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On Iteratively Reweighted Algorithms for Nonsmooth Nonconvex Optimization
in Computer Vision∗
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Abstract. Natural image statistics indicate that we should use nonconvex norms for most regularization tasks
in image processing and computer vision. Still, they are rarely used in practice due to the challenge of
optimization. Recently, iteratively reweighed �1 minimization (IRL1) has been proposed as a way to
tackle a class of nonconvex functions by solving a sequence of convex �2-�1 problems. We extend the
problem class to the sum of a convex function and a (nonconvex) nondecreasing function applied to
another convex function. The proposed algorithm sequentially optimizes suitably constructed convex
majorizers. Convergence to a critical point is proved when the Kurdyka–�Lojasiewicz property and
additional mild restrictions hold for the objective function. The efficiency and practical importance
of the algorithm are demonstrated in computer vision tasks such as image denoising and optical flow.
Most applications seek smooth results with sharp discontinuities. These are achieved by combining
nonconvexity with higher order regularization.
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1. Introduction. In the last decade we have seen a strong interest in the development of
efficient first-order algorithms for minimizing structured convex optimization problems [61, 8,
28, 23, 62]. Nowadays, we have algorithms at hand that can be applied to efficiently solve
convex optimization problems frequently arising in computer vision, signal processing, and
machine learning problems.

However, while most of these problems can be modeled with sufficient accuracy using
convex objective functions, it is also well known that certain desirable modeling aspects, such
as the robustness to noise and the recovery of sparse and discontinuous signals, require the
use of nonconvex objective functions. The goal of this paper is therefore to develop efficient
optimization algorithms that can be applied to a certain class of nonsmooth and nonconvex
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Figure 1. Nonconvex prototype functions for F2.

objective functions of the form

(1) min
x∈X

F1(x) + F2(G(x)) ,

where F1 is a convex function, G is a coordinatewise convex function, and F2 is nonconvex.
Figure 1 shows nonconvex functions F2 that are particularly interesting in applications. The
structure of (1) differs from related convex problems, for which efficient algorithms are avail-
able, only in F2 ◦ G possibly being nonconvex. One would expect that such a strong analogy
can be exploited. Indeed, for the algorithm we propose in this paper we can show some favor-
able properties, including convergence of the function values and, under more assumptions,
convergence of the sequence of arguments. The numerical analysis demonstrates efficiency
and robustness towards local optima. At the same time, the algorithm allows us to deal with
several interesting nonconvex problems in image processing.

The proposed algorithm is in the fashion of classical majorization-minimization algorithms.
It generates and solves a sequence of convex optimization problems. The nonconvex part F2

is at each iteration approximated by means of a majorizing convex surrogate function. Then
the resulting convex optimization problem is solved. As a matter of fact, the convex surrogate
function has a structure that is amenable to efficient first-order methods for structured convex
optimization.

Although the convex subproblems are known to converge, it is not trivial to prove the
convergence for the overall nonconvex problem. We show two convergence results. The first
establishes convergence for a subsequence of the sequence generated by our algorithm. This
result is easy to obtain and mainly stems from the fact that majorization-minimization al-
gorithms generate a sequence of nonincreasing function values. The second result states the
convergence of the whole sequence. It requires a more sophisticated analysis and more as-
sumptions, such as Lipschitz continuity of the gradient of F2. For a subclass of problem (1)
satisfying these assumptions, convergence of the whole sequence of arguments to a critical
point is proved. One part of the stronger regularity assumption is that the objective is a KL-
function; i.e., the Kurdyka–�Lojasiewicz inequality holds on the whole domain. This implies a
sufficient descent property for gradient based methods also in areas where the function is flat
around local optima. Our approach to proving convergence is to show that the requirements
of [6] are satisfied.
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In our numerical experiments we will show that the performance of the proposed algo-
rithms is comparable to related algorithms for convex optimization, e.g., gradient descent
or forward-backward splitting algorithms. Moreover, the proposed algorithms are easy to
implement, which makes them interesting for practical applications.

Problems like (1) arise frequently in image processing, computer vision, or machine learn-
ing. The applicability of the iteratively reweighted �1 algorithm, which arises as a special case
of the algorithm presented in this paper, was already demonstrated in an earlier conference
paper [68]. Whereas the focus in the conference paper was the diversity of applications, such
as denoising, deconvolution, depth map fusion, and optical flow, in this paper we concentrate
on the difference in modeling concepts in denoising and optical flow estimation. However, the
concept of how the nonconvex penalty functions are used easily generalizes to many other
problems, e.g., deconvolution, depth map fusion, stereo estimation, or superresolution. Re-
placing convex penalty functions by nonconvex functions usually leads to better results. In
particular, we analyze robust data-terms and the usage of edge-enhancing nonconvex penal-
izers. As a special instance, we are the first to propose a nonconvex extension of the total
generalized variation (TGV) regularizer [17]. The TGV seminorm is a convex penalizer that
can reconstruct piecewise smooth functions. Due to the convexity of the regularizer, first-
and higher-order discontinuities are only preserved and are not enhanced. This may lead to
oversmoothing effects in the case of strong noise or weak data-terms. It turns out that this
effect can be partly avoided by using nonconvex penalizers in the TGV seminorm.

2. Related work. Since the seminal works of Geman and Geman [42], Blake and Zisser-
mann [12], and Mumford and Shah [59] on image restoration, the application of nonconvex
potential functions in variational approaches for computer vision problems has become a
standard paradigm. Nonconvexity can be motivated and justified from different viewpoints,
including robust statistics [11], nonlinear partial differential equations [69], and natural image
statistics [48]. Since then, numerous works demonstrated empirically [11, 77] that nonconvex
potential functions are the right choice for most regularization tasks in computer vision.

However, the downside is optimization. While there has been vast progress in convex
optimization—today, many nonsmooth convex optimization programs can be solved with
comparable efficiency to linear programs—nonconvex optimization is still rarely applied in
practice. Indeed, Rockafellar pointed out that “. . . the great watershed in optimization isn’t
between linearity and nonlinearity, but convexity and nonconvexity” [SIAM Review, 35 (1993),
p. 185].

Gradient descent based methods, such as steepest descent, quasi-Newton, or Newton meth-
ods [60, 65, 10], are the classical approaches for general optimization and are also applicable in
the nonconvex setting as long as the objective is smooth enough. Alternatives are hill-climbing
methods [79], annealing-type schemes [42], or graduated nonconvexity (GNC) [12, 63]. How-
ever, the efficiency of these methods leaves room for improvement. The worst-case complexity
bound for general nonconvex problems derived in [60] supports this statement. This means
that there is only hope for efficient algorithms when considering nonconvex optimization prob-
lems of a specific structure.

In convex optimization, many efficient algorithms, such as Douglas–Rachford [33, 34],
forward-backward splitting [55, 29, 8, 60], primal-dual approaches [23, 70, 45], or the aug-
mented Lagrangian method [10, 46, 74], originate from the proximal point algorithm [58, 75].
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While it seems to be difficult to generalize primal-dual approaches to the nonconvex setting
directly, the augmented Lagrangian method in [38, 3], the gradient projection method in [54,
44, 6], and a forward-backward splitting in [39, 78, 62, 6] were used for nonconvex optimization.
In [67] the iPiano algorithm is introduced in the nonconvex setting. It combines ideas from
the forward-backward splitting and the heavy-ball method from Polyak [73]. In our numerical
experiments, we will consider this algorithm because several algorithms, such as gradient
descent, projected gradient descent, heavy-ball, and forward-backward, are special cases of it.

From another perspective, the gradient descent method can also be interpreted as a
majorization-minimization (MM) algorithm [9, 53, 49]. The iteration step of the gradient de-
scent method is equivalent to minimizing an isotropic quadratic upper bound—the quadratic
upper bound that appears in the descent lemma (see, e.g., Lemma 2). This way, many
algorithms can be considered as special instances of the MM algorithm. Also, expectation-
maximization algorithms are MM algorithms [35, 36, 51]. The MM algorithm generates a
sequence of simpler majorizing functions and computes the next iterate as a minimizer of this
surrogate function. The MM principle can also be used for analytically estimating step size
parameters for a given search direction (on a subspace) [25, 26, 37]. In this context majorizers
are mostly quadratic functions.

An important subclass of the MM algorithms related to our algorithm is that of Geman
and Reynolds [41]. They rewrote the (smooth) nonconvex potential function as the infimum
over a family of quadratic functions. This transformation suggests an algorithmic scheme that
solves a sequence of quadratic problems, leading to the so-called iteratively reweighted least
squares (IRLS) algorithm. This algorithm quickly became a standard solver, and hence it has
been extended and studied in many works; see, e.g., [81, 64, 31]. Convergence results can be
found in [50, 1].

The IRLS algorithm can be applied only if the nonconvex function can be well approxi-
mated from above with quadratic functions. However, this does not cover interesting functions,
such as log(1 + |x|), that are nondifferentiable at zero. Candes, Waken, and Boyd [21] tack-
led this problem by the so-called iteratively reweighted �1 (IRL1) algorithm, which solves a
sequence of nonsmooth �1 problems, and hence can be seen as a nonsmooth counterpart to
the IRLS algorithm. Originally, the IRL1 algorithm was proposed to improve the sparsity
properties in �1 regularized compressed sensing problems.

First convergence results for the IRL1 algorithm have been obtained by Chen and Zhou
in [24] for a class of nonconvex �2-�p problems used in sparse recovery. In particular, they show
that the method monotonically decreases the energy of the nonconvex problem. Unfortunately,
the class of problems they considered is not suitable for typical computer vision problems, due
to the absence of a linear operator that is needed in order to represent spatial regularization
terms.

In our previous work [68], the convergence analysis of [24] was generalized to linearly
constrained optimization problems. This analysis made the algorithm and the theoretical
results applicable to many computer vision problems. In the present paper, the algorithm
will be generalized further and the convergence analysis will be further extended compared to
[24, 68]. The convergence result is based on the analysis of an abstract descent algorithm [6]
and requires the objective function to be a Kurdyka–�Lojasiewicz (KL) function, i.e., to satisfy
the KL inequality (see the appendix). See [56, 57, 52] for smooth KL functions and [14, 15]
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for nonsmooth functions. Almost all functions used in computer vision are KL functions. For
the examples considered in this paper the property will explicitly be verified. For informa-
tion about the abstract classification of KL functions, we refer the reader to [6, 16, 52] and
references therein.

During the last few years, using the Kurdyka–�Lojasiewicz property, several algorithms have
been shown to converge [27, 6, 4, 5]. Also the iPiano algorithm, considered for comparison in
this paper, was recently shown to converge when the objective function has the KL property
[67]. A last class of problems, where the KL property is allowed to show convergence, is
the class of DC-programming [80, 2, 47] (nonconvex functions that can be written as the
difference of convex functions). The algorithm proceeds by constructing a sequence of convex
optimization programs by linearizing sequentially one of the two convex functions.

Another line of research for solving nonconvex optimization problems, where an algo-
rithm’s convergence is not in doubt, is minimizing the convex envelope of the objective
[30, 22, 71, 43]. Here, the challenge is the construction of a suitable convex envelope and
efficient minimization due to the (usually) increasing number of dimensions.

3. The model. We study a nonconvex optimization problem of a specific structure in a
finite dimensional real vector space X of dimension dim(X) = n ∈ N. The standard inner
product and norm are denoted by 〈·, ·〉 and ‖ · ‖22 := 〈·, ·〉, respectively. The optimization
problem reads

(2) min
x∈X

F (x) := min
x∈X

F1(x) + F2(G(x)) ,

with a lower semicontinuous (lsc), extended, real-valued, proper function F : X → R where
R := R ∪ {∞}. In addition we assume that F is bounded from below, i.e., infx∈X F (x) =:
F > −∞. We require that F1 : X → R be proper, lsc, and convex. Note that we explicitly
allow the function F1 to take on values at infinity, and hence it can be, for example, the
indicator function of a convex set. The function G : X → X2 maps from X into another finite
dimensional real vector space X2 with dimension n2 := dim(X2) ≤ n. We assume that each
coordinate function Gi, i = 1, . . . , n2, is convex. The function F2 : G(X) → R we assume
to be coordinatewise nondecreasing, i.e., F2(x) ≤ F2(x + λei), whenever x, x + λei ∈ G(X)
and λ > 0, where ei is the ith standard basis vector of X2, i = 1, . . . , n2. We note that
coordinatewise convexity of G gives very simple structure to the set G(X): it is a Cartesian
product of intervals, with each infinite on one or both ends.

Example 1 (denoising). Image denoising is a simple example from image processing that
fits into the framework of (2). Given a noisy image f ∈ X the goal of denoising is to find the
image u ∈ X such that f = u + h, where h ∈ X is the noise that deteriorated the recording.
Commonly, u instead of x denotes the optimization variable in image processing. The denoised
image, i.e., the result, can be sought as minimizer of

min
u∈X

λ‖u − f‖1 +
∑
i

log(1 + |Du|i) ,

where λ ∈ R+ and |Du| ∈ G(X) denotes the vector of coordinates |Du|i :=√
((Dxu)i)2 + ((Dyu)i)2, where Dxu is a discrete implementation of the x-derivative of the
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image (considered as a function R
2 → R). The first term measures the discrepancy between

the measurements and the sought-after denoised image. It is called a data-term and given
by the proper, convex (nonsmooth) function F1(u) = λ‖u − f‖1 in (2). The second term,
called the regularization-term, invokes some prior knowledge about natural image statistics.
The use of the nonconvex function F2(y) =

∑
i log(1 + yi) on G(X) for the regularization-

term stresses the general properties of images of being smooth and having some sharp jump
discontinuities. Obviously, F2 is coordinatewise nondecreasing on G(X) (see Figure 1). The
coordinate functions Gi(u) = |Du|i are convex and make F2 ◦ G nonsmooth.

Finding global minimum of a nonsmooth nonconvex function, as in (2), is in general not
feasible. We hence only aim to find a critical point of the function F , i.e., x ∈ X : 0 ∈ ∂F (x).
Here we make use of limiting-subgradient; see Definition 4 in the appendix. Critical points are
connected to local minima of the function by the following Fermat’s rule ([76, Thm. 10.1]).

Theorem 1 (Fermat’s rule). If a proper function F : Rn → R has a local minimum at x̄,
then 0 ∈ ∂F (x).

4. Iterative convex majorization minimization. In this paper, we study a subclass of MM
methods that is suitable for solving the minimization problem (2). The idea of MM algorithms
is to minimize majorizers of the function instead of the function itself. The major challenge is
the construction of majorizing functions that are easier to minimize than the original function.
Invoking only some weak assumptions about the structure of the optimization problem (2),
as done above, makes it possible to design such majorizing functions.

We propose to majorize F2 with a convex function F xk

2 that approximates F2 such that

F xk

2 ◦ G is convex and meets F2 ◦ G at xk. More formally, consider the generic Method 1.

Method 1 (iterative convex majorization-minimization method).
• Initialization: Choose a starting point x0 ∈ X with F (x0) < ∞ and define a

suitable family of convex surrogate functions (F x
2 )x∈X such that for all x ∈ X,

F x
2 ∈ F2,G(x) holds, where

(3) F2,G(x) :=

{
f : X2 → R

∣∣∣∣∣
f proper, convex,

f nondecreasing on G(X),

f(G(x)) = F2(G(x))

∀y ∈ G(X) : f(y) ≥ F2(y).

}

• Iterations (k ≥ 0): Update

(4) xk+1 = arg min
x∈X

F1(x) + F xk

2 (G(x)) .

Nondecreasingness of F x
2 provides convexity of the composition F x

2 ◦ G. As the above
formulation is rather abstract, we exemplify the algorithm.
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Figure 2. Visualization of one update step (4) for optimization problem (5) at xk = −0.5. Left: convex
function F1. Middle: nonconvex function F2 ◦ G (red) and its convex majorizer F−0.5

2 ◦ G (blue). Right: the
function F = F1 +F2 ◦G (red) and its majorizer F−0.5 = F1 +F−0.5

2 ◦G (blue). The blue function in the right
plot is to be minimized to obtain xk+1.

Example 2. We consider a simplified version of Example 1 and restrict X = X2 = R,
G(x) = |x| :

(5) min
x∈R

F (x) = min
x∈R

F1(x) + F2(x) = min
x∈R

2|x − 1| +
1

2
log(1 + 25x2) .

Figure 2 visualizes one update step using (4) at xk = −0.5. For details on how to choose
the surrogate function, we refer the reader to the specialized algorithms (here, Algorithm 5)
introduced in the following subsections.

We call Method 1 “generic” because it still requires the choice of suitable convex surrogate
functions. As F1 is already convex, the approximation F xk

2 of F2 is the focus of attention. A
choice of approximation follows from the following property of MM algorithms.

Proposition 1. Let (xk)k∈N be generated by Method 1, and let F x
2 ∈ F2,G(x) for all x ∈ X.

Then, the sequence (F (xk))k∈N monotonically decreases and converges.
Proof. The proof directly follows from F being bounded from below by F and the defini-

tions of xk and F xk

2 :

F ≤ F (xk+1) ≤ F1(xk+1) + F xk

2 (G(xk+1)) ≤ F1(xk) + F xk

2 (G(xk)) = F (xk) .

The sequence (F (xk))k∈N decreases and is bounded from below. Hence, it converges.
Clearly, at each iteration the value of the function F decreases at least as much as the

value of the majorizing function. This suggests using surrogate functions whose minimum is
minimal. Of course, it could happen that another surrogate function with a higher minimum
yields a lower value of the original function; however, there is no guarantee of this. Finding the
optimal approximation according to the criterion of guaranteed maximal decrease of function
values is hard. In general, a majorizer f ∈ F2,G(xk) that is not the sum of F1 and another
convex function can have a lower minimum than our approximation. However, this better
majorizer may be complex to construct and difficult to optimize. Thus, we aim to fulfill the
criterion of guaranteed maximal decrease of function values in the class of surrogate functions
that are the sum of F1 and another convex function. If we talk about optimal majorizers in
the following, we mean optimality according to the guaranteed decrease of function values
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in this class. These are majorizers (constructed under certain conditions) with the lowest
minimum.

The different algorithms that will be presented in the following section take into account
the characteristics of F2. Considering again Figure 1, it is obvious that there is no simple
universal choice for the surrogate function. For instance, close to 0 the functions in Figures 1(a)
and (b) may be well approximated by the absolute value function, whereas this is a bad choice
for Figure 1(c). Different functions require different construction principles of the majorizer.
In this paper, we show constructions of majorizers, which address (2). Some majorizers are
proved to be optimal in the sense explained above. Method 1 serves as a tool to prove their
convergence in a unified framework. However, it covers many other possible constructions
(thus also convergence) of majorizers that are not explicitly presented here.

5. Iteratively reweighted convex algorithms. As the function F2 in the optimization
problem (2) does not change, it may be possible to find a single convex function that, weighted
appropriately, can serve as majorizer for F2 at each step of Method 1. This is the principle of
iteratively reweighted algorithms. The construction of majorizers according to this principle is
easier than for the very general Method 1 and allows for explicit algorithms. The reweighting
algorithms considered in the subsequent subsections are all special cases of the IRconvex
Method 2, which is an instance of Method 1.

Method 2 (iteratively reweighted convex method (IRconvex)).
• Initialization: Define a convex function F c

2 : G(X) → R
n′
2, n′

2 ∈ N, and a family
of vectors (wx)x∈X such that

y → 〈wx, F c
2 (y)〉 ∈ F2,G(x), x ∈ X ,

and starting point x0 ∈ X with F (x0) < ∞.
• Iterations (k ≥ 0): Update

(6) xk+1 = arg min
x∈X

F1(x) +
〈
wxk

, F c
2 (G(x))

〉
.

Remark 1. As the optimization problem in (6) is independent of constants, y → 〈wx, F c
2 (y)〉

may be in F2,G(x) only after adding a constant. Formally this could be achieved by setting

F̃2
c

:= (F c
2 , 1) and w̃x := (wx, a), where a ∈ R. Being aware of it now, subsequently we will

simply neglect the constant.

5.1. Iteratively reweighted �1 algorithm. Algorithm 3, the iteratively reweighted �1 al-
gorithm, will be shown to be optimal for the optimization problem (2), in a certain sense,
when F2 is concave on G(X). We denote here by ∂̄f := −∂(−f) the limiting-supergradient,
the analogue of the limiting-subgradient but for concave functions. The usage of ∂̄ instead of
∂ makes the algorithm slightly more general. For F2 concave it is ∂F2(x) ⊂ ∂̄F2(x) on the
interior of G(X).
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Algorithm 3 (iteratively reweighted �1 algorithm (IRL1)).
• Assumption: F2 is concave on G(X).
• Initialization: Define a family of vectors (wx)x∈X with

wx ∈ ∂̄F2(y), y = G(x), x ∈ X ,

and starting point x0 ∈ X with F (x0) < ∞.
• Iterations (k ≥ 0): Update

(7) xk+1 = arg min
x∈X

F1(x) +
〈
wxk

, G(x)
〉

.

Remark 2. As mentioned in Remark 1, the functions x → 〈wxk
, G(x)〉 may not be ma-

jorizers of F2. However, they become majorizers when shifted by suitable constants which do
not affect (7). The exact majorizer will be considered in Proposition 2.

Example 3. We consider the same optimization problem as in Example 1. Obviously,
F2(y) =

∑
i log(1 + yi) is nondecreasing and concave on G(X) = [0; +∞), and F1(u) =

λ‖u − f‖1 and Gi(u) = |Du|i are convex. For uk ∈ X the vectors wuk
in Algorithm 3 read

wuk

i = 1/(1+|Duk |i), which is defined as |Duk|i :=
√

((Dxuk)i)2 + ((Dyuk)i)2, and the convex
surrogate optimization problem in (7) reads

min
u∈X

λ‖u − f‖1 +
∑
i

wuk

i |Du|i .

Each of these subproblems is a denoising problem with total variation regularization with
coordinates differently weighted.

As discussed before, in general it is hard to construct the best surrogate function according
to the criterion of guaranteed maximal decrease of function values. However, assuming that
F2 is concave on G(X), the construction is possible and used in Algorithm 3.

Proposition 2. If F2,G(xk) is defined as in (3) and F2 is concave on G(X) and differentiable
at G(xk), then the optimal majorizer of F2 ◦ G at xk

arg min
f∈F2,G(xk)

(
min
x∈X

f(G(x))

)
is given by

F̂2(y) =
〈
∇F2(G(xk)), y − G(xk)

〉
+ F2(G(xk)).

Moreover, F1+ F̂2 ◦G is also the optimal majorizer of F among majorizers of F corresponding
to majorizers of F2 ◦ G from the class F2,G(xk).

Proof. Due to concavity of F2, the function F̂2 is a majorizer of F2. It also clearly fulfills
all other conditions belong to the class F2,G(xk). On the other hand, for any convex function f

such that f(G(xk)) = F2(G(xk)) and f(y) ≥ F2(y) for all y ∈ G(X), we have f(y) ≥ F̂2(y) for
all y ∈ G(X). Indeed, suppose there exists y∗ such that f(y∗) < F̂2(y∗). Then differentiability
of F2 at G(xk) implies that there exists t∗ ∈ (0, 1) such that

t∗f(y∗) + (1 − t∗)f(G(xk)) < F2(t∗y∗ + (1 − t∗)G(xk)) ≤ f(t∗y∗ + (1 − t∗)G(xk)).
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This contradicts convexity of f ; hence our supposition was not valid, and f(x) ≥ F̂2(x) for all
x ∈ X. Therefore, f(G(x)) ≥ F̂2(G(x)) for all x ∈ X, which immediately gives

min
x∈X

f(G(x)) ≥ min
x∈X

F̂2(G(x)),

i.e., F̂2 ◦G is the best majorizer of F2. Moreover, F1(x) + f(G(x)) ≥ F1(x) + F̂2(G(x)) for all
x ∈ X, and hence F1 + F̂2 ◦ G is also the optimal majorizer of F .

5.2. Iteratively reweighted tight convex algorithm. The iteratively reweighted �1 algo-
rithm, Algorithm 3, is optimal for a certain class of functions, but not applicable to many
other practically interesting cases, such as, for example, F2(|x|) = log(1 + |x|2) (see Figure 1).
The reason is that close to 0, this prototype function is strongly convex, and hence not ma-
jorized by tangents. Fortunately, the structure of this function allows for a simple and tight
majorizer. Namely, let us consider the class Fcc consisting of functions f : Rn

+ → R such that
1. f is additively separable, i.e., f(x1, . . . , xn) = f1(x1) + · · · + fn(xn);
2. every fj is convex in the convexity region [0, rj] and concave in the concavity region

[rj, +∞) for some rj ≥ 0.
For simplicity we also suppose that there exist left and right derivatives f ′

j(r
−
j ) and f ′

j(r
+
j ).

Then for f ∈ Fcc we denote sj = max(f ′
j(r

−
j ), f ′

j(r
+
j )) and define the following functions:

(8) tj(xj) =

{
fj(xj) if xj ≤ rj,

fj(rj) + sj(xj − rj) if xj > rj.

We set Tf (x) = (t1(x1), . . . , tn(xn))� to be the vector of all these functions. Each tj majorizes
corresponding fj because in the convexity region these two functions coincide, while in the
concavity region, tj majorizes the tangent fj(rj) + f ′

j(r
+
j )(xj − rj) of the concave function fj.

Moreover, each tj is convex by construction. We hence can plug T into Method 2, yielding
the following algorithm.

Algorithm 4 (iteratively reweighted tight convex algorithm: IRTight).
• Assumption: F2 ∈ Fcc.
• Initialization: Define a family of vectors wx defined for all i = 1, . . . , dim(X2) by

wx
i =

{
1, yi ≤ ri
(vx)i
t′i(yi)

, yi > ri
, vx ∈ ∂̄F2(y) , y = G(x), x ∈ X,

and starting point x0 ∈ X with F (x0) < ∞.
• Iterations (k ≥ 0): Update

(9) xk+1 = arg min
x∈X

F1(x) +
〈
wxk

, TF2(G(x))
〉

.

As we already have shown, the functions tj majorize corresponding fj. Weighting the func-
tions with wx

i does not remove the majorization property. More precisely, if vi ∈ ∂̄fi(y
0
i ), wi =

vi · (t′i(y
0
i ))−1, then witi(yi) + fi(y

0
i ) − witi(y

0
i ) ≥ f(yi) for all yi.
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5.3. Iteratively reweighted Huber algorithm. Consider the same class of functions Fcc

as in the previous subsection. In practice it is beneficial when the majorizing function has
simple analytic form. This may not be the case for tight convex majorizers introduced above.
However, a wide class of functions can be majorized with the help of the Huber function,
which is defined as

(10) hε(‖x‖2) =

{
1
2ε‖x‖22 if ‖x‖2 ≤ ε,

‖x‖2 − ε
2 otherwise.

We define Hε(y) := (hε(y1), . . . , hε(yK)), which applies (10) coordinatewise. Supposing that
F2 is differentiable on an open superset of G(X), we can formulate the following algorithm.

Algorithm 5 (iteratively reweighted Huber algorithm: IRHuber).
• Assumption: F2 ∈ Fcc.
• Initialization: Define a family of vectors wx defined for all i = 1, . . . , dim(X2) by

wx
i =

(∇F2(y))i
h′
ε(yi)

, y = G(x), x ∈ X,

and starting point x0 ∈ X with F (x0) < ∞.
• Iterations (k ≥ 0): Update

(11) xk+1 = arg min
x∈X

F1(x) +
〈
wxk

,Hε(G(x))
〉

.

Example 4. Consider the optimization problem

min
u∈X

λ‖u − f‖1 +
1

2

∑
i

log(1 + |Du|2i ) ,

where the convention for |Du|i is as in Example 3. The only difference between Examples 3
and 4 is the square in the second term. However, as mentioned already, this makes IRL1 an
unsuitable choice (see Remark 3). The term F2(G(x)) = 1

2

∑
i log(1+|Du|2i ) with G(x) = |Du|i

is better approximated using the Huber function, which is quadratic close to 0. Vice versa,
approximating the function from Example 3 with the Huber function is also a bad choice.

Obviously, F2 is smooth and belongs to the class Fcc. In order to write down the surrogate
function we need to calculate the derivative of F2. For all i, it is (∇F2(y))i = yi/(1 + y2i ).
The weights are chosen such that the surrogate function has the same slope as ∇F2 at uk. As
the Huber function has the derivative (∇Hε(y))i = yi/ε, if |yi| ≤ ε, and (∇Hε(y))i = yi/|yi|
otherwise, the weight vector wuk

is inferred as

wuk

i =
max{ε, |∇uk|i}

1 + |∇uk|2i
.

Remark 3. Within our framework there are different ways to approximate the function
F2(G(x)) = log(1 + |x|2). We consider this in one dimension here. The option we used in the
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preceding example corresponds to setting G(x) = |x|, F2(y) = log(1 + y2) and approximating
F2(y) using the Huber function. However, we could also set G(x) = |x|2, F2(y) = log(1 + y)
and approximate F2(y) as in the IRL1 algorithm. Then, the (convex) surrogate function to be

minimized in the IRL1 algorithm is F1(x)+wxk
G(x) = F1(x)+wxk |x|2 and the approximation

is by a quadratic function, and hence worse than the approximation with the Huber function.
This choice of G and F2 corresponds to the well-known iteratively reweighted least squares
algorithm (IRLS), which we will recap in subsection 5.4.

The following natural question arises: Which of the two interpretations of the problem
leads to better results? We argue that setting G(x) = |x|, F2(y) = log(1 + y2) is better.
In this case we can approximate F2(y) by the Huber function Hε(y), and the corresponding
approximation for G(x) = |x|2, F2(y) would be Hε(

√
y). However, Hε(

√
y) is nonconvex and

therefore not feasible for our iteratively reweighted convex method (Method 2). This suggests
to always choose F2 and G such that G is as close as possible to |x| (i.e., “as nonconvex as

possible”). In this case, F xk

2 ◦ G can better approximate F2 ◦ G. For instance, IRHuber is a
better approximation than IRLS.

As the majorization property of IRHuber is not immediately clear in this setup, we prove
a general condition under which it holds and verify it for the preceding example.

Proposition 3. Suppose f : X → R and m : X → R, X ⊂ R open, are continuously differ-
entiable nondecreasing functions and there exists a nonincreasing function r : R → R+ such
that f ′(x) = r(x) m′(x). Then for every x0 ∈ R the function mx0(x) = r(x0) m(x) + f(x0) −
r(x0) m(x0) majorizes the function f .

Proof. Obviously, f(x0) = mx0(x0) and f ′(x0) = m′
x0

(x0). We then have for x > x0

mx0(x) − f(x) =

∫ x

x0

(
m′

x0
(t) − f ′(t)

)
dt =

∫ x

x0

(
(r(x0) − r(t))m′(t)

)
dt ≥ 0.

Similarly, for x < x0

mx0(x) − f(x) = −
∫ x0

x

(
m′

x0
(t) − f ′(t)

)
dt = −

∫ x

x0

(
(r(x0) − r(t))m′(t)

)
dt ≥ 0.

We now apply this proposition to the special case f(x) = log(1 + μx2), m(x) = hε(x).
Since both functions are symmetric, we only consider x ≥ 0. We then have

f ′(x) =
2μx

1 + μx2
,

m′(x) = min
(x

ε
, 1
)

=

{
x
ε , 0 ≤ x ≤ ε,

1, x > ε,

r(x) =
f ′(x)

m′(x)
= 2μ

max(x, ε)

1 + μx2
,

r′(x) = 2μ

{
− 2μεx

(1+μx2)2
, 0 ≤ x ≤ ε,

1−μx2

(1+μx2)2
, x > ε.

Obviously, r is nonincreasing as soon as ε ≥ 1√
μ .



ITERATIVELY REWEIGHTED ALGORITHMS FOR NONCONVEX OPTIMIZATION 343

5.4. Iteratively reweighted least squares algorithm. The well-known IRLS algorithm
also arises as a special case of Method 2. We present it in Algorithm 6 using our notation.
Obviously, it is applicable at least to the same class of problems as Algorithm 5. Thus, the
majorization property is clear.

Algorithm 6 (iteratively reweighted least squares algorithm: IRLS).
• Assumption: F2 ∈ Fcc.
• Initialization: Define a family of vectors wx defined for all i = 1, . . . , dim(X2) by

wx
i =

(∇F2(y))i
yi

, y = G(x), x ∈ X,

and starting point x0 ∈ X with F (x0) < ∞.
• Iterations (k ≥ 0): Update

(12) xk+1 = arg min
x∈X

F1(x) +
〈
wxk

, 1
2(G(x))2

〉
,

where the square is to be understood coordinatewise.

Example 5. Consider Example 4. Using the IRLS algorithm, the weight vector wuk
is

given by

wuk

i =
1

1 + |Duk|2i
.

However, the quadratic function is a worse approximation of the nonconvex norm than the
Huber function. We hence expect IRHuber to outperform IRLS.

5.5. Convergence analysis. Throughout the whole convergence analysis, let (xk)k∈N be
a sequence generated by Method 1. We also always suppose that the functions F, F1, F2, G
fulfill the conditions stated in section 3. We make frequent use of the tools from variational
analysis presented in the appendix. In addition, from now on we assume F to be coercive,
i.e., F (x) → ∞, whenever ‖x‖ → ∞.

Proposition 4. Let F be coercive. Then the sequence (xk)k∈N is bounded and has at least
one accumulation point.

Proof. By Proposition 1, the sequence (F (xk)) is monotonically decreasing, and therefore
the sequence (xk) is contained in the level set

L(x0) := {x ∈ X : F (x) ≤ F (x0)}.

From coercivity of F we conclude boundedness of the set L(x0). This allows us to apply
the Bolzano–Weierstraß theorem, which gives the existence of a converging subsequence, and
hence an accumulation point.

Additional assumptions. In order to prove convergence for the whole sequence (xk)k∈N, two
additional assumptions are required. Let us discuss them.

1. We assume that F2 has locally Lipschitz continuous gradient (see Definition 5 and
the subsequent comment) on a compact set B containing all the points xk and that
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F x
2 have globally Lipschitz continuous gradients on B for all x ∈ X with a common

Lipschitz constant L̃ ≥ 0. This assumption is less restrictive than it seems. Many
nonsmooth functions may be written as a sum of a function with locally Lipschitz
gradient and a convex function. Then the convex part may be shifted to F1. This
class of functions was, for example, considered in [3].

2. F1 + F xk

2 ◦ G must be strongly convex (see Definition 6) with a constant independent

of k. Otherwise, the sum F1 + F xk

2 ◦ G can have a plateau as local minimum; i.e.,
there is no unique minimizer. This happens, for example, when F1(x) = |x − 1| and

F xk

2 (G(x)) = |x| for all xk ∈ [0, 1]. Our algorithm then has to choose from multiple,
equally good solutions, and hence may not converge. One standard way to resolve this
problem is to add a proximity term c‖x − xk‖22 to the convex surrogate problem (4)
with arbitrarily small c > 0. This makes the surrogate problem strongly convex and
makes the algorithm converge to one solution from the plateau.

A technical assumption we make from now on is that F2 and F x
2 for all x ∈ X are defined

on open sets comprising G(X) and continuously differentiable on G(X). In all practical cases
this is clearly fulfilled. The following properties then hold.

Lemma 1. Under the aforementioned conditions, it holds for all x̄ ∈ X
1. and for all x ∈ X,

∂(F x̄
2 ◦ G)(x) = ∂ 〈y,G〉 (x) with y = ∇F x̄

2 (x) ,

∂(F2 ◦ G)(x) = ∂ 〈y,G〉 (x) with y = ∇F2(x) ;

2. and for all x ∈ dom F1 and all x ∈ X,

∂(F1 + F x̄
2 ◦ G)(x) = ∂F1(x) + ∂(F x̄

2 ◦ G)(x) ,

∂(F1 + F2 ◦ G)(x) = ∂F1(x) + ∂(F2 ◦ G)(x) .

Proof. We verify the second equality for both items. The first one follows analogously.
1. Since F2 is continuously differentiable on an open set containing G(X), for x ∈ X it

is ∂∞F2(G(x)) = {0} [76, Ex. 8.8]. Continuous differentiability also yields regularity
of F2 at G(x) for x ∈ X [76, Ex. 7.28]. By assumption, F2 is coordinatewise nonde-
creasing, which implies that 〈y,G〉 (x) with y = ∇F2(x) is an lsc, convex function. As
a consequence, 〈y,G〉 (x) is regular at x ∈ X, which verifies the conditions for equality
in Proposition 10. As a by-product, F2 ◦ G is regular for all x ∈ X.

2. Convexity of G implies its local Lipschitz continuity [76, Ex. 9.14], and hence also local
Lipschitz continuity of F2 ◦ G. Therefore, ∂∞(F2 ◦ G)(x) = {0} (see Proposition 8),
which, together with convexity of F1 (hence ∂F1(x) = ∂̂F1(x)) and Clarke regularity
of F2 ◦ G at x (see first point in this proof), ensures ∂F1(x) + ∂(F2 ◦ G)(x) = ∂(F1 +
F2 ◦ G)(x) (see Proposition 9).

Proposition 5. Let B be a bounded set containing all xk. Let F2 have a locally Lipschitz
continuous gradient on B and let F x

2 have a globally Lipschitz continuous gradient on B for

all x ∈ X with a common Lipschitz constant L̃ ≥ 0. Let also F1 + F xk

2 ◦ G be strongly convex
with convexity parameter μ > 0 for all xk ∈ X. Then the following hold:

1. F (xk+1) ≤ F (xk) − μ
2‖xk − xk+1‖22 for all k ∈ N,
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2. there exists C > 0 such that for all k ∈ N there exists ξk+1 ∈ ∂F (xk+1) fulfilling

‖ξk+1‖2 ≤ C‖xk+1 − xk‖2 ,

3. and for any converging subsequence (xkj)j∈N with x̄ := limj→∞ xkj , we have F (xkj ) →
F (x̄) as j → ∞.

Proof.
1. The strong convexity of F1 + F xk

2 ◦ G provides, for all ξ1 ∈ ∂F1(xk+1) and ξk2 ∈
∂(F xk

2 ◦ G)(xk+1), the inequality

F1(xk+1) − F1(xk) + F xk

2 (G(xk+1)) − F xk

2 (G(xk))

≤
〈
ξ1, x

k − xk+1
〉

+
〈
ξk2 , xk − xk+1

〉
− μ

2
‖xk+1 − xk‖22 .

As xk+1 is a minimizer of (4), and thanks to Lemma 1, we can choose ξ1 + ξk2 =

0 ∈ ∂(F1 + F xk

2 ◦ G)(xk+1). Using F2(G(xk+1)) ≤ F xk

2 (G(xk+1)) and F2(G(xk)) =

F xk

2 (G(xk)), we conclude this part of the proof.
2. Local Lipschitz continuity of G (which follows from its convexity) and the gradient

of F2 yield global Lipschitz continuity on B. We denote the corresponding Lipschitz
constants by LG and L, respectively.
Using Lemma 1, we can select ξ1 ∈ ∂F1(xk+1) and ξk2 ∈ ∂(F xk

2 ◦ G)(xk+1) such that

ξ1 + ξk2 = 0 ∈ ∂(F1 + F xk

2 ◦ G)(xk+1) = ∂F1(xk+1) + ∂(F xk

2 ◦ G)(xk+1) .

Then for all ξ2 ∈ ∂(F2 ◦ G)(xk+1) it holds that

(13) ‖ξ1 + ξ2‖2 = ‖ξ1 + ξ2 − ξ1 − ξk2‖2 = ‖ξ2 − ξk2‖2 .

Using the chain rule from Proposition 10 and Lemma 1, we have (define yk :=

∇F xk

2 (G(xk+1)))

∂(F xk

2 ◦ G)(xk+1) = ∂
〈
yk, G

〉
(x) =

∑
i

∂(yki Gi)(x
k+1) =

∑
i

yki ∂Gi(x
k+1),

and thus we can decompose ξk2 =
∑

i y
k
i ηi with ηi ∈ ∂Gi(x

k+1). We then define
ξ2 :=

∑
i yiηi, where y := ∇F2(G(xk+1)). The combination of both decompositions,

together with the Lipschitz continuity of G and [76, Prop. 9.24], yields

(14) ‖ξ2 − ξk2‖2 =

∥∥∥∥∥∑
i

(y − yk)iηi

∥∥∥∥∥
2

≤ LG‖y − yk‖2 .

Now, using (13) and (14), the equality ∇F2(G(xk)) = ∇F xk

2 (G(xk)), and the Lipschitz

continuity of ∇F2 and ∇F xk

2 , and noting that ξ1 + ξ2 ∈ ∂F (xk+1), the following
estimation concludes this part of the proof:

‖ξ1 + ξ2‖2 ≤ LG‖y −∇F2(G(xk)) + ∇F xk

2 (G(xk)) − yk‖2
≤ (L + L̃)LG‖G(xk+1) − G(xk)‖2
≤ (L + L̃)L2

G‖xk+1 − xk‖2 ,

where the last transition follows from the Lipschitz continuity of G.
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3. Let (xkj )j∈N be a converging subsequence of (xk)k∈N. Define the sequences (ξ
kj
1 )j∈N

and (ξ
kj
2 )j∈N by 0 = ξ

kj
1 + ξ

kj
2 ∈ ∂F1(xkj ) + ∂(F xkj−1

2 ◦ G)(xkj ), which by Lemma 1

coincides with ∂(F1+F xkj−1

2 ◦G)(xkj ). Due to the local Lipschitz continuity of F xkj−1

2 ◦
G, Proposition 8 implies x → ∂(F xkj−1

2 ◦ G)(x) bounded, and therefore the sequence

(ξ
kj
1 )j∈N is bounded and limj→∞〈ξkj1 , x̄ − xkj〉 = 0. Using this, F lsc, F1 convex, and

F2 ◦ G locally Lipschitz continuous, the following chain of inequalities concludes the
proof (all limits are considered for j → ∞):

F (x̄) ≤ lim inf F (xkj ) ≤ lim sup F (xkj)

≤ lim sup F1(xkj ) + lim sup F2(G(xkj ))

= lim sup F1(xkj ) + lim
〈
ξ
kj
1 , x̄ − xkj

〉
+ F2(G(x̄))

= lim sup
(
F1(xkj ) +

〈
ξ
kj
1 , x̄ − xkj

〉)
+ F2(G(x̄))

≤ F1(x̄) + F2(G(x̄)) = F (x̄) .

In [6], an abstract convergence result for descent methods for semialgebraic and tame
problems is proved. We recap the result in Theorem 3 in the appendix. The notions of
semialgebraic functions and the KL property, which is central to the theorem, are introduced in
the appendix (Definitions 7 and 8). In the following theorem, we benefit from their convergence
analysis by simply proving our algorithm to satisfy their assumptions.

Theorem 2. Let the assumptions be as in Proposition 5. Let the sequence (xk)k∈N be gen-
erated by Method 1. If F has the KL property at the cluster point x∗ := limj→∞ xkj , then the
sequence (xk)k∈N converges to x∗ ∈ X as k → ∞ and x∗ is a critical point of F . Furthermore,
the sequence (xk)k∈N has finite length

∞∑
k=0

‖xk − xk+1‖2 < ∞ .

Proof. The results of Propositions 4 and 5 are exactly the requirements of Theorem 3
(which is copied from [6, Thm. 2.9]). Applying this result proves the theorem.

6. Prototypes for computer vision applications. Many computer vision examples involve
a linear operator in order to enforce spatial regularity of the solution. For example, this can
be achieved using the gradient operator. We consider the prototype of inverse problems in
computer vision,

(15) min
u∈X

‖Au − g‖qq + F2(G̃(Ku)) ,

where q ∈ {1, 2} and K : X → X may be any continuous linear operator (for example,
gradient operator). Since in computer vision the optimization variable, which often is an
image, is most often denoted by u, we adapt this notation from now on. In the original
formulation (2), it is G = G̃ ◦ K. Here, we further assume G̃(0) = 0, and G̃(u)i ≥ 0. A
common choice for K is the gradient operator D = (D�

x ,D�
y )� (Dx is a matrix implement-

ing forward-differences in x-direction; the same for Dy) and for G̃ the length of a vector
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G̃((Dxu)i, (Dyu)i) =
√

(Dxu)2i + (Dyu)2i . In the first term of (15), called the data-term, we

denote by A : X → X1 a continuous linear operator and by X1 a finite dimensional real vector
space. This linear operator maps into a space, where measurements g ∈ X1 are taken. The
second term is denoted the regularization-term. Nonconvex regularization functions F2 suit-
able for computer vision applications were already shown in Figure 1. The prototypes for the
function F2 ◦ G are

u → 1

p
‖G̃(Ku)‖pp,ε :=

1

p

∑
i

(G̃i(Ku) + ε)p, ε > 0, p ∈ (0, 1],(16)

u → 1

μ
log(1 + μG̃(Ku)) :=

1

μ

∑
i

log(1 + μG̃i(Ku)), μ > 0,(17)

u → 1

2μ
log(1 + μG̃(Ku)2) :=

1

2μ

∑
i

log(1 + μ(G̃i(Ku))2), μ > 0 .(18)

The first and second functions F2 are concave and nondecreasing on G(X) but nondiffer-
entiable, and the third is nondecreasing and differentiable. These functions clearly fulfill
differentiability and Lipschitz continuity conditions required for our convergence analysis to
hold. We now show that the KL property also holds.

Proposition 6. Let F2 be prototype (16), (17), or (18), and let G̃ be semialgebraic. Then,
the function F (u) = ‖Au − g‖qq + F2(G̃(Ku)) is a KL function.

Proof. As G̃, K, and ‖Au − g‖qq are semialgebraic (simple compositions of semialgebraic
functions), it is enough to verify that F2 is definable in an o-minimal structure. However,
thanks to the log–exp structure [84, 32], this fact is also clear for prototypes (18), (17),
and (16) (note that (u + ε)p = exp(p log(u + ε)), u ≥ 0). Then, [15, Thm. 14] implies that F
has the KL property at any stationary point.

6.1. Total generalized variation regularization. In constrast to TV regularization, which
is used very frequently and can be seen as basic knowledge, total generalized variation (TGV)
regularization was introduced only recently [17]. The following introduction to TGV will be
given in the continuous setting. For details we refer the reader to [17].

TGV generalizes TV based on the dual formulation incorporating the space of k-tensors

T k(Rd) := {ξ : Rd × · · · × R
d → R : ξ is k-linear},

Symk(Rd) := {ξ : Rd × · · · × R
d → R : ξ is k-linear and symmetric} .

Let Ω ⊂ R
2 be the image domain and u : Ω → R be a function; then the TGV seminorm of

order k ≥ 1 with smoothness parameter α = (α0, . . . , αk−1) is defined by

TGV α
k (u) := sup

{∫
Ω

u divk ϕdx
∣∣∣ϕ ∈ Ck

c (Ω, Symk(R2)), ‖divl ϕ‖∞ ≤ αl, l = 0, . . . , k − 1

}
,

where Ck
c (Ω, Symk(R2)) denotes the space of continuously differentiable symmetric k-tensor

fields with compact support in Ω, and divk is the generalization of the divergence operator to
these tensor fields. For k = 1, the definition of TGV reduces to the dual formulation of the
TV seminorm.
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Usually a primal formulation yields more intuition about a new concept. As we are
interested only in TGV α

2 (u), we specify the order k = 2 in the following. Applying the
Legendre–Fenchel transform yields

TGV α
2 (u) = inf

u1∈C1(Ω,Sym(R2))
α1‖Du − u1‖1 + α0‖E(u1)‖1 ,

where E denotes the symmetrized gradient operator E(u1) = (Du1 + Du�
1 )/2, which is a

2 × 2-matrix. There is also an asymmetric version of TGV defined in the primal formulation
as

asymTGV α
2 (u) = inf

u1∈C1(Ω,T (R2))
α1‖Du − u1‖1 + α0‖Du1‖1 .

Note that the primal formulation of seminorm TGV α
2 itself is stated as a minimization problem.

However, when optimizing a function with TGV α
2 as a regularizer, we consider the single

minimization problem in the variables u and u1.
The main property of TGV α

2 is the ability to reconstruct piecewise affine functions without
penalty. This makes TGV α

2 favorable compared to TV, which can only reconstruct piecewise
constant functions. Considering the primal formulation, the intuition about the behavior of
TGV α

2 can be explained as follows. Note that u1 may be constant without increasing the
norm. Then, u is allowed to be linear because Du may be constant (the constant of u1)
without increasing the TGV seminorm.

7. Experimental analysis.

7.1. Implementation details. The convex subproblems arising for the nonconvex opti-
mization problems that are considered in the following can be solved efficiently; see, for
example, [61, 8, 23]. If not stated differently, we use the respective optimal algorithm from
[23]. It has a proven optimal convergence rate: O(1/en) when F1 and F ∗

2 (convex conjugate
of F2) are uniformly convex or when F1 is uniformly convex and F2 has Lipschitz continuous
gradient, O(1/n2) when F1 or F2 is uniformly convex, and O(1/n) for the general case.

Here, we focus on the (outer) nonconvex problem. Let (uk,l) be the sequence generated
by Method 2 (or Method 1), where the index l refers to the inner iterations for solving
the convex problem, and k refers to the outer iterations. Proposition 1, which proves that
(F (uk,0)) is monotonically decreasing, provides a natural stopping criterion for the inner and
outer problems. We verify every 10th inner iteration and stop as soon as

(19) F (uk,l) < F (uk,0) or l > mi,

where mi is the maximal number of inner iterations. For a fixed k, let lk be the number
of iterations required to satisfy the inner stopping criterion (19). Then, outer iterations are
stopped when

(20)
F (uk,0) − F (uk+1,0)

F (u0,0)
< τ or

k∑
i=0

li > mo,

where τ is a threshold defining the desired accuracy and mo is the maximal number of iter-
ations. The difference in (20) is normalized by the initial function value being invariant to a
scaling of the energy.
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In order to obtain a guarantee for a converging sequence of function values, checking the
decent property is required. However, throughout the experiments we observed that a fixed
number of 10 iterations is a good choice and we can omit computing the energy.

Remark 4. As long as we can guarantee that the energy decreases, we can expect a con-
verging sequence of function values. However, if the subproblem is not solved exactly, the
convergence properties from Theorem 2 are partially lost. The convergence theorem allows
for inexact descent methods, i.e., it allows for some errors in the evaluation of the subproblem.
However, the granted quantity of the error is not addressed in the theorem. Therefore, we
focus on the convergence of the energy values.

7.2. Competing method. We compare our algorithm against another recently proposed
algorithm for nonconvex optimization: iPiano [67]. It is a forward-backward splitting algo-
rithm incorporating an inertial force. We compare our algorithm against iPiano because it
is proven to be very efficient and is applicable to problems similar to those in this paper,
namely, problems that can be decomposed as a sum of a (simple) convex function and a
function with Lipschitz continuous gradient. Moreover, iPiano finds special cases in the NIPS
algorithm [78] when the inertial term is turned off, in the Heavy-ball method for differentiable
nonconvex problems [86], and in the well-known gradient projection algorithm. Therefore,
our comparison actually is against several algorithms.

Assuming that our F2 ◦ G has Lipschitz continuous gradient with constant L > 0, the
update scheme of iPiano using our notation can be written as

(21) un+1 = (I + α∂F1)−1(un − α∇(F2 ◦ G)(un) + β(un − un−1)) .

Due to the smoothness assumption to F2 ◦ G in this algorithm, when comparing it to the
proposed IRL1 algorithm, the nondifferentiable points must be smoothed.

7.3. Analysis of local minima. In this part, we experimentally study the sensitivity of
our algorithm with respect to local stationary points.

7.3.1. A one dimensional example. Here, we show that the proposed algorithm has the
ability to avoid local minima. We consider the model problem (see red function in Figure 3)

min
u∈R

λ|u − f | +
1

2
log(1 + μ|u|2) ,

where f = 1, μ = 25, λ = 2. As F2(|u|) = 1
2 log(1 + μ|u|2), we use the iteratively reweighted

Huber algorithm, Algorithm 5, (ε = 1) to find a minimum of this function. Figure 3 shows
three outer iterations of IRHuber initialized at u0 = −0.45. Depending on the initialization,
different local optima are reached. Initializing u0 = ±0.4, the local maximum at u = 0.4
is found; for u0 ∈ (−0.4, 0.4), the left local optimum is the solution; and initializing with
u0 ∈ (−∞,−0.4) ∪ (0.4,∞), the global optimum is found. Although the algorithm can also
converge to a local maximum, this is rarely the case. When we initialize at u0 ∈ (−0.4, 0.4),
the algorithm is already trapped to the left local minimum. However, in contrast to many
other methods, it does not necessarily converge to the nearest local minimum.
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(a) Outer iteration 1.
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(b) Outer iteration 2.
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(c) Outer iteration 3.

Figure 3. Three (outer) iteration steps of the proposed algorithm to minimize the red nonconvex function.
In each plot a few steps of the solver for the (inner) convex problem (minimization of the blue function) are
visualized. The red circle shows the point in which the original function is approximated. Although there is a
local minimum close to the starting point, the algorithm jumps over this and finds the global optimum.

7.3.2. A high dimensional example. In image processing, optimization problems usually
have a very high dimensionality, and it is not possible to visualize the objective functions.
Conclusions about whether the algorithm is attracted by local minima or whether it is “ro-
bust” against local minima can only be drawn indirectly. If the energy value (function value)
corresponding to one algorithm is lower than with another, we conclude that the first algo-
rithm has found a better local minimum. This will be shown in the following example. In this
experiment, we consider the problem

(22) min
u∈R6305

λ‖u − f‖1 +
1

2

∑
i

log(1 + μ|Du|2i )

and solve it using iPiano and our IRHuber (ε = 1/
√

μ) method. For all methods we fix a
maximum of 50000 iterations and use the break condition (20) with τ = 10−12. Table 1
confirms that our algorithm usually finds the lowest energy. The difference is more significant
the higher the values of λ and μ. For larger μ the “nonconvexity” is stronger. For small λ
the optimal result is constant; i.e., |Du|i is small everywhere and lies in the convexity region
of log(1 + μy2). Thus the nonconvexity of the second term is of little importance.

7.3.3. Robustness towards the initialization. We fix λ = 1 and μ = 1 and solve the
optimization problem

(23) min
u∈RN

λ‖u − f‖1 +
∑
i

log(1 + μ|Du|i)

starting from different initializations u0 using the iteratively reweighted �1 algorithm (Algo-
rithm 3). Here N = 154401. The noisy input image and the ground truth are shown in
Figure 4(a). The energy values of the initialization and the final values are shown in Table 2.
The energy values of the solutions differ slightly.

The maximal difference of energy values is between initializing with the noisy image and
initializing with the zero image. The energy difference is approximately d ≈ 8.11. Let us



ITERATIVELY REWEIGHTED ALGORITHMS FOR NONCONVEX OPTIMIZATION 351

Table 1
Comparison of the final energy for our IRHuber algorithm compared to iPiano for the problem (22) and

different parameter settings with a maximum of 50000 iterations. Min. energy is the minimal final energy value
among the four methods. The other values describe the multiplication factor to this minimal energy. In most
experiments, IRHuber finds the lowest energy.

μ = 1 λ = 0.10 λ = 0.50 λ = 1.00 λ = 2.00 λ = 5.00

Min. energy 92.39 369.69 592.51 683.67 683.67

Primal-dual–IRHuber 1.0000 1.0000 1.0000 1.0000 1.0000

iPiano, β = 0.7 1.0000 1.0000 1.0000 1.0000 1.0000

μ = 50 λ = 0.10 λ = 0.50 λ = 1.00 λ = 2.00 λ = 5.00

Min. energy 124.80 559.76 1060.89 1984.31 5097.96

Primal-dual–IRHuber 1.0000 1.0000 1.0000 1.0000 1.0000

iPiano, β = 0.7 1.0000 1.0000 1.0000 1.0000 1.0006

μ = 100 λ = 0.10 λ = 0.50 λ = 1.00 λ = 2.00 λ = 5.00

Min. energy 130.96 586.67 1118.07 2101.04 5945.98

Primal-dual–IRHuber 1.0000 1.0000 1.0000 1.0000 1.0000

iPiano, β = 0.7 1.0000 1.0000 1.0000 1.0002 1.0050

μ = 250 λ = 0.10 λ = 0.50 λ = 1.00 λ = 2.00 λ = 5.00

Min. energy 140.87 623.65 1189.83 2255.34 6986.61

Primal-dual–IRHuber 1.0000 1.0007 1.0007 1.0000 1.0000

iPiano, β = 0.7 1.0000 1.0000 1.0000 1.0014 1.0145

Table 2
Initial and final energy values for the optimization problem (23) with λ = 1 and μ = 1. Numerically,

the result values differ slightly from each other. On average the difference is very small. Visually, different
initializations yield very similar results. This suggests that our algorithm is robust towards the initialization in
this experiment.

Initialization

Noisy

Zero Random

Random with

image square of zero-valued

pixel

Initial energy 45308.479 70803.569 116368.474 114674.008

Final energy 23583.466 23575.354 23576.401 23576.01

consider what it means per pixel on average and in the worst case. If we assume that this
error is caused only by the data-term, we can conclude that

d =
N∑
i=1

|ui − fi| ≥ N min
i

|ui − fi| ⇒ min
i

|ui − fi| ≤ d/N ≈ 5.25 · 10−5 .

This means that the average (minimal) error per pixel is bounded by approximately 5.25·10−5 .
Pixels that cause an error that is higher than the minimal one reduce the upper bound for
the error for all other pixels. Considering the worst case, only 8 pixels can have the maximal
error of 1, which is the range of the gray values. On the other hand, if we assume the error is
solely caused by the regularization term, it holds that

d =

N∑
i=1

log(1 + |yi|) ≥ N log(1 + min
i

|yi|) ⇒ min
i

|yi| ≤ exp(d/N) − 1 ≈ 5.25 · 10−5 .

Therefore, the energy difference could also be caused by an average (minimal) error for the
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(a) Ground truth and noisy image. (b) Result for initialization with noisy image and zero
image.

Figure 4. Visualization of the experiment in (23). The results for two different initializations, the zero
image and the noisy image, are shown in (b). As the corresponding energy values from Table 2 suggest, the
result images are visually close to each other.

gradient of maximal 5.25 · 10−5. The worst-case analysis shows that only 8.11/ log(2) ≈ 11
pixels can have an error in the gradient of 1. These numbers suggest a small difference between
the two solutions. Figure 4(b) visualizes this difference. In this experiment, the final results
are very similar. The error seems to be better reflected by the worst-case analysis as it is
concentrated on a few outliers.

Unfortunately, it is hard to generalize this observation. For input images with more noise
or for different parameter settings, the results can differ more depending on the initialization.
The main problem is that the high dimensionality makes it hard to gain intuition about local
minima and maxima. In the following experiments, we always initialize with the noisy image.

7.4. Numerical comparison. The existence of local minima and the missing information
about the global optimum for nonconvex optimization problems complicate the evaluation.
For all of the following experiments, we agree on the following evaluation: We use the method
that achieves the lowest energy value and run it for 106 iterations; we use the solution u106 to
define E∗ := E(u106). Then we use the relative distance to this “optimal” energy value and
analyze the convergence of the sequence(

E(un) − E∗

E(u0) − E∗

)
n∈N

.

Note that if the sequence does not convergence to E∗, then the sequence can still converge to
another local optimum. As we choose E∗ such that it is minimal among the methods under
consideration, a method that does not converge to E∗ only finds a higher energy.

Iteratively reweighted Huber vs. iteratively reweighted tight convex. First, we compare IR-
Tight (Algorithm 4) against IRHuber (Algorithm 5 with ε = 1/

√
μ as suggested at the end of

subsection 5.3) for the optimization problem

(24) min
u∈R154401

λ

2
‖u − f‖22 +

1

2μ

∑
i

log(1 + μ|(Du)i|2) ,
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Figure 5. Comparison of the energy decrease for problem (24) between Algorithms 4 (IRTight) and 5
(IRHuber). The legend is the same for both plots. The proximity operator arising in the convex optimization
algorithm for IRTight is solved analytically or by using 1, 5, or 10 Newton iterations. The proximal operator
for IRHuber can be solved analytically. Therefore, in terms of runtime IRHuber is faster than IRTight, whereas
in terms of iterations all methods perform equally well.

(a) Ground truth. (b) Gaussian noise added. (c) (24) with λ = 0.1, μ =
800.

(d) (24) with λ = 0.3, μ =
250.

Figure 6. Visualization of the experiment (24).

where λ = 0.1, μ = 800, and f ∈ R
154401 is the given noisy input image from Figure 6.

The convergence plot of the energy is shown in Figure 5. IRHuber converges faster in terms
of the actual computation time than IRTight. This result is explained by the simple structure
of the IRHuber surrogate function. The proximity operator that arises in the convex surrogate
problem for the IRHuber can be solved analytically. For IRTight, solving the proximity
operator requires finding the zero of a cubic polynomial in a certain interval. For IRTight
{1,5,10}, this proximity operator is solved using Newton’s method with a maximum of 1, 5,
or 10 iterations and a break condition for the maximal absolute difference of two successive
iterates of 10−4. Closer to the optimal value, the number of iterations required by Newton’s
method decreases due to the initialization. The analytic solution for the proximity operator
needs always the same time. In terms of iterations, all methods perform equally well.

Thanks to the simple structure of IRHuber, it is more efficient for regularization problems
involving terms log(1 + y2). Therefore, in the following experimental comparison, we consider
only IRHuber. However, we should keep in mind that if the proximity operator in IRTight is
easy to solve, it is a better approximation and converges faster.
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Iteratively reweighted Huber and reweighted least squares.. We evaluate our algorithm in
terms of speed compared to iPiano (and its special case NIPS with β = 0). We consider the
problem

(25) min
u∈R154401

λ

2
‖u − f‖22 +

1

2μ

∑
i

log(1 + μ|Du|2i ) ,

where λ = 0.3, μ = 250, and f ∈ R
154401 is the given noisy input image from Figure 6 (also

see this figure for the result image).
The Lipschitz constant required by iPiano is set to L = 8. Then α = 2(1 − β)/L is

set according to the step size rules (see [67] for details). Using Algorithms 5 and 6, the
(convex) surrogate function is strongly convex and can be solved with linear convergence rate,
which is optimal for this class of problems. Algorithm iPiasco-IRHuber solves the primal
problem using iPiasco [66], and D-iPiasco-IRHuber solves the surrogate problem in the dual
formulation. Analogously, iPiasco-IRLS solves the primal problem arising in Algorithm 6,
and D-iPiasco-IRLS solves the dual problem. CG-IRLS solves the primal inner problem
using conjugate gradient. In this experiment we do not show the result of solving the inner
problem with the optimal primal dual algorithm [23, Algorithm 3], because it performed worse
and the constants in the estimate for the linear convergence rate are suboptimal.

Figure 7 analyzes the differences in convergence depending on the number of inner iter-
ations and whether the inner problem is formulated as the primal or the dual problem. In
general, we found 10 inner iterations to be a good choice for the iteratively reweighted algo-
rithms, although the optimal choice in this particular example is 5 iterations. For IRLS, the
best performance is achieved by solving the primal inner problem, whereas for IRHuber it is
advantageous to solve the dual problem.

Figure 8 shows the comparison of the energy decrease between IRHuber and IRLS. In
terms of actual computation time IRLS performs better. This is due to the split definition
of the Huber function, which additionally requires us to distinguish two cases (norm less or
greater than ε). As this extra computation cost does not matter in terms of the number of
iterations, IRHuber converges the quickest in that case. Regarding both number of iterations
and computation time, the iteratively reweighted algorithms perform better than iPiano.

Iteratively reweighted �1 on TV-term. As mentioned before, our iteratively reweighted �1
algorithm is not well suited for problems that have a quadratic behavior around 0. The cases
where the IRL1 algorithm becomes interesting is beyond the applicability of iPiano when
F2(|u|) = log(1 + |u|). iPiano can only be applied to a smoothed version of F2. However, then
a different energy is minimized. We evaluate the IRL1 algorithm on the following objective,

(26) min
u∈R154401

‖u − f‖1 +
∑
i

log(1 + |Du|i),

and use log(1 + |Du|i,ε) for iPiano. The input f and the visual result are shown in Figure 10.
The numeric comparison against iPiano with backtracking (nmiPiano in [67]) is shown in
Figure 9. On the one hand, reducing the ε in the regularization of |Du|i,ε better approximates
the original problem, but on the other hand, the problem is more difficult to solve for iPiano
and needs many more iterations. The Lipschitz constant for iPiano depends on ε and therefore
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Figure 9. Comparison of the energy decrease for problem (26) between IRL1 and different parametrizations
of iPiano. As our algorithm can optimize the nonregularized energy in (26) it achieves a lower energy. The
version PD-IRL1 no check does not check the energy decrease but updates the weights every 10th iteration. It
is the fastest in this experiment up to an accuracy of about 10−3; then PD-IRL1 takes over.

Figure 10. Visualization of the experiment (26).

directly influences the feasible step sizes. The method PD-IRL1 no check finds a worse local
optimum than PD-IRL1 and iPiano (β = 0.7, ε = 10−8) with a difference of about 10−3

compared to the “optimal” one E∗. It is faster in terms of actual computation time than
PD-IRL1 because it does not have to compute the energy. PD-IRL1 achieves a better local
optimum by doing more iterations if required. IRL1 performs better than iPiano in terms of
speed and, as it optimizes the original energy, achieves a higher accuracy.

Iteratively reweighted �1 on TGV-term. As a last numerical experiment we consider the
total generalized based variation model

(27) min
u∈RN ,v∈R2N

λ

2
‖u − f‖22 +

(
α1

μ

∑
i

log(1 + μ|Du − v|i) +
α0

μ

∑
i

log(1 + μ|Dv|i)
)

.

The experiment is performed on an image whose 3D-mesh is shown in Figure 12(a). Its
dimension is N = 16384. We compare our IRL1 algorithm against the iPiano algorithm (with
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Figure 11. Comparison of the energy decrease for problem (27) between our method and different
parametrizations of iPiano. As our algorithm can optimize the nonregularized energy, it achieves a lower
energy. Furthermore, as we solve a sequence of convex problems, we can benefit from an efficient convex pro-
gramming algorithm such as that in [23]. The version PD-IRL1 no check does not check the energy decrease
but updates the weights every 10th iteration. It is the fastest in this experiment.

backtracking) on an ε-regularized energy (nmiPiano in [67]) for the nonconvex TGV model in
terms of convergence. The model parameters are set to μ = 8, λ = 4, α1 = 0.5, and α0 = 1.
In Figure 11 the energy decrease for different methods is plotted. From the optimization
viewpoint, it is well known [17, 72] that the TGV-regularization model is a hard problem even
in the convex case. In [72], the problem is efficiently solved using the primal-dual algorithm
[23], which is also used here for the convex surrogate problems. As for our algorithm, a
sequence of convex problems arises, and we can benefit from efficient convex programming
algorithms. Therefore, we observe a faster convergence for the IRL1 algorithm compared to
iPiano. The difference becomes more and more significant the smaller the ε chosen for making
the TGV differentiable in 0.

7.5. Total generalized variation experiment. As the TGV-regularizer has been developed
only recently and first used in the nonconvex setting here, we perform another experiment
with the energy model (27) where the focus is on accuracy. Figures 12(c) and (f) compare the
convex TGV with the nonconvex TGV. For each of them, the parameters are optimized with
respect to the PSNR (peak signal-to-noise ratio) value, which is 35.835 for the convex model
and 36.672 for the nonconvex model. In (c) we set λ = 1, α1 = 0.1, and α0 = 1, and in (f) we
set μ = 8, λ = 4, α1 = 0.5, and α0 = 1.

Nonconvex norms in the regularization make a good choice when (1) sharp discontinuities
are desired or (2) the properties of the regularizer (here the ability to reconstruct piecewise
affine functions) are to be enforced.

On the other hand, the comparison between (d), (e), and (f) reveals the importance of
solving a nonregularized energy model. The result in (f) is nicely piecewise smooth. The
problem in (d) and (e) of several small outliers does not arise in the IRL1 algorithm, as the
first inner subproblem is the convex TGV model which already yields a smooth result. Then
in the next iterations, discontinuities are enhanced again.
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(a) Ground truth. (b) Noisy input image. (c) Convex TGV, PSNR: 35.825.

(d) iPiano, nonconvex log-TGV,
β = 0.75, ε = 10−4, PSNR:
33.515.

(e) iPiano, nonconvex log-TGV,
β = 0.75, ε = 10−8, PSNR:
35.679.

(f) IRL1, nonconvex log-TGV,
PSNR: 36.672.

Figure 12. Comparison of TGV regularization for the noisy input (b) using the model (27). (c) shows
the result in the convex setting is shown, and (d), (e), and (f) show the nonconvex setting with log-norm.
The comparison between (c) and (f) shows that nonconvex penalizers are the better choice, and the comparison
between (d), (e), and (f) shows the importance of solving the nonregularized energy model. As the result with
IRL1 has fewer spikes and the energy is smaller, it found a better local optimum.

8. Optical flow estimation with nonconvex regularizers. In this section we show appli-
cation examples of nonconvex energy models for the task of optical flow estimation. The same
modeling principles can be transferred directly to many other vision tasks, as demonstrated
in our conference paper [68], where we showed examples on denoising, deconvolution, depth
map fusion, and optical flow estimation. Here we focus on a more detailed analysis of optical
flow including nonconvex data-terms and nonconvex regularizers and their effects.

Optical flow describes dense correspondences between a pair of images f(x, t) and f(x, t+
1). Modeling of variational optical flow usually consists of a regularization-term and a data-
term. The first models the smoothness of the flow field. The data-term measures the difference
between the motion compensated second frame and the image of the first frame. A simple
example is the difference of gray values (brightness constancy assumption) ‖f(x+u(x), t+1)−
f(x, t)‖22, where u = (u1, u2)� is the sought-after optical flow field. Since the unknown flow
field is a variable of the generally nonconvex image, the data-term is nonconvex independent
of the properties of the penalty function. In practice, this kind of nonconvexity is dealt with
by a Gauss–Newton scheme in combination with a continuation method [18].1

Previous works on variational optical flow estimation always employ a convex penalty
function for the data-term and the regularizer. The results of the following experiments

1It cannot be approached well with our algorithm.
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(a) market6 0005 to market6 0006. (b) Ground truth flow.

(c) LDOF [19], EP (endpoint error): 13.18. (d) Oversmoothed flow field, EP: 6.59.

Figure 13. Considering only the quantitative result shows that the method from (d) is better than that in
(c). However, the oversmoothed result in (d) is practically useless compared to (c).

indicate that one can benefit from using nonconvex penalties. Details such as parameter
optimization, the optimal usage in conjunction with a continuation method, etc., need further
investigation to compete with heavily tuned methods on standard benchmark datasets. Such
optimization is beyond the scope of this paper. In the following, we present three ways to
apply and use the nonconvex penalties with the algorithm proposed in this paper: a nonconvex
penalty on the brightness constancy assumption, a nonconvex regularizer, and a nonconvex
penalty for integrating point correspondences into variational methods.

The experiments are performed on image pairs (clean version) from the Sintel benchmark
[20].2 The standard quality measure of the Sintel benchmark is the average endpoint error. It
is well known that average errors emphasize global properties of the flow fields while details
such as sharp discontinuities are underrepresented. Figure 13 shows an example. This fact
is disadvantageous for nonconvex regularization penalties, which are particularly good for
obtaining sharp discontinuities. For this reason, we present mainly qualitative results, but we
also report the endpoint errors.

8.1. Nonconvex data-term: Robust optical flow. Outliers in the data-term, mostly
caused by occlusion, are a major issue in optical flow estimation. There are two aspects
of this problem: detection of occluded points and interpolation of the flow field at these
points. Nonconvex penalty functions allow for a straightforward approach to implicitly deal
particularly with the first aspect. The basic assumption for estimating the optical flow is the
brightness constancy (or color constancy) assumption. As it is typically not satisfied in occlu-

2The Sintel benchmark provides ground truth optical flow fields for a realistically rendered video. It provides
three different stages of this rendering process: albedo, clean, and final.
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(a) bandage1 0011 to bandage1 0012. (b) Ground truth flow.

(c) Final data-term weighting. (d) Flow estimated using (28).

Figure 14. The weighting mask is part of the optimization using our algorithm due to using a robust,
nonconvex norm. It is not introduced separately. The algorithm automatically weights down the brightness
constancy assumption where it is violated (darker areas in (c)). Each color channel is weighted individually
and the corresponding color represents the weighting.

sion areas, the penalty on the brightness constancy should be reduced there. This is naturally
achieved by nonquadratic penalties, which implicitly weigh down the influence of points that
contradict the constancy assumption. With convex penalty functions, however, the effect is
often not strong enough. With nonconvex penalty functions, the influence of outliers can be
reduced much more. In the limit, this approaches the algorithmic two-step treatment, where
outliers are first detected explicitly and then removed completely from the estimation process.

As in occlusion areas the measured data is invalid, the optical flow field in these areas
must be inferred by prior knowledge such as smoothness of the flow field. In a variational
formulation, which seeks a global agreement of all constraints, the reduction of the penalty
on the brightness constancy assumption automatically assigns more importance to the regu-
larization term in these areas. It is an open question as to what is the best regularizer for
this job. We consider regularization with total variation, which is easy to use and preserves
discontinuities. It could be easily replaced by some other, more complex prior.

We consider the following energy model:

(28) min
u

∑
i

|∇u|i +
λ

μ

∑
i,k

log(1 + μ|ρk(u)|i) ,

where ρk(u) = fk
t +(∇fk)�(u−u0) implements the linearized brightness constancy assumption

for the color channel k ∈ {1, 2, 3}, and λ = 15, μ = 5.
We minimize the energy with the iteratively reweighted �1 algorithm. The algorithm gen-

erates an automatic weighting for the data-term. The weights are small where the brightness
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constancy assumption does not hold, i.e., for outliers. The weighting is directly inferred from
the cost function. The approach in [7] models occlusions explicitly, but in the end it comes
down to a similar weighting. Figure 14 shows an example. As expected, the weighting in
Figure 14(c) shows a reduction of the penalty, particularly in occlusion areas.

Despite the quite good detection of the occlusion region due to the nonconvex penalty,
the optical flow of the arms still leaks into the background. This is due to the weak smooth-
ness prior, which does not take the direction of the occlusion into account. Future work on
smoothness priors may exploit the detected occlusion regions more effectively.

8.2. Nonconvex TGV regularized optical flow. Total variation is the most popular reg-
ularizer for the optical flow field. However, it penalizes flow fields that describe rotation and
scaling motion. Total generalized variation deals with this problem, as affine motion can be
described without penalty. Therefore, we consider the variational model given by

(29) min
u,v

λQ(f, u) + α1F2,1(|∇u − v|) + α0F2,0(|∇v|),

where Q(f, u) is the quadratic fitting term from [83] using normalized cross correlation, and
F2,1, F2,0 are (possibly different) nonconvex penalty functions. The model described in (29)
can be used to enforce the TGV properties by using nonconvex norms. This yields highly
desirable sharp motion discontinuities as can be seen in Figures 15(e),(f). The penalty on
|∇v| can be seen as a penalty on kinks in the flow field. Reducing the cost of sharp kinks
by a nonconvex penalty often leads to the fact that sharp discontinuities in the flow field are
replaced by a linear transition with two sharp kinks. Therefore, we set F2,0 = id.

8.3. Nonconvex integration of point correspondences. Current state-of-the-art methods
[85, 19, 82] usually incorporate a sparse or semidense feature matching in the optimization
procedure. In LDOF (large displacement optical flow) [19], the deviation of the estimated
flow field from these feature matches is penalized. The penalty is based on the �1-norm.
Nonconvex norms are more robust and can deal with more erroneous feature matches in a
certain local area than the �1-norm. In the following model, we propose using a nonconvex
penalty function for the deviation from the initial feature matches:

(30) min
u,v

λ‖Q(f, u)‖1 +
β

p
‖u − uFM‖p,ε + α1‖∇u − v‖1 + α0‖∇v‖1,

where Q(f, u) is the quadratic fitting term from [83] using normalized cross correlation, uFM

are sparse feature correspondences estimated as in [19], and p ≤ 1 determines the nonconvexity
of the feature matching penalizer. Figure 16 compares the convex and nonconvex penalty
terms. In this formulation, we evaluate a convex energy (cFMcTGV ) with p = 1, ε = 0,
λ = 1, and β = 2 versus a nonconvex energy (ncFMcTGV ) with p = 0.5, ε = 0.001, λ = 0.8,
and β = 3. Both settings use α1 = 0.2 and α0 = 1. All parameters were optimized for
two challenging image pairs of the Sintel optical flow benchmark [20]. The two image pairs
are chosen complementary in the way feature matches should be used. For market6 0005,
many feature matches (bottom of the image) should be considered as outliers, whereas for
cave2 0015 the few correct feature matches on the dragon must be used to capture the large
motion. Our results show that feature matching driven optical flow methods can benefit highly
from nonconvex penalty functions.
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(a) mountain 0001 to mountain 0002. (b) Ground truth flow.

(c) EP: 0.156 (convex regularizer). (d) EP: 0.152 (nonconvex regularizer).

(e) Zoom into (c) (convex regularizer). (f) Zoom into (d) (nonconvex regularizer).

Figure 15. (c) is obtained with model (29) and λ = 0.3, α1 = 0.1, α0 = 1.0, F2,1 = ‖ · ‖2, F2,0 = ‖ · ‖2; (d)
uses the parameters λ = 0.25, α1 = 0.1, α2 = 1.0, F2,1(|x|) = 2 log(1 + 1

2
|x|), F2,0 = ‖ · ‖2. The result in (d)

and its zoom (f) show that using nonconvex penalizers is beneficial and yields sharp discontinuities.

9. Conclusion. In this paper, we proposed a general algorithm for a certain class of
nonsmooth nonconvex optimization problems: the sum of a convex function and a compo-
sition of a coordinatewise convex function with a nonconvex function. It is a majorization-
minimization (MM) algorithm that contains the iteratively reweighted least squares and the
iteratively reweighted �1 algorithm as special cases. Moreover, we introduced two other special
instances of the algorithm with favorable properties.
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(a) LDOF feature matches for market6 0005. (b) Ground truth flow.

(c) cFMcTGV, EP: 11.78. (d) ncFMcTGV, EP: 7.77.

(e) LDOF feature matches for cave2 0015. (f) Ground truth flow.

(g) cFMcTGV, EP: 9.20. (h) ncFMcTGV, EP: 8.79.

Figure 16. Result for two image pairs from the Sintel optical flow benchmark using the model (30). The two
image pairs are chosen because they require complementary usage of the feature matches. In (a) many matches
at the bottom should be considered as outliers, whereas in (e) the few matches on the dragon are important.
With the algorithm proposed in this paper the usage of a robust penalty for the feature matching term is possible.
Such a robust penalty is used for ncFMcTGV. In cFMcTGV an �1-penalty is used. The parameters for both
methods have been optimized. ncFMcTGV can deal with the two complementary requirements of the feature
correspondences much better than cFMcTGV.



364 P. OCHS, A. DOSOVITSKIY, T. BROX, AND T. POCK

As the proposed algorithm is an MM algorithm, it yields nonincreasing function values,
which together with coercivity imply the existence of a converging subsequence for proper
functions. In the second part of our convergence analysis, convergence for the whole sequence
of iterates was proved under additional mild assumptions such as Lipschitz continuity of the
gradient of the nonconvex part of the objective function. Assuming that the objective has
the Kurdyka–�Lojasiewicz (KL) property at accumulation points, we benefit from a recently
proved convergence result for abstract descent methods. A careful analysis of our situation
allowed us to verify the conditions under which this abstract theorem holds.

The second part of the paper is devoted to the numerical analysis. It was shown that,
starting with different initializations, the algorithm mostly ends up in the same local optimum
and that the proposed algorithm converges quickly. Particularly for nonsmooth, nonconvex
problems, other methods are applicable only after regularization, which usually makes the
convergence dependent on the regularization parameter. There is always a trade-off between
approximation accuracy (with the regularization parameter) and speed, which is not the case
for our algorithm. This is also demonstrated on a computer vision example with nonconvex
total generalized variation (TGV) regularization (special penalization of first- and higher-
order derivatives). To the best of our knowledge, we are the first to consider and solve such
nonconvex variants of TGV regularization.

Finally, in order to prove the practical impact of our algorithm, we applied it to sev-
eral situations with nonconvex terms in optical flow estimation and observed a consistent
improvement compared to corresponding convex penalty terms.

10. Appendix.

10.1. Mathematical preliminaries. We review here some definitions and results from [76].
Definition 1 (domain). The domain of a function f : Rn → R is the set dom f := {x ∈ R

n :
f(x) < ∞}. The domain of a point-to-set mapping F : Rn ⇒ R

m is the set dom F := {x ∈
R
n : F (x) �= ∅}.

Definition 2 (normal vectors, normal cone). Let C ⊂ R
n and x̄ ∈ C. A vector v is a regular

normal vector to C at x̄, written v ∈ N̂C(x̄), if

lim sup
x→

C
x̄

x �=x̄

〈v, x − x̄〉
‖x − x̄‖2

≤ 0 ,

where x →
C

x̄ means all sequences (xν)ν∈N converging to x̄ with xν ∈ C for all ν ∈ N. It is a

(general) normal vector to C at x̄, written v ∈ NC(x̄), if there are sequences xν →
C

x̄, vν → v

with vν ∈ N̂C(xν).
Definition 3 (Clarke regularity). A function f : Rn → R is called (Clarke) regular at x̄ if

f(x̄) is finite and the epigraph epi f := {(x, t)|x ∈ dom f, t ≥ f(x)} is Clarke regular at
(x̄, f(x̄)) as a subset of Rn ×R, i.e., epi f is locally closed and it holds Nepi f (x̄) = N̂epi f (x̄).

We need the following generalization of the subgradient of convex functions [76, Def. 8.3].
Definition 4 (limiting-subgradient, regular subgradient, horizon subgradient). For a function

f : Rn → R and a point x̄ ∈ dom f,
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1. the subgradient (or limiting-subgradient) is defined by

(31) ∂f(x̄) = {v ∈ R
n| ∃xν → x̄, f(xν) → f(x̄), vν → v, vν ∈ ∂̂f(xν)} ,

which makes use of the regular subgradient defined by

∂̂f(x̄) =

{
v ∈ R

n| lim inf
x→x̄
x �=x̄

1

‖x − x̄‖2
(f(x) − f(x̄) − 〈x − x̄, v〉) ≥ 0

}
;

2. the horizon subgradient is defined by

∂∞f(x̄) = {v ∈ R
n| ∃xν → x̄, f(xν) → f(x̄), ∃λν ↘ 0 : λνvν → v, vν ∈ ∂̂f(xν)} .

This definition allows the optimality of a point x̂ ∈ X to be characterized by 0 ∈ ∂F (x̂).
Such an x̂ is called a stationary point.

The following corollary relates this definition to the notions of subgradient and regular
subgradient [76, Cor. 8.11].

Corollary 1. For a function f : Rn → R and a point x̄ with f(x̄) finite and ∂f(x̄) �= ∅, one
has that f regular at x̄ implies that f is locally lsc at x̄ with

∂f(x̄) = ∂̂f(x̄) .

An important concept for many results in variational analysis is Lipschitz continuity. We
formulate it as defined in [76, Def. 9.1].

Definition 5 (Lipschitz continuity). Let F : D → R
m be a single-valued mapping defined on

a set D ⊂ R
n and let X ⊂ D. Then, we define F as Lipschitz continuous on X if there exists

L ∈ [0,∞) with

‖F (x) − F (y)‖2 ≤ L‖x − y‖2 for all x, y ∈ X .

Then L is called the Lipschitz constant for F on X.
For the convergence analysis of our algorithm, a certain class of functions, namely func-

tions with Lipschitz continuous gradient, will be of importance. A continuously differentiable
function f : X → R with X ⊂ R

n open and with Lipschitz continuous gradient L > 0 satisfies,
by definition,

‖∇f(x) −∇f(y)‖2 ≤ L‖x − y‖2 for all x, y ∈ X .

Another property for such functions is given by the following lemma.
Lemma 2. Let f : X → R have a Lipschitz continuous gradient with L > 0 and let X ⊂ R

n

open. Then for any y ∈ X it holds that

(32) f(x) ≤ f(y) + 〈∇f(y), x − y〉 +
L

2
‖x − y‖22 for all x ∈ X .

Proof. See [60].
Proposition 7. Let f : Rn → R have a Lipschitz continuous gradient; then f is a regular

function.
Proof. See [76, Thm. 9.18].
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Where Lipschitz continuity of the gradient of a function is important to find quadratic
majorizers of the function, strong convexity provides a way to access quadratic minorizers for
convex functions. This property can be defined as follows.

Definition 6 (strongly convex function). A proper function f : Rn → R is called strongly
convex if there exists μ > 0 such that f(x) − μ/2‖x‖22 is a convex function. The parameter μ
is denoted as the convexity parameter.

Lemma 3. Let f : X → R, X ⊂ R
n, be a proper, strongly convex function with convexity

parameter μ > 0. Then for any y ∈ dom ∂f it holds that

(33) f(x) ≥ f(y) + 〈ξ, x − y〉 +
μ

2
‖x − y‖22 for all ξ ∈ ∂f(y) and x ∈ X .

Proof. The statement is a simple consequence of Definition 6.
The following proposition combines the definition of Lipschitz continuity with [76, Thm.

9.13].
Proposition 8 (relation horizon and limiting-subgradient). Let f : Rn → R be a locally lsc

function with finite value at x̄. Then the following statements are equivalent:
1. f is locally Lipschitz continuous at x̄,
2. ∂∞f(x̄) = {0},
3. ∂f : x → ∂f(x) is locally bounded at x̄,
4. ∂̂f : x → ∂̂f(x) is locally bounded at x̄.

The next proposition relates the subgradient of a sum of functions to the sum of the
subgradients of functions (see [76, Cor. 10.9]).

Proposition 9 (addition of functions). Suppose f = f1 + · · · + fm for proper, lsc functions
fi : R

n → R, and let x̄ ∈ dom f . Then

∂̂f(x̄) ⊃ ∂̂f1(x̄) + · · · + ∂̂fm(x̄) .

If the only combination of vectors vi ∈ ∂∞fi(x̄) with v1 + · · · + vm = 0 is v1 = · · · = vm = 0,
one also has that

∂f(x̄) ⊂ ∂f1(x̄) + · · · + ∂fm(x̄) .

If also each fi is Clarke regular at x̄, then f is Clarke regular at x̄ and

∂f(x̄) = ∂f1(x̄) + · · · + ∂fm(x̄) .

In our analysis, we will need an extended version of the chain rule that applies to compo-
sitions of nonsmooth functions as in [76, Thm. 10.49].

Proposition 10 (extended chain rule). Let f(x)=F (G(x)) for a proper, lsc function F : Rm→
R and a locally Lipschitz continuous vector-valued function G : X → R

m, X ⊂ R
n. Then, for

x̄ ∈ X it holds that

∂̂f(x̄) ⊃ D̂∗G(x̄)[∂̂F (G(x̄))] =
⋃

{∂̂ 〈y,G〉 (x̄)| y ∈ ∂̂F (G(x̄))} .

If the only vector y ∈ ∂∞F (G(x̄)) with 0 ∈ ∂ 〈y,G〉 (x̄) is y = 0, one also has

∂f(x̄) ⊂ D∗G(x̄)[∂F (G(x̄))] =
⋃

{∂ 〈y,G〉 (x̄)| y ∈ ∂F (G(x̄))} .
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If in addition F is regular at G(x̄) and 〈y,G〉 is regular at x̄ for each y ∈ ∂F (G(x̄)), then f
is regular at x̄ and ∂f(x̄) = D∗G(x̄)[∂F (G(x̄))].

Finally, the convergence analysis will be valid only for functions satisfying the so-called
Kurdyka–�Lojasiewicz (KL) property. From a practical point of view, this is not a restriction,
as almost all functions of practical relevance in computer vision or machine learning have
this property. The KL property was originally introduced in [56] for smooth functions and
generalized in [52] for functions with o-minimal structure. Now it is known that real analytic,
semialgebraic, or more general globally subanalytic functions have the KL property [14], and
even more general lsc functions that are definable in an o-minimal structure [15]. Recently,
this property became widely used for proofs of convergence for nonsmooth nonconvex func-
tions. Before we give a proper definition of the KL property, we consider the definition of
semialgebraic functions, which provide a rich class of KL functions.

Definition 7 (semialgebraic sets and functions (from [6])).
1. A subset S of R

n is a real semialgebraic set if there exists a finite number of real
polynomial functions fi,j, gi,j : Rn → R, 1 ≤ i ≤ q, 1 ≤ j ≤ p such that

S =

p⋃
j=1

q⋂
i=1

{x ∈ R
n : fi,j(x) = 0, gi,j(x) < 0} .

2. A function f : Rn → R is called a semialgebraic function if its graph {(x, λ) ∈ R
n+1 :

f(x) = λ} is a semialgebraic subset of Rn+1.
Simple examples of semialgebraic functions are polynomials, ‖ · ‖2, or indicator functions

of semialgebraic sets. In order to generate more examples, usually the behavior under combi-
nation with certain operations is considered. The following can be shown (see, e.g., [13]):

• Semialgebraic sets are stable under finite unions, finite intersections, complementation,
and Cartesian products.

• The image and preimage of a semialgebraic set under a semialgebraic function is
semialgebraic.

• Finite sums and products of semialgebraic functions are semialgebraic.
• Compositions of semialgebraic functions are semialgebraic.

Although we do not define o-minimal structures, it is worth mentioning that semialgebraic
functions are definable in an o-minimal structure. In some definitions of o-minimal structures,
the class of semialgebraic sets is even part of the definition. It is usually considered as the
smallest o-minimal structure. Actually, o-minimal structures are an axiomatic collection of
the favorable properties of semialgebraic functions. They are stable under the same operations
as those mentioned above. o-minimal structures that properly contain the semialgebraic sets
are globally subanalytic sets [40]. There is even a larger o-minimal structure, namely the
log–exp structure, which comprises the globally subanalytic structure and the graph of the
exponential function [32, 84]. As mentioned above, functions that are definable in such an
o-minimal structure have the KL property [15, Thm. 14].

Now, as we have some examples, we consider the formulation of the KL property as in [6].
Definition 8 (Kurdyka–�Lojasiewicz property). Let f : Rn → R be an extended real-valued

function and let x̂ ∈ dom ∂f . If there exists η ∈ (0,∞], a neighborhood U of x̂ and a contin-
uous concave function ϕ : [0, η) → R+ such that ϕ(0) = 0, ϕ ∈ C1((0, η)) for all s ∈ (0, η) is
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ϕ′(s) > 0 and for all x ∈ U ∩ {x ∈ R
n : f(x̂) < f(x) < f(x̂) + η} the KL inequality

(34) ϕ′(f(x) − f(x̂)) dist(0, ∂f(x)) ≥ 1

holds, then the function has the KL property at x̂.
If, additionally, the function is lsc and the property holds for each point in dom ∂f , then

f is called a KL function.
It is easy to see that the KL property is satisfied for all nonstationary points (see, e.g.,

[5]). For the purpose of intuition, it should be mentioned that for smooth functions (with
f(x̂) = 0) (34) is equivalent to ‖∇(ϕ ◦ f)(x)‖2 ≥ 1. This means that after reparametrization
via ϕ, the gradient ∇f may be bounded away from 0.

Reference [6] proves convergence of a sequence (xk)k∈N under the following assumptions.
This convergence theorem is central to our analysis, as we verify the sequence generated by
Method 1, which is the most general, to obey these properties. We recap this result of [6]
here.

Let f : Rn → R be a proper lsc function and let a and b be fixed positive constants. We
consider the following properties:

(H1) (sufficient decrease condition). For each k ∈ N,

f(xk+1) + a‖xk+1 − xk‖22 ≤ f(xk) .

(H2) (relative error condition). For each k ∈ N, there exists wk+1 ∈ ∂f(xk+1) such that

‖wk+1‖2 ≤ b‖xk+1 − xk‖2 .

(H3) (continuity condition). There exists a subsequence (xkj)j∈N and x̃ such that

xkj → x̃ and f(xkj) → f(x̃), as j → ∞ .

Theorem 3 (convergence of descent methods [6, Thm. 2.9]). Let f : Rn → R be a proper lsc
function. Consider a sequence (xk)k∈N that satisfies H1, H2, and H3.

If f has the KL property at the cluster point x̃ specified in H3, then the sequence (xk)k∈N
converges to x̄ = x̃ as k goes to infinity, and x̄ is a critical point of f .

Moreover, the sequence (xk)k∈N has a finite length, i.e.,

∞∑
k=0

‖xk+1 − xk‖2 ≤ ∞ .
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