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Abstract. Smooth optimisation problems arise in many fields includ-
ing image processing, and having fast methods for solving them has clear
benefits. Widely and successfully used strategies to solve them are ac-
celerated gradient methods. They accelerate standard gradient-based
schemes by means of extrapolation. Unfortunately, most acceleration
strategies are generic, in the sense, that they ignore specific information
about the objective function. In this paper, we implement an adaptive
restarting into a recently proposed efficient acceleration strategy that
was coined Fast Semi-Iterative (FSI) scheme. Our analysis shows clear
advantages of the adaptive restarting in terms of a theoretical conver-
gence rate guarantee and state-of-the-art performance on a challenging
image processing task.

1 Introduction

The high dimensionality of many variational problems in image processing or
computer vision dictates the usage of first-order optimisation algorithms. These
are iterative schemes that combine gradient information to construct a sequence
of improving approximations to a solution of the variational problem. The sim-
plest instance is the well-known Steepest Descent Method. While the complexity
of each iteration is usually very cheap, their efficiency highly depends on the cur-
vature of the objective function to be minimised. In flat regions, short gradient
vectors must be compensated by large step sizes while in steep regions the op-
posite configuration appears.

Essentially, this information is captured by the second derivative (Hessian) of
the objective function, which is not available for first-order methods. A successful
strategy to deal with this problem is provided by accumulating momentum in
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steep regions, which is used in flat regions to preserve the speed. This is the
underlying idea of accelerated gradient schemes, which are widely used to solve
the aforementioned problems. The accelerated gradient scheme that we consider
is the Fast Semi-Iterative Scheme (FSI) [6]. The efficiency of this method comes
from a clever extrapolation step with cyclically varying parameters.

However, this is an idealised picture. Around a steep local minimum or along
a long ramp, accumulating too much momentum leads to oscillatory behaviour
[1, 15]. These are just two different (simplified) pictures of optimisation scenarios,
which indicate that optimisation algorithms should adapt to the objective func-
tion. Of course, the situation is significantly more complex for high dimensional
problems.

In this paper, we introduce an adaptive restart strategy for FSI. Our adapta-
tion rule comes with several significant advantages: (i) The algorithm automat-
ically selects the cycle length of FSI, an otherwise problem-sensitive parameter ;
(ii) it efficiently solves a wide variety of problems, and shows state-of-the-art per-
formance on a difficult image processing problem; and (iii) we prove a worst-case
convergence rate, which is not available for the FSI method.

Paper Organisation. Section 2 introduces the underlying accelerated gradi-
ent method, FSI, which directly leads to the difficult question of selecting its
cycle length parameter. After discussing related work in Section 3, we introduce
our adaptive restarting that automatically selects a good cycle length for FSI
in Section 4. The convergence of this adaptive FSI (AFSI) scheme is studied
in Section 5, and Section 6 demonstrated the high quality of AFSI in image
processing. Section 7 concludes the paper and provides a brief outlook.

2 Fast Semi-Iterative Schemes

FSI schemes have been introduced recently by Hafner et al. [6]. They are versatile
strategies that accelerate the simplest solvers for four problem classes: the ex-
plicit scheme for parabolic partial differential equations, Richardson’s iteration
for linear systems of equations, the gradient descent method for convex opti-
misation problems, and the projected gradient descent method for constrained
convex optimisation problems. This acceleration is achieved by an extrapolation
step in the direction from the previous to the current iterate. While FSI schemes
have been introduced in the context of image analysis applications, they have
also been used successfully in other fields [2].
In the present paper we are interested in the FSI schemes that solve smooth
convex optimisation problems of type

min
x∈RN

F (x) (1)

where ∇F is Lipschitz continuous with constant L. The classical gradient descent
method for this problem reads

xk+1 = xk − ω∇F (xk) , (2)
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where the upper index denotes the iteration number, and the step size parameter
ω must satisfy ω ∈ (0, 2/L) for stability reasons.
FSI accelerates gradient descent by considering the cyclic iteration

xm, k+1 = xm, k − αk ω∇F (xm, k) + (αk − 1)(xm, k − xm, k−1) (3)

with xm,−1 := xm,0 and extrapolation parameter αk = 4k+2
2k+3 . The inner iteration

index k ranges from 0 to K − 1, where K denotes the cycle length. The outer
index m counts the cycles. In [6] it has been argued that the cycle length K is
responsible for the efficiency of the method, while the number of cycles influences
the accuracy. In practice there is a natural tradeoff between both parameters,
and it requires hand tuning to obtain the highest convergence speed for a given
number of iterations. This may be burdensome. Therefore, in this paper, we
suggest an automatic adaptive selection of this parameter.

For strongly convex problems with convexity parameter µ (i.e. F (x)− µ
2 ||x||

2

is convex), Hafner et al. [6] suggest to consider only a single cycle with step size
ω = 2

L+µ and modified extrapolation parameters

α0 =
2(L+ µ)

3L+ µ
, αk =

1

1− αk−1

4

(
L−µ
L+µ

)2 . (4)

While this removes the need to select the cycle length it requires us to know
the strong convexity parameter µ.

Fig. 1 demonstrates the difficulty of selecting the cycle length of FSI. It
shows the performance of different FSI cycle lengths compared to FSI that has
been adapted to the strong convexity. The function being minimised is Nesterov’s
worst case strongly convex function. This is a quadratic function that is designed
in such a way that it is difficult for all methods to minimise it. For details on its
construction, see Section 6.1.

The minimisation was performed for two sets of parameters for the function.
We observe that while a good choice of a cycle length can get close to FSI that
is using the exact value of µ, the problem is that for different parameters of the
function, different cycle lengths are optimal. While we can attempt to derive
an optimal cycle length from the condition number it would not be exciting
since if we know both the condition number and the Lipschitz constant we can
simply use FSI that has been adapted to the strong convexity and a single cycle.
The goal of this paper is to determine a good cycle length in an automatic way
without any additional information about the function.

3 Related Work

A classic gradient-based method is Polyak’s heavy ball method [13] which has
the following updating rule:

xk+1 = xk − α∇F (xk) + β(xk − xk−1) , (5)
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Fig. 1. Convergence plots of FSI with different cycle lengths for solving Nesterov’s
worst case problem. The problem dimension is N = 105 and we explore two difference
parameter choices for L and µ. The convergence is measured in terms of the squared
Euclidean norm of the gradient of the objective. FSI that has been optimally adapted
to the strong convexity is used as a baseline. The optimal cycle length for FSI can
change significantly depending on the problem parameters.

where the inertial parameter β ∈ [0, 1) controls the momentum we gain and α ∈
(0, 2(1+β)L ) is the step size. As shown in [6], FSI schemes for convex optimisation
can be viewed as a variant of Polyak’s heavy ball method by allowing cyclically
varying parameters; see (3).

A closely related method is Nesterov’s accelerated gradient descent [8]. The
accelerated gradient descent has the following updating rule:

yk = xk + βk(xk − xk−1) ,

xk+1 = yk − 1

L
∇F (yk) ,

βk = θk(θ−1k−1 − 1) ,

(6)

where θ0 := θ−1 := 1 and 1−θk+1

θ2k+1
≤ 1

θ2k
. Here the extrapolated point is also used

in the evaluation of the gradient. This allows the accelerated gradient descent
to respond to an increase in the function values earlier, reducing its oscillatory
behaviour.

A common choice for the inertial parameter is βk = k−1
k+2 . Comparing it to

the inertial parameter of FSI, (αk − 1) = (k − 1
2 )/(k + 3

2 ), we observe that βk
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converges to 1 at a slower rate than (αk− 1). If we fix the cycle length of FSI to
some K then (αk− 1) will be bounded from above by the constant (αK − 1) < 1
and for a large enough k, βk will overtake it.

Like FSI, the accelerated gradient descent can be adapted to the strong
convexity of a function with the parameter choice [9, Section 2.2.1]:

βk =

√
L−√µ
√
L+
√
µ
. (7)

A closer relative to FSI is the restarted accelerated gradient descent intro-
duced by O’Donoghue and Candès [12]. Just like FSI the restarted accelerated
gradient descent also cyclically varies its parameters and resets its momentum.
O’Donoghue and Candès consider both a fixed restart interval, and two different
adaptive schemes:

– Function scheme: Restart whenever

F (xk) > F (xk−1) . (8)

– Gradient scheme: Restart whenever〈
∇F (yk−1),xk − xk−1

〉
> 0 . (9)

While the function scheme offers monotonicity it can be numerically unstable.
The gradient scheme works better in practice and is often cheaper to compute.

Another restarting scheme for the accelerated gradient descent was recently
proposed by Su, Boyd and Candès [15]. The scheme restarts when it detects
decreasing speed. This can be detected with the following restart criterion:

– Speed based scheme: Restart whenever

||xk − xk−1|| < ||xk−1 − xk−2|| . (10)

Although this scheme often performs worse than the gradient scheme it comes
with the advantage of a linear worst case convergence rate.

While the heavy ball method, the restarted accelerated gradient descent and
obviously FSI are the closest to our work, there exist many extensions of the
heavy ball method and the accelerated gradient descent. For example, FISTA
[3] extends the accelerated gradient descent to include non-smooth functions,
and iPiano [11] extends the heavy ball method to include non-smooth and non-
convex functions. These methods are all closely related to the momentum method
that is frequently applied in machine learning [14, 16].

FED [5] uses another acceleration strategy instead of accumulating momen-
tum. FED uses step sizes that on their own are unstable but can be combined
into a stable cycle. In the linear setting this is equivalent to FSI [6].
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4 Adaptive Restarting

In Section 2 we saw that in general selecting a good cycle length for the FSI
solver is difficult. For specific tasks we might be able to find cycle lengths that
work well in practice but this requires some extra work from the user. Instead of
the user needing to adapt FSI to the problem, FSI should adapt in an automatic
way.

We seek a simple criterion that is both cheap to compute, and yields a per-
formance that is comparable to an expert selecting the cycle length manually
for a specific task.

One way to achieve this is using adaptive restarts [12]. The idea comes from
the observation that the function values of momentum based methods start to
oscillate if the inertia parameter is set higher than the optimal value.

To visualise this we consider the heavy ball method in 2D. The heavy ball
method can be thought of as a ball rolling down some landscape. If our landscape
is a bowl then it is easy to see that if the friction between the bowl and and ball
is low the ball will roll past the minimum and up the other side of the bowl. If
we want to get to the minimum fast it is a natural idea to simply stop the ball
whenever it starts going upwards.

Therefore, the idea of adaptive restarting is to discard the momentum when-
ever the function values start increasing. Since the gradient is always pointing
upwards in the function, we can go into a new cycle when the following condition
is met: 〈

∇F
(
xk
)
,xk − xk−1

〉
> 0 . (11)

This leads to Adaptive FSI (AFSI ) schemes for strongly convex optimisation.
Since we discard the entire momentum once it is pointing towards higher

function values, the advantage of the accelerated gradient descent discussed in
Section 3 becomes less obvious. With the oscillatory behaviour taken care of
explicitly, the faster growing inertial parameter and larger step sizes of FSI
become more attractive.

Algorithm 1 shows the general idea of AFSI. In each iteration we need to
compute one additional inner product. When compared to the rest of the itera-
tion this is not expensive.

Let us compare our restart strategy from (11) to the function scheme from (8)
and the gradient scheme from (9). While we designed it to prevent an increase
in function values like the function scheme, it shares the structure with the gra-
dient scheme. The difference is where we evaluate the gradient. When deciding
whether the momentum at xk should be reset or used for the extrapolation step
from (6), the gradient scheme uses the gradient information from the previous
intermediary point yk−1. Our scheme uses the gradient information from the
current iterate xk, this is illustrated in Fig. 2. While our scheme requires an ex-
tra gradient evaluation when applied to Nesterov’s accelerated gradient descent,
FSI requires the gradient at xk anyway. Therefore no extra gradient evaluations
are required when implementing AFSI. In the next section we will see that evalu-
ating the restarting condition at the current iterate gives us monotonicity of the
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Algorithm 1 AFSI

ω ∈
(
0, 2

L

)
, x−1 := x0, k := 0

while stopping criterion is not met do
if 〈∇f(xk),xk − xk−1〉 > 0 {Check the reset condition} then

x−1, x0 ← xk−1 { Reset the momentum}
k ← 0

end if
αk ← 4k+2

2k+3

xk+1 ← xk − αkω∇f(xk) + (αk − 1)(xk − xk−1)
k ← k + 1

end while

function values. This combines the theoretical properties of the function scheme
with the numerical stability and cheap computation of the gradient scheme.

xk−2 xk−1 yk−1

xk

yk

extrapolation

−∇F
(
yk−1

)

−∇F
(
xk

)

α

β

Fig. 2. This figure illustrates the difference between the gradient scheme from (9) and
our scheme. When deciding whether the momentum at xk (in red) should be reset or
used to compute yk, the schemes use gradient information from different locations.
The gradient scheme resets when the angle α is obtuse and our scheme resets when β
is obtuse.

5 Theoretical Insights

While resetting the momentum term and going into a new cycle when it is
pointing towards higher function values sounds intuitive, it can also be motivated
directly by the convergence analysis of FSI. If we know that the algorithm goes
into a new cycle whenever the inequality from (11) is satisfied we have the
additional information that all previous iterates satisfy〈

∇F
(
xk
)
,xk−1 − xk

〉
≥ 0 . (12)
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This term appears in a lot of useful inequalities from convex analysis and knowing
its sign proves to be very useful. The fact that it allows us to ignore a lot of terms
in the convergence analysis of FSI can be considered a motivation for the restart
condition from (11). We can use the subgradient inequality (see for example [9,
Section 2.1.1])

F (y) ≥ F (x) + 〈∇F (x) ,y − x〉 (13)

to conclude that

F
(
xk
)
≤ F

(
xk−1

)
. (14)

This tells us that AFSI is a descent method. Note that we are not able to conclude
this with the gradient scheme from (9).

By applying (12) repeatedly in the convergence analysis we can derive the
following linear convergence rate for AFSI. The proof can be found in the preprint
version of this paper.

Theorem 1. Let F : RN → R be a smooth strongly convex function with convex-
ity parameter µ and a L-Lipschitz continuous gradient with L > µ. Furthermore,
let F ∗ be the unique minimum of F . Let (xk)k∈N be generated by a single cycle of
Algorithm 1 with initialisation x0 ∈ RN , and step size ω ∈

(
0, 1

L

)
. Then AFSI

has the following convergence rate:

F (xk)− F ∗ ≤ qkC
(
L

µ

)(
F (x0)− F ∗

)
, (15)

where the constant C
(
L
µ

)
depends on the condition number L/µ and

q :=

√√√√ L
µ

2µω (1− Lω) + L
µ

. (16)

The convergence rate from Theorem 1 is optimised for ω = 1
2L , where we

have

q =

√
1

1
2

(
µ
L

)2
+ 1

. (17)

Fig. 3 shows how the convergence rate compares to the convergence rate of
gradient descent, and the optimal convergence rate in the sense of Nemirovski
and Yudin [7, 9]. While the convergence rate provided by theorem 1 is worse than
the convergence rate of gradient descent, it is linear. This is an improvement over
FSI. Section 6 shows that in practice we observe much faster convergence. The
constant C is in general not very large and for L/µ ≥ 25 we have C(L/µ) = 1.
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Fig. 3. Plot of 1 minus the convergence rate as a function of the condition number L/µ
for AFSI, gradient descent, and the optimal convergence rate for the class of strongly
convex smooth functions. While the worst case convergence rate of AFSI is worse than
gradient descent, it is linear.

6 Experiments

6.1 Nesterov’s Worst Case Functions

Nesterov’s worst case functions are a family of functions that are designed to be
difficult to minimise for all methods. They are defined by [9, Section 2.1.4]:

Fµ,L(x) =
L− µ

8

(
x21 +

+∞∑
i=1

(xi − xi+1)2 − 2x1

)
+
µ

2
||x||22 (18)

for strongly convex functions, and [9, Section 2.1.2]

Fk, L(x) =
L

4

(
1

2

(
x21 +

2k∑
i=1

(xi − xi+1)2 + x22k+2

)
− x1

)
(19)

for convex functions. The difficulty arises when we initialise with x0 := 0, then
at iteration k, xk will at most have k nonzero entries. The nonzero entries of
the minimum x∗ then provide a bound on the convergence rate. For the class
of strongly convex functions the worst case function is defined for R+∞ → R.
Therefore, when approximating it the problem dimension should be large com-
pared to the number of iterations taken.

For the convex problem the function has a parameter k ≤ (N − 1)/2. This
parameter governs at which iteration the following lower bound holds:

Fk, L(xk)− F ∗ ≥ 3L||x0 − x∗||2

32(k + 1)2
. (20)

While this proves that for all iterations k there exists a function such that the
bound holds, it is important to note that for a specific instance of the function
it is only guaranteed to hold at a single iteration k. Since the function is not
designed to be difficult to minimise at any other iteration we can argue that the
performance after iteration k is not interesting.
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Since we are using adaptive restarting the obvious method to compare AFSI
to is Nesterov’s accelerated gradient descent with adaptive restarting that was
introduced by O’Donoghue and Candes [12]. We consider 2 restarting schemes,
the gradient scheme from (9), and the speed based scheme of Su et al. from (10).

In Fig. 4 we observe that AFSI can get close to FSI adapted to the strong
convexity with the optimal parameters and can even beat the accelerated gradi-
ent descent adapted to the convexity. For this problem the gradient scheme for
the accelerated gradient descent has not yet reset its momentum. Therefore, it
is still identical to the accelerated gradient descent from (6). The speed based
scheme performs better but it cannot achieve the performance of AFSI.

While our analysis was only conducted for strongly convex functions we also
evaluate the performance on Nesterov’s worst case convex function with k =
50. We observe that we keep the state-of-the-art performance of FSI in the
interesting part of the function. Once we get past it, AFSI becomes superior.
Here the gradient scheme for the accelerated gradient descent works as intended
by restarting once the function values start to increase. At this point AFSI is
already in its third cycle.

We observe that the speed based scheme performs worse than the gradient
scheme due to restarting too early. Since the convergence rate of the speed
based scheme is linear it will overtake the accelerated gradient descent without
restarting. This happens after around 1000 iterations.

6.2 Non-quadratic Minimisation

For this experiment we consider the following functional:

E(u) =
1

2

∫
Ω

(
Ψ((u− f)2) + αΨ(|∇u|2)

)
dxdy (21)

and its discretised counterpart F : RN → R. Here we aim to remove noise from
an image f : Ω → R by finding an image u : Ω → R that is both similar to f
and is smooth. To achieve this we use the Charbonnier penaliser [4]:

Ψ(s2) = 2λ2
√

1 +
s2

λ2
− 2λ2 . (22)

It is worth noting that as λ goes to 0 our functional approaches TV-L1 regular-
isation [10].

What makes this problem interesting is that both the similarity term and the
smoothness term are subquadratic. Therefore, we have no quadratic lower bound
on F , and consequently it is not globally strongly convex. While we cannot find
a µ that works globally, we can always find a µ > 0 if we restrict ourselves to a
level set of F . In practice getting a better bound than µ > 0 for a given level set
is difficult. Since in (14) we showed that AFSI is a descent method we will not
leave the initial level set. Therefore, AFSI sees F as being effectively strongly
convex even if globally it is not. In other words, AFSI can adapt to the local
structure of F while FSI uses the global information.
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Fig. 4. Convergence plots of AFSI, FSI that has been optimally adapted to the strong
convexity, Nesterov’s accelerated gradient descent that has been optimally adapted to
the strong convexity, and Nesterov’s accelerated gradient descent with the gradient
based restarting scheme from (9) and the speed based restarting scheme from (10).
The methods are solving Nesterov’s worst case problem. The strongly convex problem
in (a) has the dimension 105, and parameters L = 102 and µ = 10−3. The convergence
is measured in terms of the squared Euclidean norm of the gradient. The convex prob-
lem in (b) has the dimension 103, and parameters k = 50 and L = 1. The residual
of the objective is used to evaluate the convergence. AFSI achieves state-of-the-art
performance and even outperforms Nesterov’s optimal method for both functions.

In Fig. 5 we observe that this does indeed give AFSI and the restarted accel-
erated gradient descent an advantage over their counterparts without restarts.
AFSI even performs better than FSI that has the cycle length tuned by hand to
425 for the fastest convergence. While this cycle length results in a comparable
convergence rate once we are close to the minimum it is not well suited at the
beginning of the process. In contrast the adaptive cycle length of AFSI performs
well at all stages of the optimisation.

Comparing the gradient scheme and the speed based scheme for restarting
the accelerated gradient descent, we again observe that the speed based scheme
is restarting too frequently. While the gradient scheme converges faster than
both the speed based scheme and the accelerated gradient descent without any
restarting, it converges slower than AFSI.
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Fig. 5. Denoising with α = 1, λ = 0.1, and a black initialisation. Comparison of AFSI,
FSI, and Nesterov’s accelerated gradient descent with and without adaptive restarting.
The solutions and mean square error (MSE) of the methods after 500 iterations are
shown above. The solution of the gradient descent method (not shown) is still the
black initialisation after 500 iterations. The reference solution is obtained with 20000
iterations of Nesterov’s method restarted with the gradient scheme. The cycle length
of 425 was hand-tuned for the best performance. AFSI reaches a low MSE faster than
the other methods, and converges faster than FSI for all fixed cycle lengths.
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We observe that while a single FSI cycle converges slowly it achieves a good
approximation quickly. This is exactly what allows FSI to perform so well once
we apply adaptive restarting. For a restarted method we only care about how
fast it can reach the minimum and get into the next cycle, what happens after
that is not important.

7 Conclusions and Future Work

We have introduced Adaptive FSI (AFSI) schemes for strongly convex optimi-
sation problems. They provide an automatic way of selecting the cycle length
for FSI schemes. Since we no longer have an extra parameter, we have a method
that is both simple to implement and simple to use. We can show that AFSI
offers additional stability guarantees over FSI where the cycle length is a free
parameter.

Our experiments demonstrate that when the strong convexity parameter of
the function is known we can get close to the performance of the optimal meth-
ods. Additionally, when no useful bound on the strong convexity parameter is
available AFSI can outperform them.

While we have only considered FSI schemes for unconstrained optimisation,
FSI schemes can also be used for solving parabolic and elliptic partial differential
equations, and for constrained optimisation [6]. In our ongoing work, we are
studying how to extend the results for AFSI to these other types of FSI schemes.
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