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Abstract. We address the problem of annotating a video sequence with
partial supervision. Given the pixel-wise annotations in the first frame,
we aim to propagate these labels ideally throughout the whole video.
While some labels can be propagated using optical flow, disocclusion
and unreliable flow in some areas require additional cues. To this end,
we propose to train localized classifiers on the annotated frame. In con-
trast to a global classifier, localized classifiers allow to distinguish colors
that appear in both the foreground and the background but at very dif-
ferent locations. We design a multi-scale hierarchy of localized random
forests, which collectively takes a decision. Cues from optical flow and
the classifier are combined in a variational framework. The approach
can deal with multiple objects in a video. We present qualitative and
quantitative results on the Berkeley Motion Segmentation Dataset.

1 Introduction

An annotated video carries rich information which can be used in many tasks
such as improving object classifiers, action recognition and pose estimation. An-
notating a video manually is a time consuming task and it comes at a cost.
Therefore, researchers have been looking at ways to automate parts of this pro-
cess [20]. Unsupervised large scale video segmentation in general scenes is cur-
rently beyond our abilities. However, making a manual segmentation available
in one frame determines the objects we are interested in and tells about their
appearance. Automatic segmentation of the rest of the video then becomes a
tractable problem, as shown in Fig. 1.

The main challenge in this task is the variation of the considered objects,
particularly in combination with disocclusion phenomena. As new parts of an
object become visible, there is no direct counterpart in the annotated frame.
Consequently, we must learn an object representation from the single annotated
frame that generalizes over the typical variations.

For this purpose, we propose the use of a hierarchy of localized random forests
trained on the initial frame. In contrast to a global classifier, a localized classifier
allows to distinguish objects that have similar global statistics, but differ locally.
For instance, some of the glove’s dark texture in Fig. 3(a) is similar to parts of
the background, but locally the textures are never the same. As the optimum
scale of localization is not known a priori, we suggest combining multiple scales
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Fig. 1. Given an annotated first frame of a video sequence, we want to achieve a dense
labeling of the entire video by propagating the annotations (labels) in the first frame.

in a hierarchy of classifiers. Random forests are particularly well suited for this
purpose, as they are very efficient and naturally allow combining results from
multiple forests.

Pixel classification is only needed in areas that cannot be directly propagated
via optical flow. We combine these two complementary cues in a variational
framework, where an additional regularizer ensures compact solutions. We show
quantitative results on the Berkeley Motion Segmentation Dataset [5], which
provides pixel accurate ground truth.

2 Related work

There are many problem settings of video segmentation in the literature. Inter-
active video segmentation [14, 12] relies on frequent user intervention to prevent
the errors from being propagated. It is very accurate and appreciated in video
editing, yet the interactive user input prevents its application to large scale video
annotation.

Our work is also related to classical tracking methods. Usually a bounding
box is propagated to later frames. Boosting based classifiers [17] and random
forest classifiers [16] are popular choices for learning and updating the tem-
plate model. Godec et al. [10] also give a rough segmentation of the object
being tracked. Also level set tracking [9] yields rough segmentations, yet with a
less sophisticated appearance model. Moreover, these methods are restricted to
tracking a single region.

It is also quite common to consider video segmentation as a spatio-temporal
MRF optimization problem [2, 18, 7]. Some of the other methods make use of the
superpixels. They connect them spatially and temporally to generate temporally
consistent object regions [15, 4, 19, 11]. This approach is often used in an unsu-
pervised setting, which usually leads to severe over-segmentation. As superpixels
ignore weak object boundaries, large errors can occur.

In [13] a variant of optical flow is used to propagate labels directly from a
training image to a test image. This is similar to how we use optical flow to
propagate labels from one frame to the next. Applied over large frame distances,
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Fig. 2. (a) Forward-backward flow consistency: let a pixel in frame t be denoted by xt

and let the forward flow from frame t to t+1 be vf . Then, xt+1 = xt + vf (xt). Let the
backward flow be vb. If there is no occlusion or estimation error then xt+1 +vb(xt+1) =
xt. As the optical flow is never perfectly accurate, we allow for a small radius r, in
which we consider the flow as reliable: ‖ vf (xt) + vb(xt + vf (xt)) ‖≤ r. (b) and (c)
Labels propagated from frame t to t+1. The white areas denote pixels with unreliable
flow.

this leads to erroneous results due to disocclusion. In contrast, we combine the
concept of propagation by optical flow with a localized classifier that is trained
to generalize over the object’s appearance and can fill disocclusion areas.

3 Optical Flow for Frame-wise label propagation

We start with a user segmented first frame of a given video sequence. Let n
different class labels be present. The labels are transferred from a frame at time
t to t+1 using optical flow from [5]. Optical flow is not reliable near object and
motion boundaries, particularly as there may be disocclusions from frame t to
t+1. It is important to exclude such critical areas from propagation. They are
detected by checking the consistency of the forward and the backward flow, as
explained in Fig. 2a.

Let xt denote a pixel in frame t and its corresponding pixel in frame t + 1
be xt+1. If the flow passes the consistency check, we assign xt+1 the label at xt.
Refer Fig.2(c) for a sample result. Areas that did not pass the consistency check
are marked in white. When applying the propagation successively, these areas
will get larger and larger, if they are not filled by complementary information.

4 Patch Classification using Localized Classifiers

For each pixel in frame t+1 which has not been assigned a label by optical flow,
we take the features of a patch around it and feed it to a classifier that has been
trained on the annotated first frame. We use random forests [3] since they are
computationally efficient, have good generalization properties and can be easily
applied to multi-class problems. Moreover, results from multiple random forests
can be combined in an elegant manner. This property will prove useful in the
following combination of multiple local classifiers. As features we use normalized
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(a) (b)

Fig. 3. (a) Advantage of localized classifier over a global classifier- the encircled area
can be easily misclassified as background by a global classifier whereas a local classifier
for an image block can be more discriminative. (b) Coarsely backtracking a pixel with
unreliable flow to the annotated Frame 1. A superpixel region around this pixel (shown
inside the circle) is backtracked using the average flow within the region.

LAB color histograms computed on 15 × 15 patches. Each channel is treated
separately with 32 bins per channel.

4.1 Localization of the Classifier

A single global classifier comes with the problem that overlapping appearance
characteristics between the classes lead to misclassifications. We propose the
use of localized classifiers based on the observation that the class overlap is less
likely to occur with respect to the local appearance distribution; see Fig. 3a.
We exploit the ‘locality of reference’ by dividing the image into non-overlapping
spatial blocks and training a separate random forest in each block. At the test
time, we run into a technical problem though: as objects move, the location of an
area of interest will be different from that in the training image. Consequently, we
must model the shift of the location to choose the right local classifier. We take a
region around the pixel that should be classified and recursively backtrack it to
the annotated frame; see Fig. 3b. Since we cannot backtrack the pixel itself - the
optical flow was unreliable at this point - we use the average flow of the reliable
flow vectors in a larger neighborhood around that pixel. To avoid neighborhoods
that span different objects, the neighborhood is defined by a superpixel computed
with the method in [1] using [8]. The size of the superpixel - steerable by choosing
the level in the superpixel hierarchy of [1] - is adapted such that it comprises at
least one reliable flow vector.

Even though the backtracking is far from being exact, the resulting location
(x′, y′) is accurate enough to choose the right local random forest. To avoid block
artifacts, we run bilinear interpolation on the output of the random forests in
the vicinity of (x′, y′), as shown in Fig. 4(a).

4.2 Hierarchy of Classifiers

An important question is how to choose an optimal block size. Intuitively it
makes sense to have a multi-scale model, where random forests are trained for
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Fig. 4. (a) Interpolation of the classification decisions by the participating blocks at
a particular hierarchy level. (b) Hierarchy of Localized Random Forests- a Random
Forest is trained for each block at each hierarchy level.

different block sizes and their decisions are combined to obtain a final score.
Apart from the advantage that we avoid a block size parameter, the additional
averaging over multiple forests has positive effects on the overall classification
performance.

We use a 3-level hierarchy with one random forest trained on the whole
image (level0), 2 × 2 blocks at level1, and 4 × 4 blocks at level2, as shown in
Fig. 4(b). We use 100, 30 and 10 trees for each forest at level0, level1 and level2,
respectively.

Instead of giving each level of the hierarchy the same influence, we suggest a
weighted average with a weight based on the entropy of the respective random
forest. Minimum entropy is already used as a splitting criterion when training
a random forest. Now we use the entropy in the opposite way: a high entropy
in a block indicates a good mixture of labels from all the classes. Thus the
classifier trained in a high entropy block will have better data to make a decision
than a classifier that has just seen a single label, i.e., a low entropy block. Let
Bl = {Bl1, ..., Bl4} denote the set of neighboring blocks of (x′, y′) used for bilinear
interpolation at hierarchy level l. We have the frequencies of all the labels in a
block Blj as p1(Blj), ..., p

n(Blj), where n denotes the number of class labels. The
entropy of a block is then,

h(Blj) = −
n∑
i=1

pi(Blj) log(pi(Blj)) (1)

Let si(Blj) be the score of label i output by the Random Forest for block Blj ,
then the combined score for label i is,

si =
∑
j,l

αljexp(h(Blj))s
i(Blj) (2)

where αlj is the weight due to the bilinear interpolation.
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Fig. 5. (a) Frame t. (b) shows labels propagated using only optical flow, the “drag”
effect is evident from the segmentation near object motion, i.e., the legs. (c) shows
the effect of our framework in addition to the optical flow to get a more accurate
segmentation.

5 Integration of the cues into a Variational framework

In the previous sections we have described two different sources of information
to label each pixel independently by either optical flow based label propagation
or a classifier decision. Additionally, we must avoid noisy decisions. Hence, we
need a smoothness prior that prefers a homogenous labeling in smooth image
areas. All of this can be integrated nicely in a variational approach.

Let Li be the set of coordinates occupied by label i transferred by optical
flow and u′ := (u′1, . . . , u

′
n) : Ω → {0, 1}n, n ∈ N be a function indicating the n

different labels, i.e.,

u′i(x) :=

{
1, if x ∈ Li
0, else,

(3)

where Ω ⊂ R2 denotes the image domain.
We seek a function u := (u1, . . . , un) : Ω → {0, 1}n that stays close to the

labels propagated from the previous frame using optical flow for points in L :=⋃n
i=1 Li. This is achieved by minimizing the energy

EOF(ut+1(x)) :=
1

2

∫
Ω

c(x)
n∑
i=1

(
ui,t+1(x)− u′i,t(x+ vb(x))

)2

dx, (4)

where vb is the backward flow from frame t+1 to t and and c : Ω → {0, 1} is
a confidence indicator function with value 1 where the optical flow passes the
consistency check and 0 elsewhere.

On points not covered by optical flow based propagation, we make use of the
local classifier’s output by introducing one more data term which will aid the
decision process at these points to take a specific label. We define this part of
our energy functional as

ELC(ut+1(x)) :=

∫
Ω

(1− c(x))

n∑
i=1

−si(x)ui,t+1(x)dx, (5)
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where si is the score given by the classifier (2) at position x for label i. The
advantage of adding (5) over just combining (4) with the smoothness prior is
shown in Fig. 5.

A convex combination of the data terms along with a regularizer yields

E := α(EOF + ELC) + (1− α)EReg (6)

s.t.
∑
i ui,t+1(x) = 1, ∀x with a model parameter α in [0, 1).

We use a weighted TV based regularizer,

EReg(ut+1(x)) =

∫
Ω

f(x)

√√√√( n∑
i=1

|∇ui,t+1(x)|2 + ε2

)
dx, (7)

where f(x)=(|∇I(x)|2 + ε2)
−1

2 is a weighting function that reduces smoothing
across image edges.

For minimizing (6) we relax the indicator functions ui to take values in [0, 1].
The relaxed problem is convex and we obtain its global optimum by computing
the Euler-Lagrange equations and solving the nonlinear system via fixed point
iterations and successive over-relaxation (SOR). We obtain the final integer so-
lution by assigning each x the label i with the maximum ui(x).

6 Experiments and Results

We present quantitative results on the Berkeley Motion Segmentation Dataset
(BMS) [6]. BMS has 26 challenging video sequences with varying contrast and
illumination and significant motion. For quantitative analysis we have evaluated
our output against the ground truth at frame 10, 20, 30, 40 and 50. The evalu-
ation is done by measuring the percentage of pixels that are assigned a different
label than the ground truth. This pixel error is calculated for only those classes
which were present in the annotated first frame, i.e., new objects that appear
later in the video are not taken into consideration. We have kept the parame-
ters fixed for all the sequences with α = 0.6. Our method takes approximately
75 seconds to segment each frame on a standard computer. The running time
includes the optical flow and superpixel computation as well as the SOR solver
(which occupies a major percentage of the running time).

Fig. 6 shows the average pixel error across all sequences in BMS. A compari-
son to the baseline, which uses only optical flow to propagate the labels and fills
the unknown areas with the smoothness prior (i.e., setting ELC = 0), reveals the
importance of adding a classifier that deals with disocclusion areas. In particu-
lar when labels are propagated over many frames, a classifier improves results
considerably.

The comparison between a global random forest and a k-nearest-neighbor
classifier further shows that the discriminative training of random forests clearly
outperforms a simple memorization of the patches of the first frame. Apart



8 Naveen Shankar Nagaraja, Peter Ochs, Kun Liu and Thomas Brox

(a) (b)

Fig. 6. (a) Average pixel error over the BMS sequences after 10,20,30,40 and 50 frames.
We compare the proposed hierarchy of random forests (HRF) to a baseline using only
optical flow (OF), a k-nearest-neighbor classifier (kNN), a random forest trained on
the whole image (GRF) and random forests trained on the lowest level of hierarchy
(LRF) i.e. 4 × 4 blocks. (b) The bar chart shows the average pixel error over all the
sequences over all the 50 frames with the exact value in the legend.

from the better performance, random forests are also much faster than a k-NN
classifier.

Finally, the comparison between the global random forest, the localized ran-
dom forest on 4×4 blocks, and the proposed hierarchy shows that the hierarchy
performs the best. Fig. 7 shows some qualitative results including some typical
failure cases.

7 Conclusion

We have presented a method for video segmentation in which we start with a
segmented frame and propagate its labels by combining two complementary cues
in subsequent frames - one based on optical flow and another based on classifica-
tion. For the classifier we have proposed a hierarchy of localized random forests,
which outperforms the classical global random forests as shown by a quantitative
evaluation on a publicly available dataset. The point-wise label predictions are
combined with a smoothness prior in a variational setting. The approach can
deal with disocclusion and appearance changes as well as multiple objects. It
can cover 30-50 frames even on challenging material without introducing large
errors. We believe that this tool will help in providing fully segmented video
material, which will be useful in many computer vision tasks.
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Fig. 7. Segmentation results for some of the BMS sequences with their corresponding
frame number. The last two rows show typical failure cases, where an object gets fully
occluded by another.
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