave Inertial (CoCaIn) BPG [27]).
Input. δ, ε > 0 with 1 > δ > ε.
Initialization. x0 = x1 ∈ int domh ∩ dom f , L̄0 > 0 and τ0 ≤ L̄−10 .
General Step. For k = 1, 2, . . ., compute

yk = xk + γk

(
xk − xk−1

)
∈ int domh,

where γk is chosen such that

(δ − ε)Dh

(
xk−1, xk

)
≥ (1 + Lkτk−1)Dh

(
xk, yk

)
(4.1)

holds and such that Lk satisfies

g
(
xk
)
≥ g

(
yk
)

+
〈
∇g
(
yk
)
, xk − yk

〉
− LkDh

(
xk, yk

)
.

Now, choose L̄k ≥ L̄k−1, set τk ≤ min
{
τk−1, L̄

−1
k

}
and compute

xk+1 ∈ argminu

{
f (u) +

〈
∇g
(
yk
)
, u− yk

〉
+

1

τk
Dh

(
u, yk

)}
with L̄k fulfilling

g
(
xk+1

)
≤ g

(
yk
)

+
〈
∇g
(
yk
)
, xk+1 − yk

〉
+ L̄kDh

(
xk+1, yk

)
.

efficient implementation of the CoCaIn BPG extrapolation step by providing closed form solution for the
extrapolation parameter. For Euclidean distances, we obtain that 0 < γk ≤

√
κ satisfies (4.1). Such a closed

form interval is non-trivial to obtain in general. But, the structure of the proposed Bregman distances allows
also for closed form inertial parameter.

Proposition 11. Denote xk = (Wk
1 , . . . ,W

k
N). For κ > 0, yk := xk + γk(x

k − xk−1) and xk 6= xk−1, the
parameter γk given by

0 < γk ≤

√
κDh (xk−1, xk)

χ(N)
≤ 1

satisfies condition (4.2), where for N = 2, we set χ(N) = c1(N)Bk + c2(N)Ck, for even N > 2, we set

χ(N) =
(
c1(N)Bk + c2(N)Ck + ρ ‖∆k‖2

)
,

and for odd N > 2, we set
χ(N) =

(
c1(N)Bk + c3(N)Dk + ρ ‖∆k‖2

)
,

with ∆k := xk − xk−1, Ωk := 2
∥∥xk∥∥2+2 ‖∆k‖2 and Bk :=

(
(2N−1)
NN−1

)
‖∆k‖2 (Ωk)

(N−1) . For even N we denote

Ck :=
(

N−1
N
N
2 −1

)
‖∆k‖2 (Ωk)

N−2
2 . For odd N we denote Dk := N

(N+1)
N−1

2

‖∆k‖2 (Ωk + 1)
N−1

2 .

The proof of Proposition 11 is given in Section C.1. For N = 2 (Matrix Factorization) we provide novel
tighter bounds in Section 25 in the appendix.

9

5 Discussion of BPG Variants

The proposed Bregman distances for DLNN allow for variants that can be adapted to specialized settings,
for example, stochastic extensions. In the following, we comprehensively discuss the applicability and per-
formance of BPG based algorithms for DLNN compared to several existing optimization schemes.

The base algorithm BPG. The key advantage of BPG for DLNN compared to its Euclidean variant, the
Proximal Gradient (PG) method, is the guaranteed convergence when a constant step size rule is used. This
fact is enabled by validity of (global) relative smoothness (Proposition 7 and 8). On the contrary, PG, which
requires a classical L-smoothness can only be used by the following trick. Under a coercivity assumption,
all iterates generated by PG lie in a compact set, on which a global Lipschitz constant for the objective’s
gradient can be found. However, the compact set is usually unknown (and cannot be determined before
running the algorithm), which makes the practical computation of such a global Lipschitz constant difficult.
A good heuristic guess may result in PG being more efficient than BPG. Therefore, BPG and CoCaIn BPG
(with L̄ = L) render promising alternatives to PG when line search must be avoided due to a prohibitively
expensive function evaluation.

BPG with Backtracking. If backtracking line search variants are affordable for solving the given opti-
mization problem, then BPG, CoCaIn BPG and their Euclidean variants PG and iPiano provide the same
convergence guarantees. Intuitively, from a global perspective, the adapted upper and lower bounds given
by the Bregman distance for BPG should tighter to the objective function than quadratic functions of L-
smoothness. But, this situation can change when backtracking line search is used and only locally tight
approximations are sought. We cannot claim that any of the two strategies has a clear and consistent advan-
tage. The performance can depend significantly on the starting point and the initialization of the line search
parameters and needs problem dependent exploration.

BPG vs PALM. Proximal Alternating Linearized Minimization (PALM) [9] has a clear bias towards the
first block of coordinates, if the update direction points into a narrow valley. This effect may be compensated
by its inertial variant iPALM. For DLNN with identical regularizers, this effect cannot be observed due to
the symmetry of the objective function with respect to the blocks of coordinates, resulting in an oftentimes
favorable performance. We leave the exploration of alternating variants of BPG as future work. Some of the
related works include [23, 19].

Alternating vs non-alternating strategies. We would like to stress two important advantages of non-
alternating schemes such as BPG over alternating minimization strategies. Firstly, BPG allows for block-
wise parallelization, and, secondly, there are interesting settings for which alternating minimization is not
applicable. The obvious example is symmetric Matrix Factorization, for which BPG is studied in [13]. In
the context of DLNN (N > 2 in (3.1)) requiring W1 = W2 = . . . = WN (upto a transpose) can be considered
as a prototype for an unrolled recurrent neural network architecture, where weights are shared across layers.
Here, there is no natural way to apply alternating minimization schemes and the objective is not classically
L-smooth.

Stochastic setting extensions. A stochastic version of BPG was developed recently in [12]. The proposed
Bregman distances are also valid here and can be applied for training DLNN. Furthermore, several popular
stochastic variants such as Adam [21], Adagrad [14], SC-Adagrad [25] can potentially be extended with
Bregman proximal framework.

10

6 Experiments

(a) L2-Regularization (N = 3) (b) L1-Regularization (N = 3) (c) No Regularization (N = 3)

(d) L2-Regularization (N = 4) (e) L1-Regularization (N = 4) (f) No Regularization (N = 4)

(g) L2-Regularization (N = 5) (h) L1-Regularization (N = 5) (i) No Regularization (N = 5)

Figure 1: Convergence plots illustrate the competitive performance of CoCaIn BPG variants for DLNN.

We provide experiments for Deep Linear Neural Networks with squared L2-regularizer and L1-regularizers
and a non-regularized setting (3.1).

Algorithms. In the experiments, we compare BPG (Algorithm 1) and CoCaIn BPG (Algorithm 2) with
many existing optimization methods. We consider alternating strategies such as PALM [9] and iPALM [30].
As non-alternating algorithms, we use forward backward splitting with backtracking (FBS-WB) and iPiano
with backtracking (iPiano-WB) [29]. Apart from BPG and backtracking based CoCaIn BPG, we also inspect
CoCaIn BPG with closed form inertia denoted as CoCaIn BPG CFI (see Proposition 11) and the backtracking
scheme BPG-WB, which is the same version as CoCaIn BPG, but with γk ≡ 0.

Experiment. We set Wi ∈ R5×5, ∀i = 1, ..., N where all weights are initialized with 0.1. Our dataset
contains 50 data points with the input X ∈ R5×50 and the output Y ∈ R5×50 being randomly generated
in the interval [0, 1]. In this experiment, we work with a network consisting of three, four and five layers
(N = 3, 4, 5). The convergence plots are given in Figure 1, where the y-axis measures difference between the
absolute objective and the least objective value attained by any of the methods.

11

Analysis. The performance of CoCaIn BPG, CoCaIn BPG CFI and BPG-WB is mostly better than other
methods. The next competitive algorithms include FBS-WB and iPiano-WB, followed by PALM and iPALM.
The performance of the alternating algorithms strongly depends on the usage of a regularizer, whereas BPG-
WB is competitive in both settings. At first glance, it might appear that the performance of BPG is weaker
compared to CoCaIn BPG, BPG-WB, FBS-WB, iPiano-WB and other methods. However, note that line
search techniques may not be always desirable in practical scenarios, because line search requires multiple
objective evaluations, which can involve computationally expensive matrix multiplications (see Section 5).
Moreover, PALM and iPALM require block-wise Lipschitz constant computations in each iteration, which
can also be very expensive.

In the appendix, we further illustrate the competitiveness of our methods with time plots, the statistical
evaluation and results for an additional dataset.

Conclusion and Extensions

We proposed new Bregman distances suitable for deep linear neural networks. This result makes BPG and
its inertial variant CoCaIn BPG applicable and enables the transfer of their convergence results to such
problems. Moreover, we develop update formulas, which are crucial for efficient large scale optimization. In
general, the validity of inertial (or momentum) parameter requires to be checked via backtracking line search.
To avoid expensive backtracking operation, we derive a analytic expression. These contributions serve as a
first step towards the optimization of deep (non-linear) neural networks by a new class of Bregman Proximal
algorithms.

Acknowledgments

Mahesh Chandra Mukkamala and Peter Ochs acknowledge the financial support from German Research
Foundation (DFG Grant OC 150/1-1).

Appendix

A Bregman distance and L-smad property

Proposition 12. Denote g(W1, . . . ,WN) := 1
2 ‖W1W2 . . .WNX−Y‖2F as in the setting of (3.1). Then

the gradient with respect to weights Wi is given by

∇Wi
g(W1, . . . ,WN) =

(
Πi−1
j=1Wj

)T
(W1W2 . . .WNX−Y)

((
ΠN
j=i+1Wj

)
X
)T

.

We have for N = 2,〈
(H1, . . . ,HN),∇2g(W1, . . . ,WN)(H1, . . . ,HN)

〉
≤ 3 ‖X‖2F

N∑
i=1

‖Hi‖2F ΠN
j=1,j 6=i ‖Wj‖2F + ‖Y‖F ‖X‖F

(
‖H1‖2F + ‖H2‖2F

)

12

If N > 2 and even, we have〈
(H1, . . . ,HN),∇2g(W1, . . . ,WN)(H1, . . . ,HN)

〉
≤ (2N − 1)

N∑
i=1

‖Hi‖2F ΠN
j=1,j 6=i ‖Wj‖2F ‖X‖

2
F +
‖Y‖F ‖X‖F (N − 1)

(N − 2)
N−2

2

(
N∑
i=1

‖Hi‖2F

)(
N∑
k=1

‖Wk‖2F

)N−2
2

If N > 2 and odd, we have〈
(H1, . . . ,HN),∇2g(W1, . . . ,WN)(H1, . . . ,HN)

〉
≤ (2N − 1)

N∑
i=1

‖Hi‖2F ΠN
j=1,j 6=i ‖Wj‖2F ‖X‖

2
F +
‖Y‖F ‖X‖F (N − 1)

(N − 1)
N−1

2

(
N∑
i=1

‖Hi‖2F

) N∑
k=1,k /∈{i,j}

‖Wk‖2F

+ 1

N−1
2

Proof. Consider the following
1

2
‖(W1 + H1)(W2 + H2) . . . (WN + HN)X−Y‖2F . (A.1)

We are only interested in terms till second order, thus we have

(W1 + H1)(W2 + H2) . . . (WN + HN)X = W1W2 . . .WNX +

N∑
i=1

(
Πi−1
j=1Wj

)
Hi

(
ΠN
j=i+1WjX

)
+
N−1∑
i=1

N∑
j>i

(
Πi−1
k=1Wk

)
Hi

(
Πj−1
k=i+1Wk

)
Hj

(
ΠN
k=j+1WkX

)
.

Now expanding (A.1), we have terms upto second order as following

1

2
‖W1W2 . . .WNX−Y‖2F +

〈
W1W2 . . .WNX−Y,

N∑
i=1

(
Πi−1
j=1Wj

)
Hi

(
ΠN
j=i+1Wj

)
X

〉

+
1

2

∥∥∥∥∥
N∑
i=1

(
Πi−1
j=1Wj

)
Hi

(
ΠN
j=i+1Wj

)
X

∥∥∥∥∥
2

F

−

〈
Y,

N−1∑
i=1

N∑
j>i

(
Πi−1
k=1Wk

)
Hi

(
Πj−1
k=i+1Wk

)
Hj

(
ΠN
k=j+1Wk

)
X

〉

+

〈
W1W2 . . .WNX,

N−1∑
i=1

N∑
j>i

(
Πi−1
k=1Wk

)
Hi

(
Πj−1
k=i+1Wk

)
Hj

(
ΠN
k=j+1Wk

)
X

〉
.

Consider the first order terms, we have〈
W1W2 . . .WNX−Y,

N∑
i=1

(
Πi−1
j=1Wj

)
Hi

(
ΠN
j=i+1Wj

)
X

〉

=
N∑
i=1

〈
W1W2 . . .WNX−Y,

(
Πi−1
j=1Wj

)
Hi

(
ΠN
j=i+1Wj

)
X
〉
,

thus, the gradient is

∇Wi
g(W1, . . . ,WN) =

(
Πi−1
j=1Wj

)T
(W1W2 . . .WNX−Y)

((
ΠN
j=i+1Wj

)
X
)T

.

Now, considering second order terms we have with repetitive application of Cauchy-Schwarz inequality, the
following

1

2

∥∥∥∥∥
N∑
i=1

(
Πi−1
j=1Wj

)
Hi

(
ΠN
j=i+1Wj

)
X

∥∥∥∥∥
2

F

≤ N

2

N∑
i=1

∥∥∥(Πi−1
j=1Wj

)
Hi

(
ΠN
j=i+1Wj

)
X
∥∥∥2
F

≤ N

2

N∑
i=1

‖Hi‖2F ΠN
j=1,j 6=i ‖Wj‖2F ‖X‖

2
F

13

and 〈
W1W2 . . .WNX,

N−1∑
i=1

N∑
j>i

(
Πi−1
k=1Wk

)
Hi

(
Πj−1
k=i+1Wk

)
Hj

(
ΠN
k=j+1Wk

)
X

〉

≤
N−1∑
i=1

N∑
j>i

‖X‖2F ‖Hi‖F ‖Hj‖F ‖Wi‖F ‖Wj‖F ΠN
k=1,k /∈{i,j} ‖Wk‖2F

≤
N−1∑
i=1

N∑
j>i

‖X‖2F

(
‖Hi‖2F ‖Wj‖2F + ‖Hj‖2F ‖Wi‖2F

2

)
ΠN
k=1,k /∈{i,j} ‖Wk‖2F

≤ ‖X‖2F
(
N − 1

2

) N∑
i=1

‖Hi‖2F ΠN
k=1,k /∈{i} ‖Wk‖2F

and we have

−

〈
Y,

N−1∑
i=1

N∑
j>i

(
Πi−1
k=1Wk

)
Hi

(
Πj−1
k=i+1Wk

)
Hj

(
ΠN
k=j+1Wk

)
X

〉

≤ ‖Y‖F
N−1∑
i=1

N∑
j>i

‖Hi‖F ‖Hj‖F ΠN
k=1,k /∈{i,j} ‖Wk‖F ‖X‖F (A.2)

Now with the application of Generalized AM-GM inequality, we have the following three cases:

• When N = 2 then we have

‖Hi‖F ‖Hj‖F ‖X‖F ≤ ‖X‖F

(
‖Hj‖2F + ‖Hi‖2F

2

)
,

• When N is even and N > 2.

‖Hi‖F ‖Hj‖F ΠN
k=1,k /∈{i,j} ‖Wk‖F ‖X‖F ≤ ‖X‖F

(
‖Hj‖2F + ‖Hi‖2F

2

)(∑N
k=1,k /∈{i,j} ‖Wk‖2F

N − 2

)N−2
2

,

• If N is odd and N > 2 we have

‖Hi‖F ‖Hj‖F ΠN
k=1,k /∈{i,j} ‖Wk‖F ‖X‖F ≤ ‖X‖F

(
‖Hj‖2F + ‖Hi‖2F

2

)
(∑N

k=1,k /∈{i,j} ‖Wk‖2F
)

+ 1

N − 1

N−1

2

.

Now using the above given results, on extending the calculation of (A.2), for even N and N ≥ 2, we have

‖Y‖F
N−1∑
i=1

N∑
j>i

‖Hi‖F ‖Hj‖F ΠN
k=1,k /∈{i,j} ‖Wk‖F ‖X‖F

≤ ‖Y‖F ‖X‖F
N−1∑
i=1

N∑
j>i

(
‖Hj‖2F + ‖Hi‖2F

2

)(∑N
k=1,k /∈{i,j} ‖Wk‖2F

N − 2

)N−2
2

≤
‖Y‖F ‖X‖F (N − 1)

2(N − 2)
N−2

2

(
N∑
i=1

‖Hi‖2F

)(
N∑
k=1

‖Wk‖2F

)N−2
2

,

14

where in the first step we used Cauchy-Schwarz inequality. Similarly, we have for N > 2 and odd,

‖Y‖F
N−1∑
i=1

N∑
j>i

‖Hi‖F ‖Hj‖F ΠN
k=1,k /∈{i,j} ‖Wk‖F ‖X‖F

≤ ‖Y‖F ‖X‖F
N−1∑
i=1

N∑
j>i

(
‖Hj‖2F + ‖Hi‖2F

2

)
(∑N

k=1,k /∈{i,j} ‖Wk‖2F
)

+ 1

N − 1

N−1

2

≤
‖Y‖F ‖X‖F (N − 1)

2(N − 1)
N−1

2

(
N∑
i=1

‖Hi‖2F

)((
N∑
k=1

‖Wk‖2F

)
+ 1

)N−1
2

.

Before we start with the proof of Proposition 7, we require the following technical results.

A.1 Results for H1.

Lemma 13. Let h ∈ G(C) be twice continuously differentiable on C. Then, the following identity holds

Dh(xk, yk) =

∫ 1

0
(1− t)

∫ 1

0

〈
∇2h

(
xk + (t1 + (1− t1)t)(yk − xk)

)
(xk − yk), xk − yk

〉
dt1dt .

Proof. With repetitive application of fundamental theorem of calculus we have

h(xk)− h(yk)−
〈
∇h(yk), xk − yk

〉
=

∫ 1

0

〈
∇h(xk + t(yk − xk))−∇h(yk), xk − yk

〉
dt ,

=

∫ 1

0

〈∫ 1

0
∇2h

(
(1− t1)(xk + t(yk − xk)) + t1y

k
)

(1− t) (xk − yk)dt1, xk − yk
〉
dt ,

=

∫ 1

0

〈∫ 1

0
∇2h

(
xk + (t1 + (1− t1)t)(yk − xk)

)
(1− t) (xk − yk)dt1, xk − yk

〉
dt ,

=

∫ 1

0
(1− t)

∫ 1

0

〈
∇2h

(
xk + (t1 + (1− t1)t)(yk − xk)

)
(xk − yk), xk − yk

〉
dt1dt .

Henceforth, we use the following notation. Let n be a positive integer and let ki be a non-negative integer
for i ∈ [m] satisfying k1 + . . .+ km = n, then we denote(

n

k1, k2, . . . , km

)
:=

n!

k1!k2! . . . km!
,

which is also known as multinomial coefficient.

Lemma 14. With the following kernel generating distance

H1(W1, . . . ,WN) =

(
‖W1‖2F + . . . ‖WN‖2F

N

)N
,

the gradient with respect for Wi, for any i ∈ [N], is given by

∇Wi
H1(W1, . . . ,WN) =

2

NN

(
N

N − 1, 1

)(
‖W1‖2F + . . .+ ‖WN‖2F

)N−1
Wi ,

15

and the following lower bound holds true

〈
(H1, . . . ,HN),∇2H1(W1, . . . ,WN)(H1, . . . ,HN)

〉
≥ 2N !

NN

N∑
i=1

‖Hi‖2F ΠN
k=1,k /∈{i} ‖Wk‖2F ,

and the following upper bound holds true

〈
(H1, . . . ,HN),∇2H1(W1, . . . ,WN)(H1, . . . ,HN)

〉
≤
(

2(2N − 1)

NN−1

)(N∑
k=1

‖Hk‖2F

)(
N∑
k=1

‖Wk‖2F

)N−1
.

Proof. Consider the following(
‖W1 + H1‖2F + . . . ‖WN + HN‖2F

N

)N
=

(
‖W1‖2F + ‖H1‖2F + 2 〈W1,H1〉+ . . . ‖WN‖2F + ‖HN‖2F

N

)N
.

Consider only the first order terms in the expansion, from which the following gradient with respect for Wi,
for any i ∈ [N], is obtained

∇Wi
H1(W1, . . . ,WN) =

2

NN

(
N

N − 1, 1

)(
‖W1‖2F + . . .+ ‖WN‖2F

)N−1
Wi .

Now considering only the second order terms, we have

1

2

〈
(H1, . . . ,HN),∇2H1(W1, . . . ,WN)(H1, . . . ,HN)

〉
=

1

2

2

NN

N∑
i=1

(
N

1, N − 1

)
‖Hi‖2F

(
N∑
k=1

‖Wk‖2F

)N−1

+
1

2

23

NN

(
N

2, N − 2

)
(〈W1,H1〉+ . . .+ 〈WN,HN〉)2

(
N∑
k=1

‖Wk‖2F

)N−2
.

Since, the second term in the right hand side is always non-negative, the following result holds

1

2

〈
(H1, . . . ,HN),∇2H1(W1, . . . ,WN)(H1, . . . ,HN)

〉
≥ 1

2

2N !

NN

N∑
i=1

‖Hi‖2F ΠN
k=1,k /∈{i} ‖Wk‖2F .

This proves the lower bound. Now, we prove the upper bound. With application of Cauchy-Schwarz inequal-
ity, we have

1

2

23

NN

(
N

2, N − 2

)
(〈W1,H1〉+ . . .+ 〈WN,HN〉)2

(
N∑
k=1

‖Wk‖2F

)N−2

≤ 1

2

23

NN

(
N

2, N − 2

)(N∑
k=1

‖Wk‖2F

)(
N∑
k=1

‖Hk‖2F

)(
N∑
k=1

‖Wk‖2F

)N−2

=
1

2

23

NN

(
N

2, N − 2

)(N∑
k=1

‖Hk‖2F

)(
N∑
k=1

‖Wk‖2F

)N−1
.

16

Now we finally have

〈
(H1, . . . ,HN),∇2H1(W1, . . . ,WN)(H1, . . . ,HN)

〉
≤ 2

NN

(
N

1, N − 1

)(N∑
i=1

‖Hi‖2F

)(
N∑
k=1

‖Wk‖2F

)N−1

+
23

NN

(
N

2, N − 2

)(N∑
k=1

‖Hk‖2F

)(
N∑
k=1

‖Wk‖2F

)N−1

=

(
2(2N − 1)

NN−1

)(N∑
k=1

‖Hk‖2F

)(
N∑
k=1

‖Wk‖2F

)N−1
.

Lemma 15. Denote for any k ≥ 1, xk = (Wk
1 , . . . ,W

k
N), ∆k := xk − xk−1 and the following

Bk :=

(
(2N − 1)

NN−1

)
‖∆k‖2

(
2
∥∥∥xk∥∥∥2 + 2 ‖∆k‖2

)(N−1)
.

The following upper bound holds true
DH1(xk, yk) ≤ γ2kBk .

Proof. From Lemma 13, we have∫ 1

0
(1− t)

∫ 1

0

〈
∇2H1

(
xk + (t1 + (1− t1)t)(yk − xk)

)
(xk − yk), xk − yk

〉
dt1dt

=γ2k

∫ 1

0
(1− t)

∫ 1

0

〈
∇2H1

(
xk + (t1 + (1− t1)t)(yk − xk)

)
(xk − xk−1), xk − xk−1

〉
dt1dt ,

≤γ2k
∫ 1

0
(1− t)

∫ 1

0

2(2N − 1)

NN−1

∥∥∥xk − xk−1∥∥∥2 ∥∥∥xk + (t1 + (1− t1)t)(yk − xk)
∥∥∥(2N−2) dt1dt ,

where in the last step we used the upper bound from Lemma 14. Using the following inequality∥∥∥xk + (t1 + (1− t1)t)(yk − xk)
∥∥∥2 ≤ 2

∥∥∥xk∥∥∥2 + 2(t1 + (1− t1)t)2γ2k
∥∥∥xk − xk−1∥∥∥2 ≤ 2

∥∥∥xk∥∥∥2 + 2
∥∥∥xk − xk−1∥∥∥2

where in the last step we used γ2k ≤ 1 and (t1 + (1− t1)t)2 ≤ 1. With
∫ 1
0 (1− t)dt = 1

2 the result follows.

A.2 Results for H2.

Lemma 16. With the following kernel generating distance

H2(W1, . . . ,WN) =

(
‖W1‖2F + ‖W2‖2F + . . . ‖WN‖2F

N

)N
2

,

the gradient with respect for Wi, for any i ∈ [N], is given by

∇Wi
H2(W1, . . . ,WN) =

1

N
N
2
−1

(
‖W1‖2F + . . .+ ‖WN‖2F

)N
2
−1

Wi ,

and the following lower bound holds true

〈
(H1, . . . ,HN),∇2H2(W1, . . . ,WN)(H1, . . . ,HN)

〉
≥ 1

N
N
2
−1

(
‖H1‖2F + . . .+ ‖HN‖2F

)(N∑
k=1

‖Wk‖2F

)N−2
2

,

and the following upper bound holds true

〈
(H1, . . . ,HN),∇2H2(W1, . . . ,WN)(H1, . . . ,HN)

〉
≤
(
N − 1

N
N
2
−1

)(N∑
k=1

‖Hk‖2F

)(
N∑
k=1

‖Wk‖2F

)N−2
2

.

17

Proof. Consider the following expansion(
‖W1 + H1‖2F + . . . ‖WN + HN‖2F

N

)N
2

=

(
‖W1‖2F + ‖H1‖2F + 2 〈W1,H1〉+ . . . ‖WN‖2F + ‖HN‖2F

N

)N
2

.

Consider only the first order terms in the expansion, from which the following gradient with respect for Wi,
for any i ∈ [N], is obtained

∇Wi
H2(W1, . . . ,WN) =

2

N
N
2

(N
2

N
2 − 1, 1

)(
‖W1‖2F + . . .+ ‖WN‖2F

)N
2
−1

Wi .

Now considering only the second order terms, we have

1

2

〈
(H1, . . . ,HN),∇2H2(W1, . . . ,WN)(H1, . . . ,HN)

〉
=

1

2

2

N
N
2

(N
2

N−2
2 , 1

)(
‖H1‖2F + . . .+ ‖HN‖2F

)(N∑
k=1

‖Wk‖2F

)N−2
2

+
1

2

23

N
N
2

(N
2

2, N2 − 2

)
(〈W1,H1〉+ . . .+ 〈WN,HN〉)2

(
N∑
k=1

‖Wk‖2F

)N
2
−2

Since, the second term in the right hand side is always non-negative, the following result holds

〈
(H1, . . . ,HN),∇2H2(W1, . . . ,WN)(H1, . . . ,HN)

〉
≥ 2

N
N
2

(N
2

N−2
2 , 1

)(
‖H1‖2F + . . .+ ‖HN‖2F

)(N∑
k=1

‖Wk‖2F

)N−2
2

.

This proves the lower bound as in the statement. Now we prove the upper bound. With application of
Cauchy-Schwarz inequality, we have

1

2

23

N
N
2

(N
2

2, N2 − 2

)
(〈W1,H1〉+ . . .+ 〈WN,HN〉)2

(
N∑
k=1

‖Wk‖2F

)N
2
−2

≤ 1

2

23

N
N
2

(N
2

2, N2 − 2

)(N∑
k=1

‖Wk‖2F

)(
N∑
k=1

‖Hk‖2F

)(
N∑
k=1

‖Wk‖2F

)N
2
−2

,

=
1

2

23

N
N
2

(N
2

2, N2 − 2

)(N∑
k=1

‖Hk‖2F

)(
N∑
k=1

‖Wk‖2F

)N
2
−1

.

Thus, we finally have

〈
(H1, . . . ,HN),∇2H2(W1, . . . ,WN)(H1, . . . ,HN)

〉
≤ 2

N
N
2

(N
2

N−2
2 , 1

)(N∑
k=1

‖Hk‖2F

)(
N∑
k=1

‖Wk‖2F

)N−2
2

+
23

N
N
2

(N
2

2, N2 − 2

)(N∑
k=1

‖Hk‖2F

)(
N∑
k=1

‖Wk‖2F

)N−2
2

,

=

(
N − 1

N
N
2
−1

)(N∑
k=1

‖Hk‖2F

)(
N∑
k=1

‖Wk‖2F

)N−2
2

.

18

Lemma 17. Denote for any k ≥ 1, xk = (Wk
1 , . . . ,W

k
N), ∆k := xk − xk−1 and the following

Ck :=

(
N − 1

N
N
2
−1

)
‖∆k‖2

(
2
∥∥∥xk∥∥∥2 + 2 ‖∆‖2

)N−2
2

.

The following holds
DH2(xk, yk) ≤ γ2kCk .

Proof. From Lemma 13, we have∫ 1

0
(1− t)

∫ 1

0

〈
∇2H2

(
xk + (t1 + (1− t1)t)(yk − xk)

)
(xk − yk), xk − yk

〉
dt1dt

= γ2k

∫ 1

0
(1− t)

∫ 1

0

〈
∇2H2

(
xk + (t1 + (1− t1)t)(yk − xk)

)
(xk − xk−1), xk − xk−1

〉
dt1dt

≤ γ2k
∫ 1

0
(1− t)

∫ 1

0

(
2N − 3

N
N
2
−1

)∥∥∥xk − xk−1∥∥∥2 ∥∥∥xk + (t1 + (1− t1)t)(yk − xk)
∥∥∥N−2 dt1dt

where in the last we used Lemma 16. Now, we use the following inequality∥∥∥xk + (t1 + (1− t1)t)(yk − xk)
∥∥∥2 ≤ 2

∥∥∥xk∥∥∥2 + 2
∥∥∥xk − xk−1∥∥∥2 = 2

∥∥∥xk∥∥∥2 + 2 ‖∆‖2 .

Thus, the result follows using
∫ 1
0 (1− t)dt = 1

2 .

A.3 Proof of Proposition 7

We need to prove the convexity of LHa − g. From Lemma 14 we obtain

NN

2N !

〈
(H1, . . . ,HN),∇2H1(W1, . . . ,WN)(H1, . . . ,HN)

〉
≥

N∑
i=1

‖Hi‖2F ΠN
k=1,k /∈{i,j} ‖Wk‖2F

Similarly from Lemma 16 we obtain

N
N
2

2
(N

2
N−2

2
,1

) 〈(H1, . . . ,HN),∇2H2(W1, . . . ,WN)(H1, . . . ,HN)
〉
≥
(
‖H1‖2F + . . .+ ‖HN‖2F

)(N∑
k=1

‖Wk‖2F

)N−2
2

Thus, now invoking Proposition 12, we obtain the result.

A.4 Results for H3.

Lemma 18. With the following kernel generating distance

H3(W1, . . . ,WN) =

(
‖W1‖2F + ‖W2‖2F + . . . ‖WN‖2F + 1

N + 1

)N+1
2

,

the gradient with respect for Wi, for any i ∈ [N], is given by

∇Wi
H3(W1, . . . ,WN) =

2
(N+1

2
N−1

2
,1

)
(N + 1)

N+1
2

(
‖W1‖2F + . . .+ ‖WN‖2F + 1

)N−1
2

Wi ,

19

and the following lower bound holds true〈
(H1, . . . ,HN),∇2H3(W1, . . . ,WN)(H1, . . . ,HN)

〉
≥ 2

(N + 1)
N+1

2

(N+1
2

N−1
2 , 1

)(
‖H1‖2F + . . .+ ‖HN‖2F

)((N∑
k=1

‖Wk‖2F

)
+ 1

)N−1
2

,

and the following upper bound holds true

〈
(H1, . . . ,HN),∇2H3(W1, . . . ,WN)(H1, . . . ,HN)

〉
≤ N

(N + 1)
N−1

2

(
N∑
k=1

‖Hk‖2F

)2((N∑
k=1

‖Wk‖2F

)
+ 1

)N−1
2

.

Proof. In the expansion of H3(W1+H1, . . . ,WN+HN), consider only the first order terms in the expansion,
from which the following gradient with respect for Wi, for any i ∈ [N], is obtained

∇Wi
H3(W1, . . . ,WN) =

(N+1
2

N−1
2
,1

)
(N + 1)

N+1
2

(
‖W1‖2F + . . .+ ‖WN‖2F + 1

)N−1
2

(2Wi) .

The second order terms are given by

1

2

〈
(H1, . . . ,HN),∇2H3(W1, . . . ,WN)(H1, . . . ,HN)

〉
=

1

2

2

(N + 1)
N+1

2

(N+1
2

N−1
2 , 1

)(
‖H1‖2F + . . .+ ‖HN‖2F

)((N∑
k=1

‖Wk‖2F

)
+ 1

)N−1
2

+
1

2

23

(N + 1)
N+1

2

(N+1
2

2, N−32

)
(〈W1,H1〉+ . . .+ 〈WN,HN〉)2

((
N∑
k=1

‖Wk‖2F

)
+ 1

)N−3
2

.

it is easy to see that the following lower holds true〈
(H1, . . . ,HN),∇2H3(W1, . . . ,WN)(H1, . . . ,HN)

〉
≥ 2

(N + 1)
N+1

2

(N+1
2

N−1
2 , 1

)(
‖H1‖2F + . . .+ ‖HN‖2F

)((N∑
k=1

‖Wk‖2F

)
+ 1

)N−1
2

.

Now we prove the upper bound. With application of Cauchy-Schwarz inequality, we have

23

(N + 1)
N+1

2

(N+1
2

2, N−32

)
(〈W1,H1〉+ . . .+ 〈WN,HN〉)2

((
N∑
k=1

‖Wk‖2F

)
+ 1

)N−3
2

≤ 23

(N + 1)
N+1

2

(N+1
2

2, N−32

)(N∑
k=1

‖Wk‖2F

)(
N∑
k=1

‖Hk‖2F

)((
N∑
k=1

‖Wk‖2F

)
+ 1

)N−3
2

,

≤ 23

(N + 1)
N+1

2

(N+1
2

2, N−32

)((N∑
k=1

‖Wk‖2F

)
+ 1

)(
N∑
k=1

‖Hk‖2F

)((
N∑
k=1

‖Wk‖2F

)
+ 1

)N−3
2

,

=
23

(N + 1)
N+1

2

(N+1
2

2, N−32

)(N∑
k=1

‖Hk‖2F

)((
N∑
k=1

‖Wk‖2F

)
+ 1

)N−1
2

,

20

where in the second inequality we used
(∑N

k=1 ‖Wk‖2F
)
≤
(∑N

k=1 ‖Wk‖2F
)

+ 1. Now the full bound is

1

2

〈
(H1, . . . ,HN),∇2H3(W1, . . . ,WN)(H1, . . . ,HN)

〉
≤ 1

2

2

(N + 1)
N+1

2

(N+1
2

N−1
2 , 1

)(N∑
k=1

‖Hk‖2F

)2((N∑
k=1

‖Wk‖2F

)
+ 1

)N−1
2

,

+
1

2

23

(N + 1)
N+1

2

(N+1
2

2, N−32

)(N∑
k=1

‖Hk‖2F

)2((N∑
k=1

‖Wk‖2F

)
+ 1

)N−1
2

,

=
1

2

N

(N + 1)
N−1

2

(
N∑
k=1

‖Hk‖2F

)2((N∑
k=1

‖Wk‖2F

)
+ 1

)N−1
2

.

Lemma 19. Denote for any k ≥ 1, xk = (Wk
1 , . . . ,W

k
N), ∆k := xk − xk−1 and the following

Dk :=
N

(N + 1)
N−1

2

‖∆k‖2
(

2
∥∥∥xk∥∥∥2 + 2 ‖∆‖2 + 1

)N−1
2

.

Then, the condition DH3(xk, yk) ≤ γ2kDk holds true.

Proof. From Lemma 13 and using yk = xk + γk(x
k − xk−1) we have∫ 1

0
(1− t)

∫ 1

0

〈
∇2H3

(
xk + (t1 + (1− t1)t)(yk − xk)

)
(xk − yk), xk − yk

〉
dt1dt

=γ2k

∫ 1

0
(1− t)

∫ 1

0

〈
∇2H3

(
xk + (t1 + (1− t1)t)(yk − xk)

)
(xk − xk−1), xk − xk−1

〉
dt1dt ,

≤
γ2kN

(N + 1)
N−1

2

∫ 1

0
(1− t)

∫ 1

0

∥∥∥xk − xk−1∥∥∥2 (
∥∥∥xk + (t1 + (1− t1)t)(yk − xk)

∥∥∥2 + 1)
N−1

2 dt1dt.

where in the last we used Lemma 18. Now, we use the following inequality∥∥∥xk + (t1 + (1− t1)t)(yk − xk)
∥∥∥2 ≤ 2

∥∥∥xk∥∥∥2 + 2
∥∥∥xk − xk−1∥∥∥2 = 2

∥∥∥xk∥∥∥2 + 2 ‖∆‖2 .

Thus, the result follows using
∫ 1
0 (1− t)dt = 1

2 .

A.5 Proof of Proposition 8.

We need to prove the convexity of LHb − g. From Lemma 14 we obtain

NN

2N !

〈
(H1, . . . ,HN),∇2H1(W1, . . . ,WN)(H1, . . . ,HN)

〉
≥

N∑
i=1

‖Hi‖2F ΠN
k=1,k /∈{i,j} ‖Wk‖2F

Similarly, from Lemma 18 we obtain

(N + 1)
N−1

2
〈
(H1, . . . ,HN),∇2H3(W1, . . . ,WN)(H1, . . . ,HN)

〉 (
‖H1‖2F + . . .+ ‖HN‖2F

)((N∑
k=1

‖Wk‖2F

)
+ 1

)N−1
2

and invoking Proposition 12, we obtain the result. The proof of LHb+g is similar (see [10, Remark 2.1]).

21

B Closed Form Update Steps

Lemma 20. Let Q ∈ RA×B for some positive integers A and B. Let t ≥ 0 and ‖Q‖F 6= 0 then

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F = t2

}
≡ min

X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t

2
}

= −t ‖Q‖F ,

with the minimizer at X∗ = −tQ/ ‖Q‖F .

Consider the following non-convex optimization problem

min
Wi∈Wi ∀i∈[K]

{
Ψ(W1, . . . ,WN) :=

1

2
‖W1W2 . . .WNX−Y‖2F

}
, (B.1)

Recall that g = 1
2 ‖W1W2 . . .WNX−Y‖2F , f := 0 and h as explained in Section 3.2.

B.1 Proof of Proposition 9

We use the same proof strategy as [26, Proposition C.1]. Consider the following subproblem, involved in the
update step

(Wk+1
1 , . . . ,Wk+1

N) ∈ argmin
(W1,...,WN)∈C

(

N∑
i=1

〈
Pk

i ,Wi

〉)
+ c1(N)

(
‖W‖2F
N

)N
+ c2(N)

(
‖W‖2F
N

)N
2

+ ρ

(
‖W‖2F
N

) .

In order to solve the above minimization problem, we introduce additional optimization variables t1, . . . , tN ≥
0 and the constraint ‖Wi‖F = ti for all i. This splits the optimization problem, where the constraints of the
inner problem with respect to W1, . . . ,WN can be relaxed to ‖Wi‖F ≤ ti without changing the minimal
value thanks to Lemma 20 . We arrive at

min
ti≥0,∀i∈[N]

N∑
i=1

min
Wi∈Wi

{〈
Pk

i ,Wi

〉
: ‖Wi‖2F ≤ t

2
i

}
+ c1(N)

(∑N
i=1 t

2
i

N

)N
+ c2(N)

(∑N
i=1 t

2
i

N

)N
2

+ ρ

(∑N
i=1 t

2
i

N

) .

Then the solution to the subproblem for the i-th block due to Lemma 20, in each iteration is as follows

Wk+1
i =

t
∗
i
−Pk

i

‖Pk
i ‖F

, for
∥∥Pk

i

∥∥
F
6= 0 ,

0 otherwise .

We solve for t∗i with the following minimization problem

argmin
ti≥0,∀i∈[N]

−
N∑
i=1

ti

∥∥∥Pk
i

∥∥∥
F

+ c1(N)

(∑N
i=1 t

2
i

N

)N
+ c2(N)

(∑N
i=1 t

2
i

N

)N
2

+ ρ

(∑N
i=1 t

2
i

N

) .

Thus, the solutions t∗i are the non-negative real roots of the following equations

−
∥∥∥Pk

i

∥∥∥
F

+ 2c1(N)

(∑N
i=1 t

2
i

N

)N−1
ti + c2(N)

(∑N
i=1 t

2
i

N

)N
2
−1

ti +
2ρ

N
ti = 0 , ∀i ∈ [N] (B.2)

Substitute the following

ti = r

√
N
∥∥Pk

i

∥∥
F√∑N

i=1

∥∥Pk
i

∥∥2
F

,

which implies that
∑N
i=1 t

2
i

N = r2 for certain r > 0. Now, we find r via substituting ti in (B.2), which results
in

2c1(N)r2N−1 + c2(N)rN−1 +
2ρ

N
r −

√∑N
i=1

∥∥Pk
i

∥∥2
F√

N
= 0 . (B.3)

The proof is similar for N > 2 and N being odd.

22

B.2 Weight decay or L2-Regularization

Consider the following non-convex optimization problem

min
Wi∈Wi ∀i∈[K]

{
Ψ(W1, . . . ,WN) :=

1

2
‖W1W2 . . .WNX−Y‖2F +

λ0
2

(
N∑
i=1

‖Wi‖2F

)}
. (B.4)

Denote g := 1
2 ‖W1W2 . . .WNX−Y‖2F , f := λ0

2

(∑N
i=1 ‖Wi‖2F

)
and h as explained in Section 3.2.

Proposition 21. In BPG, with above defined g, f, h, using the notation Pk
i = Pk

i

(
W1

k, . . . ,WN
k
)

=

λ∇Wi
g
(
W1

k, . . . ,WN
k
)
−∇Wi

h(W1
k, . . . ,WN

k) . the update steps in each iteration are given by Wk+1
i =

−r
√
N Pk

i
‖P‖F

for all i ∈ [N] where r is the non-negative real root of for N = 2

2c1(2)r3 + (c2(2) + λλ0)r −

√∑2
i=1

∥∥Pk
i

∥∥2
F√

2
= 0 , (B.5)

If N > 2 and even, we have

2c1(N)r2N−1 + c2(N)rN−1 +

(
2ρ

N
+ λλ0

)
r −

√∑N
i=1

∥∥Pk
i

∥∥2
F√

N
= 0 , (B.6)

and if N > 2 and odd, then

2c1(N)r2N−1 + c3(N)

(
Nr2 + 1

N + 1

)N−1
2

r +

(
2ρ

N
+ λλ0

)
r −

√∑N
i=1

∥∥Pk
i

∥∥2
F√

N
= 0 . (B.7)

Proof. The proof is exactly the same as Proposition 9 and the only change is in the value ρ for N > 2 and
c2 for N = 2. For N = 2, the results coincide with [26].

B.3 Closed Form Updates for L1 Regularization

Recall that the soft-thresholding operator is defined as follows Sθ(x) = max{|x| − θ, 0}sgn(x) , where the
operations are performed coordinate-wise. We consider below an extension of (3.1),

min
Wi∈Wi ∀i∈[K]

{
Ψ(W1, . . . ,WN) :=

1

2
‖W1W2 . . .WNX−Y‖2F +

N∑
i=1

µi ‖Wi‖1

}
, (B.8)

where µi > 0 for all i ∈ [N] and ‖Wi‖1 is the standard L1-norm, which denotes the sum of absolute of values
of the all the elements in Wi. We require the following technical result from [26] before we provide the closed
form solutions.

Lemma 22. Let Q ∈ RA×B for some positive integers A and B. Let t0 > 0 and let t ≥ 0 then

min
X∈RA×B

{
〈Q,X〉+ t0 ‖X‖1 : ‖X‖2F ≤ t

2
}

= −t ‖St0(−Q)‖F .

with the minimizer at X∗ = t
St0 (−Q)

‖St0 (−Q)‖
F

for ‖St0(−Q)‖F 6= 0 and otherwise all X such that ‖X‖2F ≤ t2 are

minimizers. Moreover we have the following equivalence,

min
X∈RA×B

{
〈Q,X〉+ t0 ‖X‖1 : ‖X‖2F ≤ t

2
}
≡ min

X∈RA×B

{
〈Q,X〉+ t0 ‖X‖1 : ‖X‖2F = t2

}
. (B.9)

23

Denote g := 1
2 ‖W1W2 . . .WNX−Y‖2F , f :=

∑N
i=1 µi ‖Wi‖1 and h as explained in Section 3.2.

Proposition 23. In BPG, with above defined g, f, h, with the notation Pk
i = Pk

i

(
W1

k, . . . ,WN
k
)

=

λ∇Wi
g
(
W1

k, . . . ,WN
k
)
−∇Wi

h(W1
k, . . . ,WN

k) , the update steps in each iteration are given by Wk+1
i =

r
√
N Sλµi (−P

k
i)√∑N

i=1‖Sλµi (−Pk
i)‖

2

F

for all i ∈ [N] where for N = 2, r is the non-negative real root of

2c1(2)r3 + c2(2)r −

√∑2
i=1

∥∥Sλµi(−Pk
i)
∥∥2
F√

2
= 0 . (B.10)

If N > 2 and even, we have

2c1(N)r2N−1 + c2(N)rN−1 +
2ρ

N
r −

√∑N
i=1

∥∥Sλµi(−Pk
i)
∥∥2
F√

N
= 0 , (B.11)

and if N > 2 and odd, then

2c1(N)r2N−1 + c3(N)

(
Nr2 + 1

N + 1

)N−1
2

r +
2ρ

N
r −

√∑N
i=1

∥∥Sλµi(−Pk
i)
∥∥2
F√

N
= 0 . (B.12)

Proof. We use the same proof strategy as [26, Proposition C.1].The subproblem is

Wk+1 ∈ argmin
(W1,...,WN)∈C

N∑
i=1

(
λµi ‖Wi‖1 +

〈
Pk

i ,Wi

〉)
+ c1(N)

(
‖W‖2F
N

)N
+ c2(N)

(
‖W‖2F
N

)N
2

+ ρ

(
‖W‖2F
N

) .

In order to solve the above minimization problem, we introduce additional optimization variables t1, . . . , tN ≥
0 and the constraint ‖Wi‖F = ti for all i. This splits the optimization problem, where the constraints of the
inner problem with respect to W1, . . . ,WN can be relaxed to ‖Wi‖F ≤ ti without changing the minimal
value thanks to Lemma 22. We arrive at

min
t1≥0,...,tN≥0

{
N∑
i=1

min
Wi∈Wi

{〈
Pk

i ,Wi

〉
+ λµi ‖Wi‖1 : ‖Wi‖2F ≤ t

2
i

}

+c1(N)

(∑N
i=1 t

2
i

N

)N
+ c2(N)

(∑N
i=1 t

2
i

N

)N
2

+ ρ

(∑N
i=1 t

2
i

N

) .

Lemma 20 provides for the i-th block the optimal solution W̃∗
i (ti) and minimal function value−ti

∥∥Sλµi(−Pk
i)
∥∥
F

of the inner problem depending on t1, . . . , tN . Thus, we obtain the solution as

Wk+1
i =

t
∗
i
Sλµi (−P

k
i)

‖Sλµi (−Pk
i)‖F

, for
∥∥Sλµi(−Pk

i)
∥∥
F
6= 0 ,

0 otherwise .

We solve for t∗i with the following minimization problem

argmin
ti≥0,∀i∈[N]

−
N∑
i=1

ti

∥∥∥Sλµi(−Pk
i)
∥∥∥
F

+ c1(N)

(∑N
i=1 t

2
i

N

)N
+ c2(N)

(∑N
i=1 t

2
i

N

)N
2

+ ρ

(∑N
i=1 t

2
i

N

) .

Thus, the solutions t∗i are the non-negative real roots of the following equations

−
∥∥∥Sλµi(−Pk

i)
∥∥∥
F

+ 2c1(N)

(∑N
i=1 t

2
i

N

)N−1
ti + c2(N)

(∑N
i=1 t

2
i

N

)N
2
−1

ti +
2ρ

N
ti = 0 ,∀i ∈ [N] .

24

Substitute the following

ti = r

√
N
∥∥Sλµi(−Pk

i)
∥∥
F√∑N

i=1

∥∥Sλµi(−Pk
i)
∥∥2
F

,

which implies that
∑N
i=1 t

2
i

N = r2 for certain r > 0. Now, we find r via substituting ti in (B.2), which results
in

2c1(N)r2N−1 + c2(N)rN−1 +
2ρ

N
r −

√∑N
i=1

∥∥Sλµi(−Pk
i)
∥∥2
F√

N
= 0 . (B.13)

The proof is similar for N > 2 and N being odd.

C Closed Form Inertia

C.1 Proof of Proposition 11

We use
h(W1, . . . ,WN) = Ha(W1, . . . ,WN) + ρH4(W1, . . . ,WN) ,

where
Ha(W1, . . . ,WN) = c1(N)H1(W1, . . . ,WN) + c2(N)H2(W1, . . . ,WN) .

Now for any x ∈ C, y ∈ C, we have Dh1+h2(x, y) = Dh1(x, y) +Dh2(x, y) for any h1, h2 ∈ G(C). Thus,

Dh(x, y) = c1(N)DH1(x, y) + c2(N)DH2(x, y) + ρDH4(x, y) .

We solve Dh

(
xk, yk

)
≤ κDh

(
xk−1, xk

)
using the results from Lemma 15 ,17, to obtain

Dh

(
xk, yk

)
≤ γ2k

(
c1(N)Bk + c2(N)Ck + ρ ‖∆k‖2

)
≤ κDh

(
xk−1, xk

)
.

The proof for N > 2 and N being odd is similar.

C.2 Closed Form Inertia for Matrix Factorization

Lemma 24. Given h1(W1,W2) :=
(
‖W1‖2F+‖W2‖2F

2

)2
, then we have the following

〈
(H1,H2),∇2h1(W1,W2)(H1,H2)

〉
≤ 3

(
‖H1‖2F + ‖H2‖2F

)(
‖W1‖2F + ‖W2‖2F

)
.

Given h2 :=
(
‖W1‖2F+‖W2‖2F

2

)
, then we have the following〈

(H1,H2),∇2h2(W1,W2)(H1,H2)
〉

= ‖H1‖2F + ‖H2‖2F .

Then, with ha(W1,W2) = 3h1(W1,W2) + ‖Y‖F h2(W1,W2) we have the following〈
(H1,H2),∇2ha(W1,W2)(H1,H2)

〉
≤ 9

(
‖H1‖2F + ‖H2‖2F

)(
‖W1‖2F + ‖W2‖2F

)
+ ‖Y‖F

(
‖H1‖2F + ‖H2‖2F

)
.

Proof. The result regarding h1 is from Lemma 14 with N = 2. The results for h2 follows trivially (see for
example [26]). The statement for ha holds trivially.

In the context of matrix factorization problem, where N = 2, X = 1, ‖X‖F = 1, we obtain the following
result on the extrapolation parameter.

25

Lemma 25. Denote xk = (Wk
1 , . . . ,W

k
N). For κ > 0, yk := xk + γk(x

k − xk−1) and xk 6= xk−1, the
parameter γk ∈ [0, 1] such that

0 ≤ γk ≤
√

κ(
ξk1 + ξk2

)Dh(xk−1, xk) ,

satisfies the condition (4.2), where ξk1 = 42
∥∥xk − xk−1∥∥4 and ξk2 = 15

(∥∥xk∥∥2 +
‖Y‖F
30

)∥∥xk − xk−1∥∥2.
Proof. From Lemma 13 we obtain∫ 1

0
(1− t)

∫ 1

0

〈
∇2h

(
xk + (t1 + (1− t1)t)(yk − xk)

)
(xk − yk), xk − yk

〉
dt1dt

≤
∫ 1

0
(1− t)

∫ 1

0
9
∥∥∥xk − yk∥∥∥2 ∥∥∥xk + (t1 + (1− t1)t)(yk − xk)

∥∥∥2 + ‖Y‖F
∥∥∥xk − yk∥∥∥2 dt1dt

≤
∫ 1

0

∫ 1

0
18 (1− t)

(∥∥∥xk∥∥∥2 +
‖Y‖F

18

)∥∥∥xk − yk∥∥∥2 dt1dt+

∫ 1

0

∫ 1

0
+18 (1− t) (t1 + (1− t1)t)2

∥∥∥xk − yk∥∥∥4 dt1dt
= 9

(∥∥∥xk∥∥∥2 +
‖Y‖F

18

)∥∥∥xk − yk∥∥∥2 +

∫ 1

0
18 (1− t) (2t2 +

1

3
)
∥∥∥xk − yk∥∥∥4 dt

= 9

(∥∥∥xk∥∥∥2 +
‖Y‖F

18

)∥∥∥xk − yk∥∥∥2 + 6
∥∥∥xk − yk∥∥∥4

= 9γ2k

(∥∥∥xk∥∥∥2 +
‖Y‖F

18

)∥∥∥xk − xk−1∥∥∥2 + 6γ4k

∥∥∥xk − xk−1∥∥∥4 ,
where in the first inequality we used Lemma 24 and the second inequality is due to the following∥∥∥xk + (t1 + (1− t1)t)(yk − xk)

∥∥∥2 ≤ 2
∥∥∥xk∥∥∥2 + 2(t1 + (1− t1)t)2

∥∥∥xk − yk∥∥∥2 .
Denote ξk2 = 9

(∥∥xk∥∥2 +
‖Y‖F
18

)∥∥xk − xk−1∥∥2 and ξk1 = 6
∥∥xk − xk−1∥∥4 we have

ξk1γ
4
k + ξk2γ

2
k ≤ κDh(xk−1, xk) ,

and the result follows due to the condition 0 ≤ γ ≤ 1.

Note that for a general X, we need to set ξk2 := 15
(∥∥xk∥∥2 +

‖Y‖F ‖X‖F
30

)∥∥xk − xk−1∥∥2.
D Additional Experiments

We provide time plots and statistical evaluation for the same experimental setting introduced in section 6.
In these experiments, we set the regularization parameter λ0 = 0.1, the step size λ of BPG to 0.99 and ρ = 1.
For iPALM we use two settings β = 0.2 and β = 0.4. Furthermore, we present convergence plots of a second
experiment.

D.1 Time plots

The results for time comparison are given in Figure 2. For better visualization an offset of 10−2 is used in
the time plots.

In most of the settings the convergence speed of CoCaIn BPG is similar to iPiano-WB. The alternating
schemes PALM and iPALM do not include a time consuming backtracking mechansim. In terms of speed,
this results in a better performance for the non-regularized DLNN problem. However, in the regularized

26

setting BPG based methods with a possibly more effective update step remain superior together with iPiano-
WB. In this experiment, there is no clear speed advantage of CoCaIn BPG over CoCaIn BPG CFI. The
size of the used data is small yet and the strength of the closed form intertial BPG might lie in large scale
datasets.

(a) L2-Regularization (N = 3) (b) L1-Regularization (N = 3) (c) No Regularization (N = 3)

(d) L2-Regularization (N = 4) (e) L1-Regularization (N = 4) (f) No Regularization (N = 4)

(g) L2-Regularization (N = 5) (h) L1-Regularization (N = 5) (g) No Regularization (N = 5)

Figure 2: Time plots illustrating the competitive performance of BPG methods.

D.2 Statistical evaluation

For the statistical evaluation, we used the same experimental setting as before but varied the weight ini-
tialization: The weights are initialized randomly with values in [0, 0.1]. We conduct 40 experiments with
different seeds and plot the final result of the algorithms after 10,000 iterations. The results for three layers
(N = 3) are provided in Figures 3, 4 and 5. Note the different range of the x-axis for each algorithm.

The performance of CoCaIn BPG is significantly better relative to the other algorithms in case of L2-
Regularization. Here, BPG, BPG-WB and CoCaIn BPG CFI converge more often to a worse solution than
FBS-based and the alternating algorithms. However, when L1-Regularization is used, both CoCaIn BPG
and CoCaIn BPG CFI are superior, with CoCaIn BPG CFI being more stable than CoCaIn BPG. BPG does
not fully converge within 10,000 steps.

27

Without a regularizer, PALM and iPALM constantly generates the best results. CoCaIn BPG is competitive
to FBS-WB but not to iPiano-WB.

(a) BPG (b) BPG-WB (c) CoCaIn BPG

(d) CoCaIn BPG CFI (e) PALM (f) iPALM (β = 0.2)

(g) iPALM (β = 0.4) (h) FBS-WB (i) iPiano-WB

Figure 3: Statistical evaluation - L2-regularization, N = 3

D.3 Experiment 2

In the second experiment we use the same hyperparameters, weight initialization and input X ∈ R7×50 as in
Experiment 1. While we used independently generated input and output data in Experiment 1, the output
data is now generated with Y = AX + 0.0001N, where A is a randomly generated matrix in [0, 0.1]2×7 and
N ∼ N (0, 1). Additionally, the weights are not squared matrices, i.e W1 ∈ R2×3. The results are provided
in 6. While BPG-WB and CoCaIn BPG CFI achieve the best performance in a setting with L2-regualrizer
or no regularizer, both algorithms can not compete with the alternating algorithms PALM and iPALM as
well as iPiano-WB in case of L1-regularizers. Here, CoCaIn BPG is strong with a convergence better than
iPiano-WB.

Finally, note that the proposed Bregman distances involve the norms of the weights, which can be very large
for large N and might result in numerically instability. An important open research problem, is to develop
numerically stable Bregman distances.

28

(a) BPG (b) BPG-WB (c) CoCaIn BPG

(d) CoCaIn BPG CFI (e) PALM (f) iPALM (β = 0.2)

(g) iPALM (β = 0.4) (h) FBS-WB (i) iPiano-WB

Figure 4: Statistical evaluation - L1-regularization, N = 3

29

(a) BPG (b) BPG-WB (c) CoCaIn BPG

(d) CoCaIn BPG CFI (e) PALM (f) iPALM (β = 0.2)

(g) iPALM (β = 0.4) (h) FBS-WB (i) iPiano-WB

Figure 5: Statistical evaluation - No regularization, N = 3

30

(a) L2-Regularization (N = 3) (b) L1-Regularization (N = 3) (c) No Regularization (N = 3)

(d) L2-Regularization (N = 4) (e) L1-Regularization (N = 4) (f) No Regularization (N = 4)

(g) L2-Regularization (N = 5) (h) L1-Regularization (N = 5) (i) No Regularization (N = 5)

Figure 6: Convergence plots for Experiment 2

31

References

[1] M. Ahookhosh, L. T. K. Hien, N. Gillis, and P. Patrinos. Multi-block Bregman proximal alternating
linearized minimization and its application to sparse orthogonal nonnegative matrix factorization. arXiv
preprint arXiv:1908.01402, 2019.

[2] S. Arora, N. Cohen, W. Hu, and Y. Luo. Implicit regularization in deep matrix factorization. ArXiv
preprint arXiv:1905.13655, 2019.

[3] H. Attouch and J. Bolte. On the convergence of the proximal algorithm for nonsmooth functions
involving analytic features. Mathematical Programming, 116(1-2):5–16, 2009.

[4] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran. Proximal alternating minimization and projection
methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality. Mathe-
matics of Operations Research, 35(2):438–457, 2010.

[5] H. H. Bauschke, J. Bolte, and M. Teboulle. A descent lemma beyond Lipschitz gradient continuity:
first-order methods revisited and applications. Mathematics of Operations Research, 42(2):330–348,
2017.

[6] A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex
optimization. Operations Research Letters, 31(3):167–175, 2003.

[7] Sefi Bell-Kligler, Assaf Shocher, and Michal Irani. Blind super-resolution kernel estimation using an
internal-gan, 2019.

[8] J. Bolte, A. Daniilidis, A.S. Lewis, and M. Shiota. Clarke subgradients of stratifiable functions. SIAM
Journal on Optimization, 18(2):556–572, 2007.

[9] J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for nonconvex and
nonsmooth problems. Mathematical Programming, 146(1-2):459–494, 2014.

[10] J. Bolte, S. Sabach, M. Teboulle, and Y. Vaisbourd. First order methods beyond convexity and Lipschitz
gradient continuity with applications to quadratic inverse problems. SIAM Journal on Optimization,
28(3):2131–2151, 2018.

[11] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun. The loss
surfaces of multilayer networks. In Artificial Intelligence and Statistics, pages 192–204, 2015.

[12] D. Davis, D. Drusvyatskiy, and K. J. MacPhee. Stochastic model-based minimization under high-order
growth. ArXiv preprint arXiv:1807.00255, 2018.

[13] R. A. Dragomir, A. d’Aspremont, and J. Bolte. Quartic first-order methods for low rank minimization.
ArXiv preprint arXiv:1901.10791, 2019.

[14] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

[15] G. Gidel, F. Bach, and S. Lacoste-Julien. Implicit regularization of discrete gradient dynamics in deep
linear neural networks. arXiv preprint arXiv:1904.13262, 2019.

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

32

[17] S. Gunasekar, B. E. Woodworth, S. Bhojanapalli, B. Neyshabur, and N. Srebro. Implicit regularization
in matrix factorization. In Advances in Neural Information Processing Systems, pages 6151–6159, 2017.

[18] Filip Hanzely and Peter Richtárik. Fastest rates for stochastic mirror descent methods. ArXiv preprint
arXiv:1803.07374, 2018.

[19] L. T. K. Hien, N. Gillis, and P. Patrinos. Inertial block mirror descent method for non-convex non-smooth
optimization. ArXiv preprint arXiv:1903.01818, 2019.

[20] K. Kawaguchi. Deep learning without poor local minima. In Advances in neural information processing
systems, pages 586–594, 2016.

[21] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. ArXiv preprint arXiv:1412.6980,
2014.

[22] E. Laude, P. Ochs, and D. Cremers. Bregman proximal mappings and Bregman-Moreau envelopes under
relative prox-regularity. ArXiv preprint arXiv:1907.04306, 2019.

[23] Q. Li, Z. Zhu, G. Tang, and M. B. Wakin. Provable Bregman-divergence based methods for nonconvex
and non-lipschitz problems. arXiv preprint arXiv:1904.09712, 2019.

[24] H. Lu, R. M. Freund, and Y. Nesterov. Relatively smooth convex optimization by first-order methods,
and applications. SIAM Journal on Optimization, 28(1):333–354, 2018.

[25] M. C. Mukkamala and M. Hein. Variants of RMSProp and Adagrad with logarithmic regret bounds. In
Proceedings of the 34th International Conference on Machine Learning, pages 2545–2553, 2017.

[26] M. C. Mukkamala and P. Ochs. Beyond alternating updates for matrix factorization with inertial
Bregman proximal gradient algorithms. ArXiv preprint arXiv:1905.09050, 2019.

[27] M. C. Mukkamala, P. Ochs, T. Pock, and S. Sabach. Convex-concave backtracking for inertial Bregman
proximal gradient algorithms in non-convex optimization. ArXiv preprint arXiv:1904.03537, 2019.

[28] Y. Nesterov. Introductory lectures on convex optimization: a basic course, 2004.

[29] P. Ochs, Y. Chen, T. Brox, and T. Pock. iPiano: inertial proximal algorithm for nonconvex optimization.
SIAM Journal on Imaging Sciences, 7(2):1388–1419, 2014.

[30] T. Pock and S. Sabach. Inertial proximal alternating linearized minimization (iPALM) for nonconvex
and nonsmooth problems. SIAM Journal on Imaging Sciences, 9(4):1756–1787, 2016.

[31] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis, volume 317 of Fundamental Principles of
Mathematical Sciences. Springer-Verlag, Berlin, 1998.

[32] Yifan Wu, Barnabas Poczos, and Aarti Singh. Towards understanding the generalization bias of two layer
convolutional linear classifiers with gradient descent. In Kamalika Chaudhuri and Masashi Sugiyama,
editors, Proceedings of Machine Learning Research, volume 89 of Proceedings of Machine Learning Re-
search, pages 1070–1078. PMLR, 16–18 Apr 2019.

[33] Y. Xu and W. Yin. A block coordinate descent method for regularized multiconvex optimization with
applications to nonnegative tensor factorization and completion. SIAM Journal on imaging sciences,
6(3):1758–1789, 2013.

33

[34] C. Yun, S. Sra, and A. Jadbabaie. Global optimality conditions for deep neural networks. In International
Conference on Learning Representations, 2018.

[35] X. Zhang, R. Barrio, M. Martinez, H. Jiang, and L. Cheng. Bregman proximal gradient algo-
rithm with extrapolation for a class of nonconvex nonsmooth minimization problems. ArXiv preprint
arXiv:1904.11295, 2019.

34

	1 Introduction
	1.1 Related Work

	2 Bregman Proximal Minimization
	2.1 Smooth Adaptable Functions
	2.2 Bregman Proximal Gradient

	3 Bregman Distance for DLNN
	3.1 Smooth Adaptable Property for DLNN
	3.1.1 Even Number of Layers
	3.1.2 Odd Number of Layers

	3.2 Closed Form Updates for BPG

	4 Closed Form Inertial BPG
	5 Discussion of BPG Variants
	6 Experiments
	A Bregman distance and L-smad property
	A.1 Results for H1.
	A.2 Results for H2.
	A.3 Proof of Proposition ??
	A.4 Results for H3.
	A.5 Proof of Proposition ??.

	B Closed Form Update Steps
	B.1 Proof of Proposition ??
	B.2 Weight decay or L2-Regularization
	B.3 Closed Form Updates for L1 Regularization

	C Closed Form Inertia
	C.1 Proof of Proposition ??
	C.2 Closed Form Inertia for Matrix Factorization

	D Additional Experiments
	D.1 Time plots
	D.2 Statistical evaluation
	D.3 Experiment 2

