
Inertial Quasi-Newton Methods for Monotone Inclusion:

Efficient Resolvent Calculus and Primal-Dual Methods

Shida Wang*, Jalal Fadili**, and Peter Ochs*

*Department of Mathematics, University of Tübingen, Germany
**Normandie Université, ENSICAEN, UNICAEN, CNRS, GREYC, France.

September 29, 2022

Abstract

We introduce an inertial quasi-Newton Forward-Backward Splitting Algorithm to solve a
class of monotone inclusion problems. While the inertial step is computationally cheap, in
general, the bottleneck is the evaluation of the resolvent operator. A change of the metric
makes its computation hard even for (otherwise in the standard metric) simple operators.
In order to fully exploit the advantage of adapting the metric, we develop a new efficient
resolvent calculus for a low-rank perturbed standard metric, which accounts exactly for quasi-
Newton metrics. Moreover, we prove the convergence of our algorithms, including linear
convergence rates in case one of the two considered operators is strongly monotone. Beyond
the general monotone inclusion setup, we instantiate a novel inertial quasi-Newton Primal-
Dual Hybrid Gradient Method for solving saddle point problems. The favourable performance
of our inertial quasi-Newton PDHG method is demonstrated on several numerical experiments
in image processing.

1 Introduction

Nowadays, convex optimization appears in many modern disciplines, especially when dealing with
datasets of large scale. There is a strong need of efficient optimization schemes. Unfortunately,
the high dimension of the problems at hand makes the use of second order methods intractable. A
promising alternative are quasi-Newton type methods, which aim for exploiting cheap and accurate
first order approximations of the second order information. In particular, the so-called limited
memory quasi-Newton method has proved very successful for solving unconstrained large scale
problems. However, many practical problems in machine learning, image processing or statistics
more naturally have constraints or are non-smooth by construction.

A problem structure that can cover a broad class of non-smooth problems in these applications
is the monotone inclusion problem on a real Hilbert space H as the following:

find x ∈ H such that (A+B)x 3 0 , (1)

where A : H →→ H is a maximally monotone operator and B : H → H is a single-valued β cocoer-
cive operator. As a special case (1) comprises the setting of minimization problems of the form
minx∈H f(x) + g(x) with a proper lower semi-continuous convex function f and convex function g
with Lipschitz continuous gradient by setting A = ∂f and B = ∇g.

A fundamental algorithmic scheme to tackle the problem class (1) is Forward-Backward Split-
ting (FBS). However, this algorithm can be quite slow for ill-conditioned problems, for which one
would like to exploit the second order information to adapt to the local geometry of the problem.
As a computationally affordable approximation in this paper, we propose a quasi-Newton variant
that takes advantage from a variable metric that is computed using first order information only. We
manage to remedy the main computational bottlenecks for these type of approach by developing
an efficient low-rank variable metric resolvent calculus.

Our approach is inspired by the proximal quasi-Newton method in [7]. We extend the framework
proposed in [7] to the resolvent setting with a M ± rank-r symmetric positive definite variable
metric. We first study the convergence of two variants of FBS algorithm with respect to this type

1

ar
X

iv
:2

20
9.

14
01

9v
1

 [
m

at
h.

O
C

]
 2

8
Se

p
20

22

of metrics. One variant uses inertial step to accelerate its convergence and the other uses relaxation
to guarantee convergence with mild assumption. In analogy to the proximal calculus proposed in
[7], we develop a resolvent calculus that allows for a efficient evaluation of resolvent operators with
respect to this type of metrics by splitting the evaluation into two computationally simple steps:
calculating a resolvent operator with respect to a simple metric M and solving a low dimensional
root finding problem. This allows for using popular quasi-Newton methods, such as the limited
memory SR1 or BFGS method.

In order to exploit the power and to illustrate the variety of problems that can be solved via
the framework as (1), the developed algorithms are instantiated for the following saddle point
problem, which include quasi-Newton Primal-Dual methods and enjoy an enormous number of
potential applications:

min
x∈H1

max
y∈H2

〈Kx, y〉+ g(x) +G(x)− f(y)− F (y) , (2)

where g and f are lower semi-continuous convex functions, G and F are convex, differentiable
with Lipschitz gradients and K is a bounded linear operator. The numerical performance of our
algorithms is tested on several numerical experiments and demonstrates a clear improvement when
our quasi-Newton methods are used.

1.1 Related Works

Smooth quasi-Newton. Quasi-Newton methods are widely studied and used for optimization
with objective functions sufficiently smooth [35]. Their motivation is to build a cheap approxima-
tion to the Newton’s Method. If the approximation of the second order information is given by a
positive definite matrix, quasi-Newton methods can be interpreted as adapting the metric of the
space locally to the objective function. The success of these methods requires a good approxima-
tion of the second order information (Hessian) of the objective by using the first order information,
which is still actively researched. Recently, [30] proposed to select greedily some basis vectors in-
stead of using the difference of successive iterates for updating the Hessian approximations. Based
on their works, [24] constructed an approximation of the indefinite Hessian of a twice differentiable
function. All methods mentioned above require sufficient smoothness of the objective functions.
Non-smooth quasi-Newton. A broad class of optimization problems is interpreted as a com-
position of a smooth function f and a non-smooth function h. To deal with the non-smoothness
of h efficiently, many authors consider a combination of FBS with the quasi-Newton methods.
By using the forward-backward envelope, [27, 33] reinterpreted the FBS algorithm as a variable
metric gradient method for a smooth optimization problem in order to apply the classic Newton or
quasi-Newton method. For non-smooth function g as simple as an indicator function of a convex
set, [32, 31] proposed an elegant method named projected quasi-Newton algorithm (PQN) which,
however, requires either solving a subproblem or a diagonal metric. [23] extended PQN to a more
general setting as long as the proximal operator with respect to h is simple to compute. For a
class of low-rank perturbed metrics, [6, 7] developed a proximal quasi-Newton method with a root
finding problem as the subproblem which can be solved easily and efficiently. This method can
be extended to the nonconvex setting [19]. Based on [6, 7], [20] incorporated a limited-memory
quasi-Newton update. Meanwhile, [21] developed a different algorithm to evaluate the proximal
operator of the separable l1 norm with respect to a low-rank metric V = M − UU∗. We extend
the quasi-Newton approach of [6, 7] from the nonsmooth convex minimization setting to monotone
inclusion problems of type (1). More related works for the minimization setting are intensively
discussed in [7]. Therefore, we focus here on approaches to solve the monotone inclusion problem.
It is generic to use a variable metric for solving a monotone inclusion problem, which is discussed in
[12, 13]. Its convergence relies on quasi-Fejér monotonicity [12]. However the efficient calculation
of the resolvent is left as an open problem. Our approaches use a variable metric to obtain a quasi-
Newton method with an efficient resolvent calculus. From a different perspective, [2] considered
incorporating Newton methods by introducing dynamic system with Hessian damping. Later, in
[1, 3], time discretization of some dynamics gives new insight into the Newton’s method for solving
monotone inclusions which is different from variable metric approaches. Recently, there is a new
approach that [22] proposed a generalized damped Newton type which is based on second-order
subdifferentials.
PDHG. Primal-Dual Hybrid Gradient (PDHG) is widely used for solving saddle point problems of
the form (2). PDHG can be interpreted as a proximal point algorithm [17] applied on a monotone

2

inclusion problem with a fixed metric. Based on this idea, [26] proposed an inertial FBS method
applied to the sum of set-valued operators from which a generalization of PDHG method is de-
rived. Also based on similar ideas, [28] considers diagonal preconditioning to accelerate PDHG.
Their method can be regarded as using a fixed blocked matrix as a metric. Later, [25] considers
non-diagonal preconditioning and pointed out if a special preconditioner is chosen, that kind of
preconditioned PDHG method will be a special form of the linearized ADMM. Their method re-
quires an inner loop due to the non-diagonal preconditioning. [16] introduces an adaptive PDHG
scheme which can also be understood as using a variable metric with step size tuned automatically.
However, [16] considered changes on the diagonal of the metric. Our resolvent calculus in Section
4 provides another possibility to change metrics at elements off the diagonal to deal with resolvent
operators.

2 Preliminaries

Let us recall some essential notations and definitions. Let H be a Hilbert space equipped with
inner product 〈·, ·〉 and induced norm ‖ · ‖ =

√
〈·, ·〉. An operator K ∈ B(D,H) is a linear bounded

mapping from a Hilbert space D to H. We abbreviate B(H,H) to B(H). The adjoint of M ∈ B(H)
is denoted by M∗. We define S(H) := {M ∈ B(H)|M = M∗} and the identity operator by
I ∈ S(H). Without ambiguity, we also use the notation ‖M‖ for the operator norm of M ∈ S(H)
with respect to ‖ · ‖. The partial ordering on S(H) is given by

(∀U ∈ S(H))(∀V ∈ S(H)) : U � V ⇐⇒ (∀x ∈ H) 〈Ux, x〉 ≥ 〈V x, x〉 . (3)

For σ ∈ [0,+∞), we introduce Sσ(H) := {U ∈ S(H)|U � σI)}. Similarly, we introduce S++(H) :=
{U ∈ S(H)|U � 0}. The norm ‖ · ‖M is defined by

√
〈M ·, ·〉 for some M ∈ S++(H).

A set valued operator A : H →→ H is defined by its graph

GraphA := {(x, y) ∈ H|x ∈ Dom(A), y ∈ Ax} ,

and has a domain given by
Dom(A) := {x ∈ H|Ax 6= ∅}.

Given two set-valued operators A,B : H →→ H, we define A+B : H →→ H as follows:

Dom(A+B) = Dom(A) ∩Dom(B) ,

(A+B)x = Ax+Bx := {y ∈ H|∃y1 ∈ H,∃y2 ∈ H such that y = y1 + y2} .

The inverse of A is denoted by A−1 given by A−1(y) := {x ∈ H|y ∈ Ax} and the zero set of A is
denoted by zer(A+B) := {x ∈ H|(A+B)x 3 0}. We call A is γA-strongly monotone with respect
to norm ‖ · ‖ and γA ≥ 0 if 〈x− y, u− v〉 ≥ γA‖x − y‖2 for any pair (x, u) , (y, v) ∈ GraphA and
γA = 0 if just monotone. The resolvent of A : H →→ H with respect to metric M ∈ S++(H) is
defined as

JMA := (I +M−1A)−1 and we set JA := JIA for the identity metric I , (4)

which, as shown for example in [5], enjoys the following properties.

Proposition 2.1. Let A : H →→ H be maximally monotone, M ∈ S++(H) and y ∈ H. Then, the
following holds

y = JMγA(x) ⇐⇒ x ∈ y + γM−1Ay ⇐⇒ x− y ∈ γM−1Ay ⇐⇒ (y, γ−1M(x− y)) ∈ GraphA .
(5)

Proposition 2.2. Let A : H →→ H be maximally monotone. Then for every sequence (xk, uk)k∈N
in GraphA and every (x, u) ∈ H ×H, if xk ⇀ x and uk → u, then (x, u) ∈ GraphA.

Lemma 2.3. Let T : H →→ H be a maximally monotone operator and let M ∈ S++(H). Then, for
any z ∈ H, we have JMT (z) = M−1/2 ◦ JM−1/2TM−1/2 ◦M1/2(z)

Proof. See Appendix A.1.

Lemma 2.4. If A is γA-strongly monotone and γA ≥ 0, then JMA is Lipschitz continuous with
respect to ‖ · ‖M with constant 1/(1 + γA

C) ∈ (0, 1] for any C satisfying ‖M‖ ≤ C <∞.

3

Proof. See Appendix A.2.

Proposition 2.5 (Variable Metric quasi-Fejér monotone sequence [12]). Let σ ∈ (0,+∞), let
ϕ : [0,+∞)→ [0,+∞) be strictly increasing and such that limt→+∞ ϕ(t) = +∞, let (Mk)k∈N be in
Sσ(H), let C be a nonempty subset of H, and let (xk)k∈N be a sequence in H such that

(∃(ηk)k∈N ∈ `1+(N))(∀z ∈ C)(∃(εk)k∈N ∈ `1+(N))(∀k ∈ N) :

ϕ(‖xk+1 − z‖Mk+1
) ≤ (1 + ηk)ϕ(‖xk − z‖Mk

) + εk .

(6)

(a) Then (xk)k∈N is bounded and, for every z ∈ C, (‖zk − z‖Mk
)k∈N converges.

(b) If additionally, there exists M ∈ Sσ(H) such that Mk →M pointwise, as is the case when

sup
k∈N
‖Mk‖ < +∞ and (∃(ηk)k∈N ∈ `1+(N))(∀k ∈ N) : (1 + ηk)Mk �Mk+1 , (7)

then (xk)k∈N converges weakly to a point in C if and only if every weak sequential cluster
point of (xk)k∈N lies in C.

A key result for our resolvent calculus in Section 4 is the following abstract duality principle.

Lemma 2.6 (A duality result for operators [4]). Let A : H →→ H be an operator such that A−1 is
single-valued and let B : H → H be a single-valued operator. Then, the following holds for x, u ∈ H:{

0 ∈ Ax+Bx

0 ∈ B−1u−A−1(−u)
⇐⇒

{
x ∈ B−1u

−u ∈ Ax
⇐⇒

{
Bx = u

x = A−1(−u)
. (8)

Moreover, if there exists x ∈ H such that 0 ∈ Ax + Bx or there exists u ∈ H such that 0 ∈
B−1u − A−1(−u), then there exists a unique primal-dual pair (x, u) that satisfies the equivalent
conditions above.

We also need the following lemma which was stated as [29, Lemma 2.2.2].

Lemma 2.7. Let Ck ≥ 0 and let

Ck+1 ≤ (1 + νk)Ck + ζk, νk ≥ 0, ζk ≥ 0,∑
k∈N

νk <∞,
∑
k∈N

ζk <∞. (9)

Then, Ck → C ≥ 0 and C < +∞.

3 Inertial Quasi-Newton Forward-Backward Splitting for Mono-
tone Inclusion

3.1 Problem setting

Let A : H →→ H be a maximally and γA-strongly monotone operator with γA ≥ 0 with respect to
norm ‖ · ‖ and let B : H → H be a single-valued, β cocoercive and γB-strongly monotone operator
with γB ≥ 0 with respect to norm ‖ · ‖. We consider the following monotone inclusion problem:

find x ∈ H such that Ax+Bx 3 0 . (10)

Note that by setting γA = 0 or γB = 0, we include the general case of monotone operators that
are not necessarily strongly monotone. In this paper, we propose two variants of an efficiently
implementable quasi-Newton Forward-Backward Splitting (FBS) algorithm in Algorithm 1 and
Algorithm 2 to solve (10). The main update step is a variable metric FBS step in both algorithms
as shown in (12) and (13), i.e., a forward step with respect to the cocoercive operator B, followed
by a proximal point step (computation of the resolvent) with respect to the maximally monotone
operator A, both evaluated in an iteration dependent metric Mk that is inspired by quasi-Newton
methods and therefore adapts to the local geometry of the problem. In contrast to the related

4

works, as discussed in Section 1.1, we emphasize the importance of efficiently implementable resol-
vent operators (see Section 4). The two variants allow for more or less flexibility for the choice of
the metric (see Section 5). Both variants account for potential (numerical) errors in the evaluation
of the forward-backward step. Algorithm 1 combines a FBS step with an additional inertial step
which has the potential of accelerating the convergence, as we illuminate in our numerical experi-
ments in Section 7. It is a generalization of the algorithms in [10, 26] to a quasi-Newton variant.
In [26], Lorenz and Pock proposed an inertial Forward-Backward Splitting algorithm but with a
fixed metric which is different from our Algorithm 1 which uses a variable metric. Algorithm 2
combines FBS with a relaxation step in (iii) which yields convergence under mild assumptions on
the metric. It generalizes the correction step introduced in [17] which can be retrieved by metric
Mk ≡M and B ≡ 0.

Algorithm 1 Inertial quasi-Newton Forward-Backward Splitting

Require: N ≥ 0, (‖εk‖)k∈N ∈ `1+(N)
Initialization: x0 ∈ H
Update for k = 0, · · · , N :

(i) Compute Mk according to a quasi-Newton framework.

(ii) Compute the inertial step (extrapolation step):

z̄k ← zk + αk(zk − zk−1) , (11)

(iii) and the forward-backward step:

zk+1 ← JMk

A (z̄k −M−1
k Bz̄k) + εk . (12)

End

Algorithm 2 Quasi-Newton Forward-Backward Splitting with Relaxation

Require: N ≥ 0, (‖εk‖)k∈N ∈ `1+(N)
Initialization: x0 ∈ H
Update for k = 0, · · · , N

(i) Compute Mk according to a quasi-Newton framework.

(ii) Compute the forward-backward step:

z̃k ← JMk

A (zk −M−1
k Bzk) + εk , (13)

(iii) and relaxation step:

tk =
〈zk − z̃k, (Mk −B)(zk − z̃k)〉

2‖(Mk −B)(zk − z̃k)‖2
, (14)

zk+1 ← zk − tk[(Mk −B)(zk − z̃k)] . (15)

End

3.2 Convergence

In this subsection, we prove the convergence of Algorithm 1 and Algorithm 2. The implementation
details for the specific quasi-Newton features are deferred to the upcoming section.

3.2.1 Algorithm 1: Inertial Quasi-Newton Forward-Backward Splitting

The following convergence result is a generalization of [11, Theorem 3.1] to an inertial version of
variable metric Forward-Backward Splitting.

5

Assumption 1. Let σ ∈ (0,+∞). (Mk)k∈N is a sequence in Sσ(H) such that{
C := supk∈N||Mk|| <∞ ,

(∃(ηk)k∈N ∈ `1+(N))(∀k ∈ N) : (1 + ηk)Mk �Mk+1 ,
(16)

and Mk − 1
2β I ∈ Sε(H) for all k ∈ N and some ε > 0. Moreover, (εk)k∈N is a sequence in H such

that
∑
k∈N ‖εk‖ < +∞.

Theorem 3.1. Consider Problem (10) and let the sequence (zk)k∈N be generated by Algorithm 1
where Assumption 1 holds and (αk)k∈N are selected such that αk ∈ (0,Λ] with Λ <∞ and∑

k∈N
αk max{‖zk − zk−1‖Mk

, ‖zk − zk−1‖2Mk
} < +∞ .

Suppose that zer(A + B) 6= ∅. Then (zk)k∈N are bounded and weakly converge to a point z∗ ∈
zer(A+B), i.e. zk ⇀ z∗ as k →∞.

Furthermore, if additionally we assume εk ≡ 0 for any k ∈ N, γA > 0 or γB > 0 and Mk− 1
β I ∈

Sε(H), then there exist some ξ ∈ (0, 1), some Θ > 0 and some K0 ∈ N such that for any k ≥ K0,

‖zk− z∗‖2Mk
≤ (1− ξ)k−K0‖zK0

− z∗‖2MK0
+

k−1∑
i=K0

Θ(1− ξ)k−iαi max{‖zi− zi−1‖Mi
, ‖zi− zi−1‖2Mi

} .

(17)

Proof. See Appendix A.3.

Remark 1. • We obtain that the second term on the right hand of (17) converges to 0 by
using [29, Lemma 2.2.3].

• The linear convergence factor 1− ξ is chosen such that there exists K0 ∈ N with

(1 + ηk)
(1− γB

C

1 + γA
C

)
≤ 1− ξ ,

for all k ≥ K0 holds.

• The convergence rate for the strongly monotone setting can be influenced a lot by the decay
rate of αk.

(i) If αk = O(qk) for q = 1− ξ, we have convergence rate of O(kqk) for k > K0 where K0

is sufficiently large.

(ii) If αk = O(1
k2), we have convergence rate of O(1

k) for k > K0 where K0 is sufficiently
large.

3.2.2 Algorithm 2: Quasi-Newton Forward-Backward Splitting with Relaxation

At the cost of a relaxation instead of an inertial step, we can significantly generalize the flexibility
of choosing the metric. Note that without loss of generality, we assume z̃k 6= zk for all k ∈ N,
since otherwise z̃k is already solves the inclusion problem after a finite number of iterations. This
method is inspired by [17].

Assumption 2. Let σ ∈ (0,+∞). (Mk)k∈N is a sequence in Sσ(H) and (εk)k∈N is a sequence in
H such that:

(i) For all k ∈ N, we have (Mk − 1
β I) ∈ Sc(H), for some c > 0,

(ii) supk∈N||Mk|| <∞,

(iii)
∑
k∈N ‖εk‖ < +∞.

6

Theorem 3.2. Consider Problem (10) and let the sequence (zk)k∈N be generated by Algorithm 2
where Assumption 2 holds. Then (‖zk − z∗‖)k∈N is bounded for any z∗ ∈ zer(A+B) and (zk)k∈N
weakly converges to some z∗ ∈ zer(A+B), i.e. zk ⇀ z∗ as k →∞.

Moreover, if εk ≡ 0, ‖zk − z∗‖ decreases for any z∗ ∈ zer(A + B) as k → ∞. Furthermore,
if γA > 0 or γB > 0 and Mk − 1

β I ∈ Sε(H) for all k ∈ N, then zk converges linearly: there exist

some ξ ∈ (0, 1) such that
‖zk − z∗‖2 ≤ (1− ξ)k‖z0 − z∗‖2 . (18)

Proof. See Appendix A.4.

Remark 2. The linear convergence factor is given by

ξ = 1
2 min{2(γA + γB)δ, cδ} ,

where δ = c

2(C+
1
β)2

.

Remark 3. It is worth mentioning that Algorithm 2 can be interpreted as a closed loop system
which uses the previous iterates to update the relaxation parameter αk.

4 Resolvent Calculus for Low-Rank Perturbed Metric

In this section, we extend the proximal calculus of [7] to the setting of resolvent operators JVT
with a metric V = M ± Q ∈ S++(H), where M ∈ S++(H) and Q ∈ S0(H). This is a key result
for making our quasi-Newton methods efficiently applicable for solving monotone inclusion prob-
lemss. Computing the resolvent operator JVT (z) can be reduced to two simple problems consisting
of evaluating JMT at a shifted point z −M−1v∗ ∈ H for some v∗ ∈ H that is derived from an
r-dimensional root finding problem which can be solved by a semi-smooth Newton method (Algo-
rithm 3) or bisection method (Algorithm 4). In conclusion, if JMT can be computed efficiently, the
same is true for JVT . The result crucially relies on the abstract duality principle of Attouch-Théra
[4] (see Lemma 2.6).

4.1 General case

We first present a general result.

Theorem 4.1. Let T : H →→ H be a maximally monotone operator, V := M ± Q be a symmetric
positive definite metric with bounded linear operators M,Q : H → H such that M is positive definite
and Q is positive semi-definite. Then, the resolvent operator JVT can be computed as follows:

x∗ = JVT (z) ⇐⇒

x∗ = JMT (z −M−1v∗) and

v∗ solves 0 ∈ ±Q+v∗ + z − JMT (z −M−1v∗)

s.t. v∗ ∈ im(±Q) .

(19)

The solution v∗ = Uα∗ where α∗ is the unique root of

l(α) := U∗Q+Uα+ U∗(z − JMT (z ∓M−1Uα)) , (20)

where Q+ is the pseudo-inverse of Q and U : Rr → im(Q), α 7→ Uα :=
∑r
i=1 αiui is an isomor-

phism defined by r linearly independent u1, ..., ur ∈ im(Q). The function l is Lipschitz continuous
with constant ||U∗Q+U ||+ ||M−1/2U ||2 and strictly monotone.

Now, we give the proof of Theorem 4.1. For convenience, we define translation operator τp : H →
H by τp(x) = x− p with inverse τ−1

p = τ−p.

Proof. See Appendix A.5.

Corollary 4.1.1. Consider the assumptions of Theorem 4.1 with Q given by Q = UU∗ for some
U ∈ B(Rr,H). In this case,

x∗ = JVT (z) ⇐⇒

{
x∗ = JMT (z −M−1Uα∗) and

α∗ solves l(α)
(21)

7

where α∗ is the unique root of

l(α) := α+
〈
U, z − JMT (z ∓M−1Uα)

〉
. (22)

The function l is Lipschitz continuous with constant 1 + ||M−1/2U ||2 and strictly monotone.

Proof. See Appendix A.6.

4.2 Solving the Root-Finding Problem

The efficiency of the reduction in Theorem 4.1 relies also on the solution of a root finding problem
which we discuss thoroughly in this subsection. We present a semi-smooth Newton approach, for
which we prove local convergence. In order to narrow down the neighborhood of the sought root,
we complement the semi-smooth Newton strategy by a bisection method in Section 4.2.2.

4.2.1 Semi-smooth Newton Methods

In order to solve l(α) = 0 in (20) efficiently, we turn to a semi-smooth Newton method. A locally
Lipschitz function is called semi-smooth if its Clarke Jacobian defines a Newton approximation
scheme [15, Definition 7.4.2]. If l(α) is semi-smooth and any element of the Clarke Jacobian
∂cl(α∗) is non-singular, then we can apply the inexact semi-smooth Newton method detailed in
Algorithm 3, analog to [7]. Semi-smoothness may seem very restrictive. However we will observe

Algorithm 3 Semi-smooth Newton method to solve l(α) = 0

Require: A point α0 ∈ Rn. N is the maximal number of iterations.
Update for k = 0, · · · , N :
if l(αk) = 0 then

stop
else

Select Gk ∈ ∂cl(αk), compute αk+1 such that

l(αk) +Gk(αk+1 − αk) = ek ,

and ek ∈ Rr is an error term satisfying ‖ek‖ ≤ ηk‖Gk‖ and ηk ≥ 0.
end if
End

there exists a broad class of functions l(α) satisfying that l(α) is semi-smooth. As shown in [8], a
tame locally Lipschitz function is semi-smooth. Therefore, it is sufficient to ensure l(α) is tame.
We refer to [8] for the definition of tameness. If the monotone operator T in l(α) is a tame map,
then l(α) is also tame. In this case, the convergence result for Algorithm 3 can be adapted from
[7].

Proposition 4.2. Let l(α) be defined as in Theorem 4.1, where T is a set-valued tame mapping.
Then l(α) is semi-smooth and all elements of ∂cl(α∗) are non-singular where α∗ is the unique root
of l(α) from (20). In turn there exists η̄ such that if ηk ≤ η̄ for every k, there exists a neighborhood
of α∗ such that for all α0 in that neighborhood, the sequence generated by Algorithm 3 is well
defined and converges to α∗ linearly. If ηk → 0, the convergence is superlinear.

Proof. See Appendix A.7.

Example 1. If f is a tame function and locally Lipschitz, then by [18, Proposition 3.1], ∂f is a
tame map.

Example 2. The assumption that T is a tame mapping is not restrictive. For example, in PDHG

setting we have a set-valued operator T =

(
∂g K∗

−K ∂f

)
as defined by (33). If g and f are both

tame functions, then ∂g and ∂f are tame as well [18]. As a result, T is a tame mapping.

8

4.2.2 Bisection

We are going to solve a root finding problem for l(α) = 0 via the bisection method in the Algorithm
4 in the special case when α is one-dimensional. We can still have similar bound on the range of
α∗ as in [7]. The key tool is a bound on the values of α given by the following proposition.

Proposition 4.3. For r = 1, the root α∗ of l(α) = 0 lies in the set [−ζ, ζ] where

ζ = ‖u‖(2‖z‖ + ‖JVT (0)‖) . (23)

Proof. See Appendix A.8.

Algorithm 4 Bisection method to solve l(α) = 0 when r = 1

Require: Tolerance ε ≥ 0, number of iterates N
Compute the bound β from (23), and set k = 0.
Set α− = −β and α+ = β.
Update for k = 0, · · · , N :
Set αk = 1

2 (α− + α+).
if l(αk) > 0 then

α+ ← αk,
else

α− ← αk.
end if
if k > 1 and |αk − αk−1| < ε then

return αk
end if
End

Furthermore, we can combine the bisection method and the semi-smooth Newton method. Since
the non-smooth Newton method is locally convergent, it requires a starting point in a sufficiently
near neighborhood of the solution in order to guarantee convergence. By using bisection, we can
obtain a sequence of points approaching the solution. When those points reach the neighborhood
required for convergence of the semi-smooth Newton Method, we turn to use the semi-smooth
Newton method to obtain faster convergence. In Proposition 4.2, α0 is required to belong to a
neighborhood of α∗, which can be achieved by Algorithm 4, i.e., we can assert to find a point α
such that |α− α∗| < δ in log2((2ζ/δ)) steps, where ζ is as in (23).

4.3 Implementation of the quasi-Newton Forward-Backward Step

In this section, we consider a fixed iteration k and for convenience, we omit this index in this
subsection. We consider low-rank perturbed metric V = M±Q where Q = UU∗. Algorithm 1 and
Algorithm 2 both have similar forward-backward steps. And those forward-backward steps require
a kind of calculation in the form of JVA (z−V −1Bz) for some z which can be significantly simplified
by applying Theorem 4.1. Instead of evaluating JVA (z − V −1Bz) directly, we split the whole
task into two subproblems consisting of a root finding problem and an evaluation of resolvent with
respect to M which is assumed to be simple to calculate. For simplicity, we denote z̆ = z−V −1Bz.

Proposition 4.4. The forward-backward step from some z̆ to some ẑ in Algorithm 1 and Algorithm
2 can be solved by

ẑ = JVA (z̆) = JMA (z̆ ∓M−1Uα∗) . (24)

Here, α∗ ∈ Rr is the unique root of L : Rr → Rr,

L(α∗) := U∗(z̆ − JMA (z̆ ∓M−1Uα∗)) + α∗ = 0 . (25)

We notice that the calculation of V −1 is expensive when the size of V is large. We can use
Sherman-Morrison formula. However the inverse of M is inevitable and in algorithms that we
propose in Section 6 it can be computationally hard. So, we introduce Proposition 4.5 to avoid
computing M−1

k .

9

Proposition 4.5. The forward-backward step from some z̆ to some ẑ in Algorithm 1 and Algorithm
2 can be solved by

ẑ = JVA (z̆) = JMA (z −M−1Bz ∓M−1Uξ∗). (26)

Here, ξ∗ ∈ Rr is the unique zero of J : Rr → Rr,

J (ξ∗) := U∗k (zk − JMA (z −M−1Bz ∓M−1Uξ∗)) + ξ∗ = 0 . (27)

The function J is Lipschitz continuous with constant 1 + ||M−1/2U ||2 and strictly monotone.

Proof. See Appendix A.9.

5 A General 0SR1 Inertial Quasi-Newton Method for Mono-
tone Inclusion

5.1 General algorithm with generic metric M ±Qk

We note that if we set in the inclusion problem (10) A ≡ 0, and B = ∇f of some convex smooth
function f , the update step consisting of (12) and (11) reduces to Gradient Descent when Mk ≡ I
and to the classic Newton method when Mk = ∇2f(zk). Motivated by classic Newton and quasi-
Newton methods, we construct Mk as an approximation of the differential of Bzk at zk. We
generalize the quasi-Newton method 0SR1 from differentiable ∇f (SR1 method with 0-memory)
to a cocoercive operator B. The approximation Mk shall satisfy the modified secant condition:

Mksk = yk, where yk = Bzk −Bzk−1, sk = zk − zk−1 . (28)

Choose M0 ∈ S++(H) which is positive definite. The update is:

Mk = M0 ± γkuku∗k, uk = (yk −M0sk)/
√
| 〈yk −M0sk, sk〉 |, (29)

where γk ∈ [0,+∞) needs to be selected such that Mk is positive definite and ± depends on the
sign of 〈yk −M0sk, sk〉. If 〈yk −M0sk, sk〉 > 0, we use

Mk = M0 + γkuku
∗
k, (30)

and, if 〈yk −M0sk, sk〉 < 0, we use

Mk = M0 − γkuku∗k. (31)

In the rest part of this section, we investigate the conditions for Mk defined above to meet
Assumption 1 and Assumption 2.

Lemma 5.1. Let M0 be symmetric positive definite, 1
β be Lipschitz constant of operator B.

(i) If Mk = M0 +γkuku
∗
k and γk > 0, ∀k ∈ N, Mk is always positive definite and symmetric and

Assumption 2 is guaranteed.

(ii) If Mk = M0 − γkuku∗k and γk ≤ c
ρmin(M0−

1
β I)

‖uk‖2 where ρmin(M0 − 1
β I) > 0 is the smallest

eigenvalue of matrix M0 − 1
β and c ∈ (0, 1), then Mk is positive definite and Assumption 2

is satisfied.

Now, in order to guarantee Assumption 1 for Mk := M0±Qk with Qk = γkuku
∗
k, we introduce

the following lemma.

Lemma 5.2. Let (ηk)k ∈ `1+(N), M0− 1
β I be positive definite, Mk := M0±γkuku∗k and γk = ηk

‖uk‖22
with ηk ≤ ρmin(M0 − 1

β I) for any k ∈ N. Then, Assumption 1 is satisfied.

10

6 Inertial Quasi-Newton PDHG for Saddle-point Problems

In this section, we consider a min-max problem as follows:

min
x∈H1

max
y∈H2

g(x) +G(x) + 〈Kx, y〉 − f(y)− F (y) (32)

with a linear mapping K : H1 → H2, proper lower semi-continuous convex functions g : H1 →
R := R ∪ {±∞} and f : H2 → R, and continuously differentiable convex functions G : H1 → R
and F : H2 → R with Lipschitz continuous gradient. This problem can be expressed as a special
monotone inclusion problem from which we derive in Algorithm 5 an inertial quasi-Newton Primal-
Dual Hybrid Gradient Method (PDHG) and in Algorithm 6 a quasi-Newton PDHG with relaxation
step as special applications of Algorithm 1 and Algorithm 2 respectively (see Proposition 6.1). By
Fermat’s rule, the optimality condition for (32) is the following inclusion problem:

0 ∈ T (z) +B(z) with z =

(
x
y

)
, whereT (z) =

(
∂g(x) +K∗y
−Kx+ ∂f(y)

)
andB(x) =

(
∇G(x)
∇F (y)

)
.

(33)

Algorithm 5 Inertial quasi-Newton PDHG

Require: N ≥ 0, (‖εk‖)k∈N ∈ `1+(N)
Update for k = 0, · · · , N :

(i) Compute Mk according to a quasi-Newton framework.

(ii) Compute the inertial step with parameter αk:

x̄k = xk + αk(xk − xk−1) ,

ȳk = yk + αk(yk − yk−1) .
(34)

(iii) Compute the main quasi-Newton PDHG step:

xk+1 = proxTg (x̄k − T ∇G(x̄k)− TK∗ȳk ∓ T Uk,xξk) + εk,x ,

yk+1 = proxΣ
f (ȳk − Σ∇F (ȳk) + ΣK(2xk+1 − x̄k)∓ ΣUk,yξk) + εk,y,

(35)

where ξk solves J (ξk) = 0 and εk =

(
εk,x
εk,y

)
is the error caused by computation at the k-th

iterate.

End

Proposition 6.1 (PDHG method as a special proximal point algorithm [17]). The update step of
PDHG can be regarded as a proximal point algorithm with special metric M :

M(zk+1 − zk) + T (zk+1) 3 −B(zk) where M =

(
T −1 −K∗
−K Σ−1

)
. (40)

Therefore, we are able to apply Algorithm 1 and Algorithm 2 directly to a saddle point
problem by regarding T as A in the inclusion problem (10), which will give us Algorithm 5
and 6, respectively. We are going to use a variable metric Mk = M ± Qk ∈ S(H1 × H2)
instead of M ∈ S(H1 × H2) in (40) for the k-th iterate. Here, we set Qk = UkU

∗
k where

Uk : Rr → im(Q), α 7→ Uk(α) :=
∑r
i=1 αiuk,i is an isomorphism defined by r linearly indepen-

dent uk,1, ..., uk,r ∈ im(Q) for each k-th iterate. We obtain the update step: Find zk+1 ∈ H1 ×H2

such that
Mk(zk+1 − zk) + T (zk+1) 3 −B(zk) . (41)

In practice, Proposition 4.5 which is derived from our main result Theorem 4.1 turns out to be
more tractable. To show how to calculate the update step, using Proposition 4.5 in quasi-Newton
PDHG in Algorithm 5 and in Algorithm 6, we introduce Proposition 6.2. Let Uk ∈ B(Rr,H1×H2).

We set Uk =

(
Uk,x
Uk,y

)
with Uk,x ∈ B(Rr,H1) and Uk,y ∈ B(Rr,H2). The validity of the update

step is verified in Proposition 6.2.

11

Algorithm 6 Quasi-Newton PDHG with relaxation

Require: N ≥ 0, (‖εk‖)k∈N ∈ `1+(N)
Update for k = 0, · · · , N :

(i) Compute Mk according to quasi-Newton framework.

(ii) Compute the main quasi-Newton PDHG step:

x̃k = proxTg (xk − T ∇G(xk)− TK∗yk ∓ T Uk,xξk) + εk,x ,

ỹk = proxΣ
f (yk − Σ∇F (yk) + ΣK(2x̃k − xk)∓ ΣUk,yξk) + εk,y ,

(36)

where ξk solves J (ξk) = 0 and εk =

(
εk,x
εk,y

)
is the error caused by computation at the k-th

iterate.

(iii) Relaxation step:

vk := Mk

((
xk
yk

)
−
(
x̃k
ỹk

))
+

(
∇G(x̃k)
∇F (ỹk)

)
−
(
∇G(xk)
∇F (yk)

)
(37)

to compute the relaxation parameter tk

tk =

〈(
xk
yk

)
−
(
x̃k
ỹk

)
, vk

〉
2‖vk‖2

(38)

and update xk and yk as follows(
xk+1

yk+1

)
←
(
xk
yk

)
− tkvk . (39)

End

Proposition 6.2. The update step from z̄k (zk) to zk+1 (z̃k) in Algorithm 5 (Algorithm 6) reduces
for the quasi-Newton PDHG update step to compute{

xk+1 = proxTg (x̄k − T ∇G(x̄k)− TK∗ȳk ∓ T Uk,xξk)

yk+1 = proxΣ
f (ȳk − Σ∇F (ȳk) + ΣK(2xk+1 − x̄k)∓ ΣUk,yξk) .

(42)

where, ξk ∈ Rr is the unique zero of J : Rr → Rr:

J (ξ) = (Uk,x)∗[proxTg (x̄k − T ∇G(x̄k)− TK∗ȳk ∓ T Uk,xξ)︸ ︷︷ ︸
xk+1(ξ)

−x̄k]

+ (Uk,y)∗[proxΣ
f (ȳk − Σ∇F (ȳk) + ΣK(2xk+1(ξ)− x̄k)∓ ΣUk,yξ)− ȳk]− ξ .

(43)

Remark 4. By switching z̄k with zk and zk+1 with z̃k, we obtain the update step for Algorithm 6.

We would like to emphasize that using Proposition 6.2, we can avoid the computation of M−1

in the primal and dual setting, which is a computationally significant advantage. The convergence
of Algorithms 5 and 6 is a direct consequence of Theorems 3.1 and 3.2.

Proposition 6.3 (Convergence of quasi-Newton PDHG method). Let M0 = M as defined in (40)
and Mk = M0 ± UkU∗k .

(i) If (Mk)k∈N satisfies Assumption 1, then (xk, yk) generated by Algorithm 5 converges weakly
to some solution of (2). Furthermore, if g and f are both strongly convex (or G and F are
both strongly convex), then we obtain the same convergence rate as in Theorem 3.1.

(ii) If (Mk)k∈N satisfies Assumption 2. Thus, (xk, yk) generated by Algorithm 6 converges weakly
to some solution of (2). Furthermore, if g and f are both strongly convex (or G and F are
both strongly convex) , then we obtain linear convergence.

12

7 Numerical experiments

The algorithms that we analyze in the experiment are summarized in Table 1.

Algorithm Algorithm Name metric
Forward-Backward Splitting (FBS) Foward-Backward Primal-Dual Hybrid Gradient Method M fixed as in (40)
Inertial Forward-Backward Splitting (IFBS) Inertial Primal-Dual Hybrid Gradient Method M fixed as in (40)

quasi-Newton Forward-Backward Splitting (QN-FBS)
quasi-Newton
Primal-Dual Hybrid Gradient Method Gradient

Variable metric as in (29) with M0 = M from (40)

Relaxation quasi-Newton Forward-Backward Splitting (RQN-FBS)
Primal-Dual Hybrid Gradient Method
with relaxation step

Variable metric as in (29) with M0 = M from (40)

Inertial quasi-Newton Forward-Backward Splitting (IQN-FBS)
Inertial quasi-Newton
Primal-Dual Hybrid Gradient Method

Variable metric as in (29) with M0 = M from (40)

Table 1: Summary of algorithms used in the numerical experiments. Details are provided within
each section.

Note that PDHG is used interchangeably as FBS in the later experiments since PDHG is a
specialization of FBS.

7.1 TV-l2 deconvolution

In this experiment, we solve a problem that is used for an image deconvolution [9]. Given a blurry
and noisy image b ∈ RMN (interpreted as a vector by stacking the M column vectors of length N),
we seek to find a clean image x ∈ RMN by solving the following optimization problem:

min
0≤x≤255

1

2
‖Ax− b‖22 + µ‖Dx‖2,1 , (44)

where A ∈ RMN×MN is a linear operator that acts as a blurring operator and ‖Dx‖2,1 implements
a discrete version of the isotropic total variation norm of x using simple forward differences in
horizontal and vertical direction. The parameter µ > 0 stresses as the influence of the regularization
term ‖Dx‖2,1 vs the data fidelity term 1

2‖Ax− b‖
2. In order to deal with the non-smoothness, we

rewrite the problem as a saddle point problem.

min
x

max
y
〈Dx, y〉+ δ∆(x) +

1

2
‖Ax− b‖22 − δ{‖·‖2,∞≤µ}(y) , (45)

where ∆ := {x ∈ RMN |0 ≤ xi ≤ 255,∀i}. We can cast this problem into the general class of
problems (32) by setting K = D, f = δ{‖·‖2,∞≤λ}, G(x) = 1

2‖Ax−b‖
2
2, F (p) = 0 and g = δV . Here,

G is L-smooth with L = 1 since we assume ρmax(A∗A) ≤ 1, which is the largest eigenvalue of A∗A.

Let zk =

(
xk
yk

)
. We compute the low-rank part Qk = γkuku

∗
k by (29) with Bzk =

(
A∗Axk −A∗b

0

)
,

which leads to a metric that just affects the primal update. In each iteration, we use the bisection
Algorithm 4 and the semi-smooth Newton method 3 to locate the root.

Figure 1 shows the primal gap where the optimal primal value was computed by running
the original PDHG method for 10000 iterates. For the variable metric at iterate k, we fixed
γk = 5/‖uk‖22. Thus, the Assumption 2 is satisfied and the convergence of RQN-FBS (Algorithm
2) is guaranteed. However, with the same setting, Assumption 1 is not satisfied since there is no
sequence (ηk)k ∈ `1+ such that Mk+1 � (1 + ηk)Mk for any k ∈ N. In this practical problem, we
still observe the convergence of IQN-FBS (Algorithm 1). We notice that our quasi-Newton type
algorithms IQN-FBS, RQN-FBS and QN-FBS are much faster than original FBS algorithm and
inertial FBS (IFBS). This can be explained by the fact that the Hessian of G(x) is not identity
and then by applying our quasi-Newton SR1 methods, we can adapt metric to the local geometry
of the objective. All three quasi-Newton type algorithms share similar convergence rates in the
end. The extrapolation can not speed up those algorithms at the beginning as shown by IFBS
and IQN-FBS since for first several iterates ‖zk − zk−1‖ are large and extrapolation parameter is
small. However it does help eventually.

7.2 TV-l2 deconvolution with infimal convolution type regularization

A source of optimization problems that fits (32) is derived from the following:

min
x∈Rn

g(x) +G(x) + (f�h)(Dx), (46)

13

100 101 102 103

Iterations

100

101

102

103

104

Pr
im

al
 g

ap
(lo

g)

Methods:
FBS
IFBS
QN-FBS
RQN-FBS
IQN-FBS

Figure 1: We compare convergence of the inertial quasi-Newton PDHG (IQN-FBS) to other al-
gorithms in the Table 1 with µ = 0.001, τ = 0.09, σ = 0.9 and inertial parameter α0 = 10,
αk = 10

k1.1(max{‖zk−zk−1‖,‖zk−zk−1‖2}) . We also observe that the curve of RQN-FBS converges faster

at the beginning. Our three quasi-Newton type algorithm RQN-, QN-, and IQN-FBS clearly
outperform the original FBS and IFBS algorithm.

where f�h(·) := infv∈Rm f(v)+h(·−v) denotes the infimal convolution of f and h. As a prototypical
image processing problem, we define a regularization term as infimal convolution between the total
variation norm and a weighted squared norm, i.e. g = 0, G(x) = 1

2‖Ax− b‖
2, h(·) = 1

2‖W · ‖
2 and

f(·) = µ‖ · ‖2,1. This yields the problem:

min
x

1

2
‖Ax− b‖2 + µR(Dx) (47)

where R(·) := infv∈Rm ‖v‖2,1 + 1
2µ‖W (· − v)‖2, W is a diagonal matrix of weights which is given

to favor discontinuities along image edges and A, b, D are defined as in the first experiment. In
practice, W can be computed by additional edge finding steps or by extra information. Here, we
select W such that 1

2 ≤ ‖W‖ ≤ 1. The optimization problem (47) given in primal type can be
converted into the saddle point problem:

min
x

max
y
〈Dx, y〉+

1

2
‖Ax− b‖2 − δ{‖·‖2,+∞≤µ}(y)− 1

2
‖W−1y‖2 . (48)

We compute the low-rank part Qk by (29) with Bzk =

(
A∗Axk −A∗b

(W−1)∗W−1yk

)
which leads to metric

that affects both primal and dual update. Here, β = 1/4. In each iteration, we combine the
bisection (Algorithm 4) and the semi-smooth Newton method (Algorithm 3) to locate the root.

Figure 2 also shows the primal gap where the optimal primal value was still computed by running
original PDHG for 10000 iterates. For the variable metric at iterate k, we fixed γk = 2/‖uk‖2.
Assumption 2 is always satisfied. But Assumption 1 is not satisfied. We can observe from Figure
2: though RQN-FBS turned out to be the slowest one for this experiment, IQN-FBS is still the
fast one. We observe that two quasi-Newton type methods (IQN-FBS and QN-FBS) converge
faster than IFBS and FBS. Inertial methods (IQN-FBS, IFBS) are slightly faster respectively than
QN-FBS and FBS.

14

100 101 102 103

Iterations

10 3

10 2

10 1

100

101

102

103

104

Pr
im

al
 g

ap
(lo

g)

Methods:
FBS
IFBS
QN-FBS
RQN-FBS
IQN-FBS

Figure 2: We compare convergence of the inertial quasi-Newton PDHG (IQN-FBS) to other algo-
rithms in the Table 1 with µ = 0.01, τ = 0.1, σ = 0.1 and the extrapolation parameter α0 = 1,
αk = max{ 10

k1.1(max{‖zk−zk−1‖,‖zk−zk−1‖2}) , 1}. Our quasi-Newton type algorithm IQN-FBS can

converge faster than the original FBS and IFBS algorithm.

7.2.1 Image denoising

Let A = I in (48). We then obtain an image denoising problem with special norm defined by
infimal convolution of total variation and weighted norm, which has strong convexity for both
primal part and dual part. Besides, due to the simple formula, we obtain dual problem explicitly
which means we can calculate primal and dual gap. The dual problem reads:

max
‖y‖2,∞≤1

−1

2
‖K∗y − b‖2 − 1

2
‖W−1y‖2 . (49)

100 101 102

Iterations

10 7

10 5

10 3

10 1

101

103

105

Pr
im

al
 d

ua
l g

ap
(lo

g)

Methods:
O(1/1.1^k)
FBS
IFBS
QN-FBS
RQN-FBS
IQN-FBS

Figure 3: We compare convergence of the inertial quasi-Newton PDHG (IQN-FBS) to other al-
gorithms in the Table 1 with µ = 0.1, τ = 0.1, σ = 0.1 and extrapolation parameter α0 = 10,
αk = 10

max{k2,k2‖zk−zk−1‖2} . All algorithms converge linearly and faster than O(1
1.1k

). Our quasi-

Newton type algorithm IQN-FBS can converge faster than the original FBS and IFBS algorithm.

Figure 3 shows the primal dual gap and it will decrease to zero by using any algorithm from
Table 1. To construct Qk, we use γk = 2

‖uk‖2 . As we can observe from Figure 3, we have linear

convergence for quasi-Newton type methods as what we expected in Theorem 3.1 and 3.2.

15

7.3 Conclusion

In this paper, we extended the framework of [7] for variable metrics to the setting of resolvent op-
erators, solving efficiently the monotone inclusion problem (10) consisting of a set-valued operator
A and a single-valued operator B. We proposed two variants of quasi-Newton Forward-Backward
Splitting. We develop a general efficient Resolvent calculus that perfectly applies to this quasi-
Newton setting. The convergence of the variant with relaxation requires mild assumptions on the
metric which are easier to satisfy, whereas the other variant implements an inertial feature and is
therefore often fast. As a special case of this framework, we developed an inertial quasi-Newton
primal-dual algorithm that can be flexibly applied to a large class of saddle point problems.

Appendices

A Appendix

A.1 Proof of Lemma 2.3

Proof. We assume y = M−1/2 ◦ JM−1/2TM−1/2 ◦M1/2(z). Then, we obtain

y = M−1/2 ◦ JM−1/2TM−1/2 ◦M1/2(z)

M1/2y = JM−1/2TM−1/2 ◦M1/2(z)

M1/2y = (I +M−1/2TM−1/2)−1(M1/2z)

(M1/2z) ∈ (I +M−1/2TM−1/2)M1/2y

(M1/2z) ∈ (M1/2 +M−1/2T)y

Mz ∈ (M + T)y

y = (M + T)−1(Mz)

y = JMT (z) .

(50)

A.2 Proof of Lemma 2.4

Proof. This proof is adapted from [5]. Let (u, v) = (JMA (x), JMA (y)) for some x, y ∈ H. By the
definition of resolvent operator JMA , we obtain

u = JMA (x) ⇐⇒ M(x− u) ∈ Au .

Similarly, we obtain M(y − v) ∈ Av. Then γA-strong monotonicity of A yields

〈M(x− u)−M(y − v), u− v〉 ≥ γA‖u− v‖2

〈M(x− y), u− v〉 − 〈M(u− v), u− v〉 ≥ γA‖u− v‖2

〈M(x− y), u− v〉 ≥ γA‖u− v‖2 + ‖u− v‖2M .

Since ‖M‖ is bounded by C, we obtain

〈M(x− y), u− v〉 ≥ γA‖u− v‖2 + ‖u− v‖2M ≥ (1 + γA
C)‖u− v‖2M . (51)

Consequently, JMA is (1 + γA
C)-cocoercive and Lipschitz continuous with constant 1/(1 + γA

C) with
respect to the norm ‖ · ‖M .

A.3 Proof of Theorem 3.1

Proof. For convenience, we set Bk := M−1
k B. Fix z ∈ zer(A + B) which is equivalent to z =

JMk

A (z −Bkz). We set ẑk+1 := JMk

A (z̄k −Bkz̄k), i.e., zk+1 = ẑk+1 + εk.
Boundedness:

16

First, we are going to show that ‖zk−z‖Mk
is bounded. The following are several useful estimations

we will use later. Assumption 1 yields

‖zk+1 − z‖2Mk+1
≤ (1 + ηk)‖zk+1 − z‖2Mk

. (52)

Since zk+1 = ẑk+1 + εk, it follows that

‖zk+1 − z‖2Mk
= ‖ẑk+1 − z + εk‖2Mk

≤ ‖ẑk+1 − z‖2Mk
+ 2‖εk‖Mk

‖ẑk+1 − z‖Mk
+ ‖εk‖2Mk

. (53)

The assumption that B is β-cocoercive yields that

〈z̄k − z,Bkz̄k −Bkz〉Mk
= 〈z̄k − z,Bz̄k −Bz〉 ≥ β‖Bz̄k −Bz‖2 . (54)

The assumption that Mk − 1
2β I ∈ Sε(H) yields that 2βI −M−1

k ∈ S++(H).

The cocoercivity of B and monotonicity of B yield the following estimations (I) and (II) respec-
tively:

‖(z̄k −Bkz̄k)− (z −Bkz)‖2Mk
= ‖z̄k − z‖2Mk

− 2 〈z̄k − z,Bkz̄k −Bkz〉Mk
+ ‖Bkz̄k −Bkz‖2Mk

(i)
= ‖z̄k − z‖2Mk

− 2 〈z̄k − z,Bz̄k −Bz〉+ ‖Bz̄k −Bz‖2M−1
k

(ii)

≤ ‖z̄k − z‖2Mk
− ‖Bz̄k −Bz‖22β−M−1

k

(I)

(iii)

≤ ‖z̄k − z‖2Mk
− ‖Bz̄k −Bz‖2β−M−1

k

− γB‖z̄k − z‖2 , (II)

where (i) uses ‖Bkz̄k −Bkz‖2Mk
= ‖Bz̄k −Bz‖2M−1

k

, (ii) uses (54) and (iii) uses monotonicity of B.

Note that we use the shorthand β−M−1
k for βI−M−1

k . The fact that JMk

A is firmly non-expansive
since A is maximally monotone with respect to Mk implies that

‖ẑk+1 − z‖2Mk
= ‖JMk

A (z̄k −Bkz̄k)− JMk

A (z −Bkz)‖2Mk

≤ ‖(z̄k −Bkz̄k)− (z −Bkz)‖2Mk

− ‖(I − JMk

A)(z̄k −Bkz̄k)− (I − JMk

A)(z −Bkz)‖2Mk

≤ ‖z̄k − z‖2Mk
− ‖Bz̄k −Bz‖22β−M−1

k

− ‖(z̄k − ẑk+1)− (Bkz̄k −Bkz)‖2Mk
,

(55)

where the last inequality uses (I). It follows from Assumption 1 that the term ‖Bz̄k−Bz‖22β−M−1
k

≥
0. We continue to bound the first term on the right hand side of (55). Using [5, Lemma 2.14] and
the definition of z̄k, we obtain the following:

‖z̄k − z‖2Mk
= (1 + αk)‖zk − z‖2Mk

− αk‖zk−1 − z‖2Mk
+ (1 + αk)αk‖zk − zk−1‖2Mk

, (56)

and by using the triangle inequality, we also obtain another estimation:

‖z̄k − z‖Mk
≤ (1 + αk)‖zk − z‖Mk

+ αk‖zk−1 − z‖Mk
. (57)

17

In order to address complete update step, we make the following estimation:

‖zk+1 − z‖2Mk+1
≤ (1 + ηk)‖zk+1 − z‖2Mk

(i)

≤ (1 + ηk)
(
‖ẑk+1 − z‖2Mk

+ 2‖εk‖Mk
‖ẑk+1 − z‖Mk

+ ‖εk‖2Mk

)
(ii)

≤ (1 + ηk)
(
‖z̄k − z‖2Mk

+ 2‖εk‖Mk
‖z̄k − z‖Mk

+ ‖εk‖2Mk

− ‖Bz̄k −Bz‖22β−M−1
k

− ‖(z̄k − ẑk+1)− (Bkz̄k −Bkz)‖2Mk

)
(iii)

≤ (1 + ηk)
(
(1 + αk)‖zk − z‖2Mk

− αk‖zk−1 − z‖2Mk

+ (1 + αk)αk‖zk − zk−1‖2Mk

+ 2‖εk‖Mk
((1 + αk)‖zk − z‖Mk

+ αk‖zk−1 − z‖Mk
)

+ ‖εk‖2Mk
− ‖Bz̄k −Bz‖22β−M−1

k

− ‖(z̄k − ẑk+1)− (Bkz̄k −Bkz)‖2Mk

)
(iv)

≤ (1 + ηk)
(
‖zk − z‖2Mk

+ αk(‖zk − z‖Mk
− ‖zk−1 − z‖Mk

)(‖zk − z‖Mk
+ ‖zk−1 − z‖Mk

)

+ (1 + αk)αk‖zk − zk−1‖2Mk

+ 2‖εk‖Mk
((1 + αk)‖zk − z‖Mk

+ αk‖zk−1 − z‖Mk
)

+ ‖εk‖2Mk
− ‖Bz̄k −Bz‖22β−M−1

k

− ‖(z̄k − ẑk+1)− (Bkz̄k −Bkz)‖2Mk

)
(v)

≤ (1 + ηk)
(
‖zk − z‖2Mk

+ αk‖zk − zk−1‖Mk
(‖zk − z‖Mk

+ ‖zk−1 − z‖Mk
)

+ (1 + αk)αk‖zk − zk−1‖2Mk
+ 2‖εk‖Mk

((1 + αk)‖zk − z‖Mk
+ αk‖zk−1 − z‖Mk

)

+ ‖εk‖2Mk
− ‖Bz̄k −Bz‖22β−M−1

k

− ‖(z̄k − ẑk+1)− (Bkz̄k −Bkz)‖2Mk

)
.

(58)

where (i) uses (53), (ii) uses (55), (iii) uses (56) and (57), (iv) uses factorization of the quadratic,
and (v) uses the triangle inequality to obtain the bound ‖zk−z‖Mk

−‖zk−1−z‖Mk
≤ ‖zk−zk−1‖Mk

.
Now, our goal is to conclude boundedness using Lemma 2.7. For simplicity, we set:

ek := αk‖zk − zk−1‖2Mk

rk := αk‖zk − zk−1‖Mk

θk := ‖zk − z‖Mk

mk := ‖zk−1 − z‖Mk

pk := ‖Bz̄k −Bz‖22β−M−1
k

qk := ‖(z̄k − ẑk+1)− (Bkz̄k −Bkz)‖2Mk
.

By Assumption 1, we have mk ≤ (1 + ηk−1)θk−1. Without loss of generality, we can assume
0 < ηk < 1 for any k ∈ N. Replacing each term in (58) with new corresponding notations, we
obtain:

θ2
k+1 ≤ (1 + ηk)

(
θ2
k + rk(θk +mk)

+ (1 + αk)ek + 2‖εk‖Mk
((1 + αk)θk + αkmk) + ‖εk‖2Mk

− pk − qk
)

≤ (1 + ηk)
(
θ2
k + rk(θk + (1 + ηk−1)θk−1)

+ (1 + αk)ek + 2‖εk‖Mk
((1 + αk)θk + αk(1 + ηk−1)θk−1) + ‖εk‖2Mk

)
≤ (1 + ηk)

(
θ2
k + rk(θk + 2θk−1) + (1 + Λ)ek + 2‖εk‖Mk

((1 + Λ)θk + 2Λθk−1) + ‖εk‖2Mk

)
,

(59)

where the last inequality uses 0 < αk ≤ Λ and 0 < ηk < 1. Now, we claim that θk is bounded in
two steps. We introduce an auxiliary bounded sequence (Ck)k∈N (step 1) such that θk ≤ Ck for
any k ∈ N (step 2). The boundedness of θk follows from that of Ck.
Step1: We construct a sequence Ck as the following:{

C0 = max{θ0, 1} ,
Ck = (1 + ηk)Ck + νk ,

(60)

18

where νk = (1 + ηk)((1 + Λ)ek + 2rk + (1 + 3Λ)‖εk‖Mk
). From our assumptions, it holds that

(Mk)k∈N is bounded from above, (rk)k∈N ∈ `1+(N), (ek)k∈N ∈ `1+(N) and (‖εk‖)k∈N ∈ `1+(N), which
implies (νk)k∈N ∈ `1+(N). Using Lemma 2.7, we obtain the convergence of Ck to some C∞ < +∞.
Step2: From the update step of (60), we observe that (Ck)k is a non-decreasing sequence and
Ck ≥ 1 for any k ∈ N. We claim that for each k, θk ≤ Ck. We argument by induction. Clearly, we
have θ0 ≤ C0. Assume θi ≤ Ci holds true for i ≤ k. Then, (59) yields that

θ2
k+1 ≤ (1 + ηk)

(
C2
k + rk(Ck + 2Ck−1) + (1 + Λ)ek + 2‖εk‖Mk

((1 + Λ)Ck + 2ΛCk−1) + ‖εk‖2Mk

)
(∗)
≤ (1 + ηk)

(
C2
k + 4rkCk + 2(1 + Λ)ekCk + 2(1 + 3Λ)‖εk‖Mk

Ck + ‖εk‖2Mk

)
≤ (1 + ηk)

(
Ck + 2rk + (1 + Λ)ek + (1 + 3Λ)‖εk‖Mk

)2
,

(61)

where (∗) uses Ck ≥ Ck−1 ≥ 1 and rk > 0. By the definition of Ck+1, we obtain

θk+1

(i)

≤
√

1 + ηk
(
Ck + 2rk + (1 + Λ)ek + (1 + 3Λ)‖εk‖Mk

)
(ii)

≤ (1 + ηk)Ck + (1 + ηk)(2rk + (1 + Λ)ek + (1 + 3Λ)‖εk‖Mk
)

(iii)

≤ (1 + ηk)Ck + νk

= Ck+1 ,

(62)

where (i) uses (61), (ii) holds true since (1 + ηk) > 1 and (iii) uses definition of νk. This concludes
the induction, and we deduce that θk is bounded and therefore, zk and z̄k are both bounded.
Weak convergence:
This part of the proof is adapted from the one for [11, Theorem 4.1]. Since θk is bounded, we set
ζ := supk∈N θk. The last inequality in (58) implies that

θ2
k+1 ≤ (1 + ηk)

(
θ2
k + rk(ζ + 2ζ) + (1 + Λ)ek + 2(1 + 3Λ)‖εk‖Mk

ζ + ‖εk‖2Mk
− pk − qk

)
≤ (1 + ηk)

(
θ2
k + 3rkζ + (1 + Λ)ek + 2(1 + 3Λ)‖εk‖Mk

ζ + ‖εk‖2Mk
− pk − qk

)
≤ θ2

k + ηkθ
2
k + (1 + ηk)

(
3rkζ + (1 + Λ)ek + (2 + 6Λ)‖εk‖Mk

ζ + ‖εk‖2Mk

)
− pk − qk

≤ θ2
k + ηkζ

2 + 2(3rkζ + (1 + Λ)ek + (2 + 6Λ)‖εk‖Mk
ζ + ‖εk‖2Mk

)︸ ︷︷ ︸
δk

−pk − qk .
(63)

We set δk := ηkζ
2+2(3rkζ+(1+Λ)ek+(2+6Λ)‖εk‖Mk

ζ+‖εk‖2Mk
) and observe that (δk)k∈N ∈ `1+(N).

Now, (63) yields that
θ2
k+1 ≤ θ2

k + δk . (64)

Using (64) and Lemma 2.7, we obtain the convergence of θ2
k = ‖zk− z‖2Mk

for any z ∈ zer(A+B).
Rearranging (63) to pk ≤ θ2

k − θ2
k+1 + δk, using Assumption 1 and summing it for k = 0, · · · , N ,

we obtain

ε

N∑
k=0

‖Bz̄k −Bz‖2 ≤
N∑
k=0

‖Bz̄k −Bz‖22β−M−1
k

=

N∑
k=0

pk ≤ θ2
0 − θ2

N +

N∑
k=0

δk ≤ ζ2 +

N∑
k=0

δk . (65)

Since (δk)k∈N ∈ `1+(N), by taking limit as N → +∞, we obtain∑
k∈N
‖Bz̄k −Bz‖2 ≤

1

ε2
(ζ2 +

∑
k∈N

δk) < +∞ . (66)

Similarly, we obtain from (63) using qk ≤ θ2
k − θ2

k+1 + δk that∑
k∈N
‖(z̄k − ẑk+1)− (Bkz̄k −Bkz)‖2Mk

< +∞ . (67)

Set z∗ as an arbitrary weak sequential cluster point of (zk)k∈N, namely, a subsequence zkn ⇀ z∗

as n→∞.

19

In order to obtain weak convergence of zk, by Proposition 2.5 with ϕ(t) = t2 and (64) and
Assumption 1, it suffices to show that z∗ ∈ zer(A+B). It follows from the selection of αk that:

‖z̄k − zk‖ ≤ αk‖zk − zk−1‖ → 0 . (68)

Thus, (68) yields z̄kn ⇀ z∗. From (66), we obtain that Bz̄kn → Bz as n → ∞. Since B is
cocoercive, it is maximally monotone and we can use the weak strong graph closedness of B in
Proposition 2.2 to infer that (z∗, Bz) ∈ GraphB, i.e. Bz ∈ Bz∗. However, since B is single valued,
we obtain Bz∗ = Bz and hence Bz̄kn → Bz∗. Setting uk := Mk(z̄k − ẑk+1)−Bz̄k, by definition of
the resolvent JMk

A , we have uk ∈ A(ẑk+1) for all k ∈ N. From (67), we obtain as k → +∞,

‖uk +Bz∗‖ = ‖Mk(z̄k − ẑk+1 −Bkz̄k +Bkz
∗)‖

≤ C‖z̄k − ẑk+1 −Bkz̄k +Bkz
∗‖

≤ C

σ
‖z̄k − ẑk+1 −Bkz̄k +Bkz

∗‖Mk
→ 0 .

(69)

Furthermore, from (66) and (67), we have

‖z̄k − ẑk+1‖ ≤ ‖z̄k − ẑk+1 −Bkz̄k +Bkz
∗‖ + ‖Bkz̄k −Bkz∗‖

≤ ‖z̄k − ẑk+1 −Bkz̄k +Bkz
∗‖ +

1

σ
‖Bz̄k −Bz∗‖ → 0 .

(70)

Therefore, together with (70), z̄kn ⇀ z∗ implies ẑkn+1 ⇀ z∗ as n → ∞. Now we already have
ukn → −Bz∗ as n→∞ and

(∀k ∈ N) : (ẑkn+1, ukn) ∈ GraphA . (71)

Since A is maximally monotone and using Proposition 2.2, we infer that −Bz∗ ∈ Az∗, hence
z∗ ∈ zer(A+B). As mentioned above, the result follows from Proposition 2.5 with ϕ(t) = t2.
Convergence rate:
In the following part, we are going to show the convergence rate of Algorithm 1: Assume εk ≡ 0
for k ∈ N and either γA > 0 or γB > 0. Because of (52), Assumption 1 and Lipschitz continuity of
JMk

A , we obtain for any z ∈ zer(A+B) that

‖zk+1 − z‖2Mk+1
≤ (1 + ηk)‖zk+1 − z‖2Mk

≤ (1 + ηk)
(1

1 + γA
C

)2

‖(z̄k −Bkz̄k)− (z −Bkz)‖2Mk

(i)

≤ (1 + ηk)
(1

1 + γA
C

)2(
‖z̄k − z‖2Mk

− ‖Bz̄k −Bz‖2β−M−1
k

− γB‖z̄k − z‖2
)

(ii)

≤ (1 + ηk)
(1

1 + γA
C

)2

(1− γB
C

)
(
‖z̄k − z‖2Mk

)
(iii)
= (1 + ηk)

(1− γB
C)

(1 + γA
C)2

(
(1 + αk)‖zk − z‖2Mk

− αk‖zk−1 − z‖2Mk

+ (1 + αk)αk‖zk − zk−1‖2Mk

)
= (1 + ηk)

(1− γB
C)

(1 + γA
C)2

(
‖zk − z‖2Mk

+ αk(‖zk − z‖2Mk
− ‖zk−1 − z‖2Mk

)

+ (1 + αk)αk‖zk − zk−1‖2Mk

)
(iv)
= (1 + ηk)

(1− γB
C)

(1 + γA
C)2

(
‖zk − z‖2Mk

+ αk‖zk − zk−1‖Mk
(‖zk − z‖Mk

+ ‖zk−1 − z‖Mk
) + (1 + αk)αk‖zk − zk−1‖2Mk

)
(v)
= (1 + ηk)

(1− γB
C)

(1 + γA
C)2

(
‖zk − z‖2Mk

+ αk‖zk − zk−1‖Mk
(‖zk − z‖Mk

+ (1 + ηk−1)‖zk−1 − z‖Mk−1
) + (1 + αk)αk‖zk − zk−1‖2Mk

)
(vi)
= (1 + ηk)

(1− γB
C)

(1 + γA
C)2

(
‖zk − z‖2Mk

+ 3αkζ‖zk − zk−1‖Mk

+ (1 + Λ)αk‖zk − zk−1‖2Mk

)

(72)

20

where (i) uses (II), (ii) uses the fact Mk is bounded uniformly and the assumption that Mk− 1
β I ∈

Sε(H), (iii) uses (56), (iv) uses factorization of the quadratic and uses the triangle inequality to
obtain the bound ‖zk − z‖Mk

− ‖zk−1 − z‖Mk
≤ ‖zk − zk−1‖Mk

, (v) uses Assumption 1 and (vi)

uses boundedness of αk and ‖zk − z‖Mk
. Since either γA > 0 or γB > 0,

1− γBC
(1+

γA
C)2

< 1. Then there

exists sufficient large K0 > 0 such that for any k > K0, (1 + ηk)
(

1− γBC
(1+

γA
C)2

)
< 1 − ξ < 1 for some

ξ ∈ (0, 1). Thus, we infer that for any k > K0:

‖zk−z‖2Mk
≤ (1−ξ)k−K0‖zK0

−z‖2MK0
+

k−1∑
i=K0

(1−ξ)k−iαi(3ζ‖zi−zi−1‖Mi
+(1+Λ)‖zi−zi−1‖2Mi

) .

(73)
Let Θ = 3ζ + (1 + Λ). Therefore (73) can be simplified as the following:

‖zk−z‖2Mk
≤ (1−ξ)k−K0‖zK0

−z‖2MK0
+

k−1∑
i=K0

Θ(1−ξ)k−iαi max{‖zi−zi−1‖Mi
, ‖zi−zi−1‖2Mi

} . (74)

Since zk is bounded and Mk ∈ Sσ(H), it follows that

‖zk − z‖2 ≤ 1
σ (1− ξ)k−K0‖zK0

− z‖2MK0
+O(

k−1∑
i=K0

(1− ξ)k−iαi) . (75)

Furthermore, if αi ≡ 0, for k > K0 and for any z ∈ zer(A+B), we obtain linear convergence:

‖zk+1 − z‖2 ≤
1

σ
(1− ξ)k−K0‖zK0 − z‖2MK0

. (76)

If αk 6= 0, αk = O(1
k2) and K0 large enough, then ‖zk+1 − z‖2 converges in the rate of O(1

k) for
k > K0 according to [29, Lemma 2.2.4 (Chung)]; if αk 6= 0 and αk = O(qk) for q = 1 − ξ and
k > K0, then ‖zk+1 − z‖2 converges in the rate of O(kqk) for k > K0 since (75).

A.4 Proof of Theorem 3.2

Proof. For simplicity, we set{
ẑk := JMk

A (zk −M−1
k Bzk), i.e.,z̃k = ẑ + εk ,

δk := max{1, ρ}‖εk‖ ,
(77)

where ρ =
√

C
σ

(C+
1
β)

2c and (δk)k∈N ∈ `1+(N). We set z∗ such that −Bz∗ ∈ Az∗.
Boundedness:
We claim that by choosing proper tk for each k ∈ N, we have

‖zk+1 − z∗‖ ≤ ‖zk − z∗‖ + δk. (78)

Note that if (78) is satisfied, it follows from Lemma 2.7 that ‖zk − z∗‖ is bounded and converges.
To stress the relation between zk+1 and tk, we define z(tk) := zk − tk[(Mk − B)(zk − z̃k)] and

we will use zk+1 and z(tk) interchangeably. We also set γk(tk) := (δk+ ||zk−z∗||)2−||z(tk)−z∗||2.
In order to prove (78), it is sufficient to show that for proper tk at each iterate, γk(tk) > 0. It

results from the definition of γk(tk) that

γk(tk) = (||zk − z∗||+ δk)2 − ||z(tk)− z∗||2

= 〈zk − z∗ + z(tk)− z∗, zk − z(tk)〉+ 2δk||zk − z∗||+ δ2
k

= 2tk 〈zk − z∗, (Mk −B)(zk − z̃k)〉︸ ︷︷ ︸
(I)

− t2k||(Mk −B)(zk − z̃k)||2︸ ︷︷ ︸
(II)

+ 2δk||zk − z∗||+ δ2
k .

(79)

21

We need several useful properties to estimate (I) and (II).
It follows from the definition of ẑk that −Mk(ẑk−zk)−Bzk ∈ Aẑk, and γA-strong monotonicity

of A implies that

γA‖ẑk − z∗‖2 ≤ 〈ẑk − z∗,−Mk(ẑk − zk)−Bzk +Bz∗〉
= 〈ẑk − z∗,Mk(zk − ẑk)−Bzk +Bẑk −Bẑk +Bz∗〉
= 〈ẑk − z∗,Mk(zk − ẑk)−Bzk +Bẑk〉 − 〈ẑk − z∗, Bẑk −Bz∗〉 .

(80)

We deduce by (80) and γB-strong monotonicity of B that

〈ẑk − z∗,Mk(zk − ẑk)−Bzk +Bẑk〉 ≥ 〈ẑk − z∗, Bẑk −Bz∗〉+ γA‖ẑk − z∗‖2

≥ γB‖ẑk − z∗‖2 + γA‖ẑk − z∗‖2 .
(81)

JMk

A is Lipschitz since A is monotone. Therefore,

‖ẑk − z∗‖2Mk
≤ ‖(zk −Bkzk)− (z∗ −Bkz∗)‖2Mk

= ‖zk − z∗‖2Mk
− 2 〈zk − z∗, Bkzk −Bkz∗〉Mk

+ ‖Bkzk −Bkz∗‖2Mk

≤ ‖zk − z∗‖2Mk
− ‖Bzk −Bz‖2β−M−1

k

(∗)
≤ ‖zk − z∗‖2Mk

,

(82)

where (∗) uses Assumption 2 that Mk− 1
β I ∈ Sc(H). Using the assumption that Mk− 1

β I ∈ Sc(H)
again, we obtain

〈zk − z̃k, (Mk −B)(zk − z̃k)〉 ≥ ‖zk − z̃k‖2
Mk−

1
β

> 0 . (83)

Combining (81), (82), the first term (I) in (79) can be estimated by the following:

(I) = 2tk 〈zk − z∗, (Mk −B)(zk − z̃k)〉
= 2tk 〈zk − z̃k, (Mk −B)(zk − z̃k)〉+ 2tk 〈z̃k − ẑk, (Mk −B)(zk − z̃k)〉

+ 2tk 〈ẑk − z∗, (Mk −B)(zk − ẑk)〉+ 2tk 〈ẑk − z∗, (Mk −B)(ẑk − z̃k)〉
(i)

≥ 2tk 〈zk − z̃k, (Mk −B)(zk − z̃k)〉+ 2tk 〈z̃k − ẑk, (Mk −B)(zk − z̃k)〉
+ 2tk(γA + γB)‖ẑk − z∗‖2 + 2tk 〈ẑk − z∗, (Mk −B)(ẑk − z̃k)〉

(ii)

≥ 2tk 〈zk − z̃k, (Mk −B)(zk − z̃k)〉 − 2tk‖εk‖‖(Mk −B)(zk − z̃k)‖
+ 2tk(γA + γB)‖ẑk − z∗‖2 − 2tk‖(Mk −B)εk‖M−1

k
‖ẑk − z∗‖Mk

(iii)

≥ 2tk 〈zk − z̃k, (Mk −B)(zk − z̃k)〉 − ‖εk‖2 − t2k‖(Mk −B)(zk − z̃k)‖2

+ 2tk(γA + γB)‖ẑk − z∗‖2 − 2 1√
σ

(C + 1
β)tk‖εk‖‖zk − z∗‖Mk

(iv)

≥ 2tk 〈zk − z̃k, (Mk −B)(zk − z̃k)〉 − ‖εk‖2 − t2k‖(Mk −B)(zk − z̃k)‖2

+ 2tk(γA + γB)‖ẑk − z∗‖2 − 2
√

C
σ (C + 1

β)tk‖εk‖‖zk − z∗‖ ,

(84)

where (i) uses (81), (ii) uses Cauchy inequality and (iii) uses (82), 2ab ≤ a2 + b2 and Assumption
2. We set bk := 〈zk − z̃k, (Mk −B)(zk − z̃k)〉 and ak := ‖(Mk − B)(zk − z̃k)‖2. The definition of
δk yields that δk ≥ ‖εk‖2 and it follows from (84) that:

γk(tk) ≥ 2tkbk − 2t2kak + 2δk‖zk − z∗‖ + δ2
k − ‖εk‖2

− 2
√

C
σ (C + 1

β)tk‖εk‖‖zk − z∗‖ + 2tk(γA + γB)‖ẑk − z∗‖2

≥ 2tkbk − 2t2kak︸ ︷︷ ︸
(III)

+2tk(γA + γB)‖ẑk − z∗‖2 + 2(δk −
√

C
σ (C + 1

β)tk)‖εk‖‖zk − z∗‖︸ ︷︷ ︸
(IV)

.

(85)

We continue to find a proper tk such that γk(tk) > 0. This goal boils down to ensuring both
(III) and (IV) are positive.

22

Let tk = bk
2ak

. We first show tk = bk
2ak

is the proper value to make sure (III) is positive. From

(83), we observe that bk > 0. Since ak > 0 and bk > 0, the quadratic term (III) in (85) will be
zero for tk = 0 or tk = bk

ak
and will be strictly positive for any tk ∈ (0, bk/ak) with the maximum

value obtained at tk = bk
2ak

. As a result, (III) is strictly positive.

Second, we will show (IV) is positive when tk = bk
2ak

. We observe that 0 < tk = bk
2ak

< 1
2c for

Assumption 2. Thus, the definition of δk and tk = bk
2ak

imply that

(IV) = 2(δk −
√

C
σ (C + 1

β)tk)‖εk‖‖zk − z∗‖

≥ (2δk −
√

C
σ

(C+
1
β)

c)‖εk‖‖zk − z∗‖

≥ 0 .

(86)

Since (III) and (IV) both are positive when tk = bk
2ak

, (85) yields:

γk(tk) ≥ 2tkbk − 2t2ka+ 2tk(γA + γB)‖ẑk − z∗‖2 + (2δk −
√

C
σ

(C+
1
β)

c)‖εk‖‖zk − z∗‖

≥ b2k
2ak

+ 2tk(γA + γB)‖ẑk − z∗‖2

> 0 ,

(87)

It results from (87) and the definition of γk(tk) that for each k ∈ N, (||zk−z∗||+δk) ≥ ||z(tk)−z∗|| =
||zk+1−z∗||. We conclude that if tk = bk

2ak
, then γk(tk) > 0 for all k ∈ N and the sequence ‖zk−z∗‖

is bounded and converges as k → +∞ by using Lemma 2.7.
Weak convergence:
The sequence (zk)k∈N generated by Algorithm 2 is bounded and ‖zk− z‖ converges as k →∞ and
γk(tk) converges to zero as k →∞ for all z ∈ zer(A+B). Set z∗ as an arbitrary weak sequential
cluster point of (zk)k∈N and there exists a subsequence (zkn)n∈N such that zkn ⇀ z∗.

In order to obtain weak convergence of zk, by Proposition 2.5 with ϕ(t) = t and fixed metric
Mk = I and (78), it suffices to show that z∗ ∈ zer(A+B).

Using Assumption 2, (Mk)k∈N is bounded uniformly by C. Together with boundedness of
operator B, we obtain ak is bounded by (C + 1

β)2‖zk − z̃k‖2 for each k ∈ N. Using Assumption

2, we obtain that bk ≥ ‖zk − z̃k‖2
Mk−

1
β I
≥ c‖zk − z̃k‖2. By definition of tk and (87), we have

γk(tk) ≥ c

2(C+
1
β)2
‖zk − z̃k‖2. Since γk(tk)→ 0, ‖zk − z̃k‖ → 0 as k →∞. Moreover, since εk → 0,

‖zk − ẑk‖ → 0. We set uk := Mk(zk − ẑk) + Bẑk − Bzk. Therefore, we obtain that uk → 0 as
k → +∞ and ẑkn ⇀ z∗ as n→ +∞. We observe that uk ∈ Aẑk+Bẑk. Then, by using Proposition
2.2 and the fact that A+B is maximally monotone, we conclude that 0 ∈ Az∗+Bz∗ and ‖zk−z∗‖
decreases since z∗ ∈ zer(A+B). As mentioned above, the result follows from Proposition 2.5 with
ϕ(t) = t.
Linear convergence rate:
If we assume εk ≡ 0, then ẑk = z̃k and δk ≡ 0. Therefore, from (87) we can obtain an estimation
for γk(tk) when tk = bk

2ak
:

γk(tk) = ‖zk − z∗‖2 − ‖zk+1 − z∗‖2 ≥
b2k

2ak
+ 2tk(γA + γB)‖ẑk − z∗‖2 . (88)

The following part is to derive linear convergence for the case that either γA > 0 or γB > 0. The
definition of bk and that of ak yield the following estimation for tk:

tk =
bk

2ak
=
〈zk − ẑk, (Mk −B)(zk − ẑk)〉

2‖(Mk −B)(zk − ẑk)‖2
(i)

≥
‖zk − ẑk‖2

Mk−
1
β

2(C + 1
β)2‖zk − ẑk‖2

(ii)
>

c

2(C + 1
β)2

, (89)

where both (i) and (ii) use Assumption 2. For convenience, we denote c

2(C+
1
β)2

by δ. Using

Assumption 2 again, we have the estimation for the first term at the right hand side of (88):

b2k
2ak
≥ δ‖zk − ẑk‖2

Mk−
1
β I

> cδ‖zk − ẑk‖2 . (90)

23

Furthermore, combining (88) with (89), (90) and the definition γk(tk) := ‖zk−z∗‖2−‖zk+1−z∗‖2,
we obtain

‖zk+1 − z∗‖2 ≤ ‖zk − z∗‖2 − 2(γA + γB)δ‖ẑk − z∗‖2 − cδ‖zk − ẑk‖2

≤ ‖zk − z∗‖2 − 1
2 min{2(γA + γB)δ, cδ}(2‖ẑk − z∗‖2 + 2‖zk − ẑk‖2)

(i)

≤ ‖zk − z∗‖2 − 1
2 min{2(γA + γB)δ, cδ}(‖ẑk − z∗‖ + ‖zk − ẑk‖)2

(ii)

≤ ‖zk − z∗‖2 − 1
2 min{2(γA + γB)δ, cδ}‖zk − z∗‖2

≤ (1− 1
2 min{2(γA + γB)δ, cδ})‖zk − z∗‖2 ,

(91)

where (i) uses inequality 2x2 + 2y2 ≥ (x + y)2 and (ii) uses triangle inequality. Consequently, we
obtain linear convergence if (γA + γB) > 0:

‖zk − z∗‖2 ≤ (1− ξ)k‖z0 − z∗‖2 , (92)

where ξ = 1
2 min{2(γA + γB)δ, cδ} > 0.

A.5 Proof of Theorem 4.1

Proof. Computing the resolvent operator shows the following equivalences

x∗ = JVT (z) = (I + V −1T)−1(z)

⇐⇒ V z ∈ (V + T)(x∗)

⇐⇒Mz ∈ (M + T)(x∗)±Q(x∗ − z)
[y∗ = M1/2x∗] ⇐⇒Mz ∈ (M + T)(M−1/2y∗)±Q(M−1/2y∗ − z)

⇐⇒Mz ∈ (M + T)(M−1/2y∗)±QM−1/2(y∗ −M1/2z)

⇐⇒Mz ∈ (M1/2 + TM−1/2)(y∗)±QM−1/2(y∗ −M1/2z)

[W = M−1/2QM−1/2] ⇐⇒M1/2z ∈ (I +M−1/2TM−1/2)(y∗)±W (y∗ −M1/2z) .

(93)

Since existence of x∗ is guaranteed by the properties of JVT , Lemma 2.6 yields the existence of a
unique primal-dual pair (x∗, u∗) that satisfies the equivalent relations in Lemma 2.6 with B :=
±W ◦ τM1/2z and A := τM1/2z ◦ (I +M−1/2TM−1/2). The mapping B is single-valued and , as T
is a maximally monotone operator and M is positive definite, A−1 = JM−1/2TM−1/2 ◦ τ−M1/2z is
single valued. Therefore, the solution of JVT can be computed by finding u∗ such that

0 ∈ B−1u∗ −A−1(−u∗) = [(±W)−1 +M1/2z]− JM−1/2TM−1/2(M1/2z − u∗) (94)

and the using

x∗ = M−1/2y∗ and y∗ = A−1(−u∗) = JM−1/2TM=1/2(M1/2z − u∗) . (95)

Substituting u∗ = M−1/2v∗ in both problems, multiplying the former one from left with M−1/2,
and using M−1/2W−1M−1/2 = Q+ leads to{

0 ∈ ±Q+v∗ + z −M−1/2 ◦ JM−1/2TM−1/2 ◦M1/2(z −M−1v∗)

x∗ = M−1/2 ◦ JM−1/2TM−1/2 ◦M1/2(z −M−1v∗) .
(96)

Since a solution to JVT exists, there exists v∗ ∈ im(Q) that satisfies the inclusion. Given the
isomorphism U : Rr → im(Q), which can be realized using r linearly independent u1, · · · , ur ∈ H
by α→

∑r
i=1 αiui, the inclusion problem is equivalent to finding the unique root α∗ ∈ Rr of l(α),

where U∗ denotes the adjoint of U and for the case “−” of “±” we substituted α by −α.
The following shows that l(α) is Lipschitz continuous with constant ‖U∗Q+U‖+‖M−1/2U‖2:(We

abbreviate JM−1/2TM−1/2 by J in the following)

〈l(α)− l(β), α− β〉

=‖α− β‖2U∗Q+U −
〈
J(M1/2z ∓M−1/2Uα)− J(M1/2z ∓M−1/2Uβ),M−1/2U(α− β)

〉
≤‖U∗Q+U‖‖α− β‖2 + ‖M−1/2U‖2‖α− β‖2 ,

(97)

24

where, in the last line, we use the 1-Lipschitz continuity (non-expansive) of J .
The following shows strict monotonicity of l. We rewrite l(α) as follows:

l(α) = U∗Q+Uα+ U∗M−1/2(M1/2z − JM−1/2TM−1/2(M1/2z ∓M−1/2Uα))

= U∗Q+Uα± U∗M−1Uα+ U∗M−1/2(I − JM−1/2TM−1/2)(M1/2z ∓M−1/2Uα)

= U∗(Q+ ±M−1)Uα+ U∗M−1/2JM−1/2T−1M−1/2(M1/2z ∓M−1/2Uα) .

(98)

Using the 1-cocoercivity of JM1/2T−1M1/2 , the function l(α) can be seen to be strictly mono-
tone if α 7→ U∗(Q+ ± M−1)Uα is strictly monotone. This fact is clear for the case “+” of
“±”. Therefore, in the remainder, we show strictly monotonicity of α 7→ U∗(Q+ −M−1)Uα =
U∗M−1/2(M1/2Q+M1/2−I)M−1/2Uα. We observeM−Q ∈ S0(H) implies that ‖M−1/2QM−1/2‖ <
1 and by 1 ≤ ‖AA−1‖ ≤ ‖A‖‖A−1‖, we conclude that ‖M1/2Q+M1/2‖im(M−1/2Q) for the restric-

tion of the operator norm to im(M−1/2Q), hence, Q+ −M−1 ∈ S++(H).
According to Lemma 2.3, we can replace M−1/2 ◦ JM−1/2TM−1/2 ◦M1/2 with JMT . Then we

obtain the formula in the statement of Theorem 4.1.

A.6 Proof of Theorem 4.1.1

Proof. Since Q = UU∗ for some U ∈ B(Rr,H), we have

im(Q) = {UU∗v|v ∈ H} = {Uα|α ∈ Rr} . (99)

Since Q+ is pseudo-inverse of Q on im(Q), the following holds for arbitrary v ∈ H:

QQ+Qv = Qv ⇐⇒ UU∗Q+UU∗v = UU∗v ⇐⇒ UU∗Q+Uα = Uα . (100)

Since the column vectors {ui}i=1,··· ,r of U are independent with each other, UU∗Q+Uα = Uα
yields that U∗Q+Uα = α. Therefore, the root finding problem in Theorem 4.1 simplifies to
(22).

A.7 Proof of Proposition 4.2

Proof. Our proof relies on the convergence result [15, Theorem 7.5.5]. By the same argument
as the one in Appendix B.5 paper [7], we obtain ∂cl(α∗) is non-singular. If l(α) is tame, then
by [8, Theorem 1], l(α) is semi-smooth. In order to apply this result it remains to show that
l(α) is tame. The property of definable functions is preserved by operations including the sum,
composition by a linear operator, derivation and canonical projection ([34], [14]). Since T is a tame
mapping, I + M−1/2TM−1/2 is tame as well as its graph. Here I is identity. Then the resolvent
JM−1/2TM−1/2 = (I +M−1/2TM−1/2)−1 which is defined by the inverse of the same graph is tame
([18]) and single-valued. By the stability of the sum and composition by linear operator, we obtain
that l(α) is tame.

A.8 Proof of Proposition 4.3

Proof. Let p = JVT (z). Since resolvent operator is non-expansive, ‖p‖ = ‖JVT (z)‖ ≤ ‖z‖+‖JVT (0)‖.
By duality, optimal α∗ will satisfy α∗ = u∗(p− z). Then,

|α∗| = |u∗(p− z)|
≤ ‖u‖(2‖z‖ + ‖JVT (0)‖) .

(101)

A.9 Proof of Proposition 4.5

Proof. L(α) is as defined in Proposition 4.4. Substitute α = ξ + U∗V −1Bz in L(α). We obtain
J (ξ) = L(α). It yields α∗ = ξ∗ + U∗V −1Bz. In (24), we do the same substitution.

ẑ = JMT (z̆ ∓M−1Uα∗)

= JMA (z̆ ∓M−1Uξ∗ ∓M−1UU∗V −1Bz)

= JMA (z −M−1MV −1Bz ∓M−1UU∗V −1Bz ∓M−1Uξ∗)

= JMA (z −M−1 (M ± UU∗)︸ ︷︷ ︸
=V

V −1Bz ∓M−1Uξ∗)

= JMA (z −M−1Bz ∓M−1Uξ∗) .

(102)

25

Since L(α) is Lipschitz with constant 1 + ||M−1/2U ||2 and strongly monotone, the composition of
translation preserves the same properties.

REFERENCES

[1] B. Abbas, H. Attouch, and B. F. Svaiter, Newton-like dynamics and forward-backward
methods for structured monotone inclusions in Hilbert spaces, Journal of Optimization Theory
and Applications, 161 (2014), pp. 331–360.

[2] F. Alvarez, H. Attouch, J. Bolte, and P. Redont, A second-order gradient-like dis-
sipative dynamical system with Hessian-driven damping.: Application to optimization and
mechanics, Journal de mathématiques pures et appliquées, 81 (2002), pp. 747–779.

[3] H. Attouch and B. F. Svaiter, A continuous dynamical Newton-like approach to solving
monotone inclusions, SIAM Journal on Control and Optimization, 49 (2011), pp. 574–598.

[4] H. Attouch and M. Théra, A general duality principle for the sum of two operators,
Journal of Convex Analysis, 3 (1996), pp. 1–24.

[5] H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in
Hilbert Spaces, Springer, 2011.

[6] S. Becker and J. Fadili, A quasi-Newton proximal splitting method, Advances in Neural
Information Processing Systems, (2012).

[7] S. Becker, J. Fadili, and P. Ochs, On quasi-Newton forward-backward splitting: Proximal
calculus and convergence, SIAM Journal on Optimization, 29 (2019), pp. 2445–2481.

[8] J. Bolte, A. Daniilidis, and A. Lewis, Tame functions are semismooth, Mathematical
Programming, 117 (2009), pp. 5–19.

[9] K. Bredies, D. Lorenz, et al., Mathematical image processing, Springer, 2018.

[10] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with
applications to imaging, Journal of mathematical imaging and vision, 40 (2011), pp. 120–145.

[11] P. Combettes, L. Condat, J. Pesquet, and B. Vu, A forward-backward view of some
primal-dual optimization methods in image recovery, IEEE International Conference on Image
Processing, (2014).

[12] P. L. Combettes and B. C. Vũ, Variable metric quasi-Fejér monotonicity, Nonlinear
Analysis: Theory, Methods and Applications, 78 (2013), pp. 17–31.

[13] , Variable metric forward–backward splitting with applications to monotone inclusions in
duality, Optimization, 63 (2014), pp. 1289–1318.

[14] M. Coste, An Introduction to o-minimal Geometry, Istituti editoriali e poligrafici internazion-
ali Pisa, 2000.

[15] F. Facchinei and J. Pang, Finite-dimensional variational inequalities and complementarity
problems, Springer, 2003.

[16] T. Goldstein, M. Li, X. Yuan, E. Esser, and R. Baraniuk, Adaptive primal-dual
hybrid gradient methods for saddle-point problems, arXiv preprint arXiv:1305.0546, (2013).

[17] B. He and X. Yuan, Convergence analysis of primal-dual algorithms for a saddle-point
problem: From contraction perspective, SIAM Journal on Imaging Sciences, 5 (2012), pp. 119–
149.

[18] A. D. Ioffe, An invitation to tame optimization, SIAM Journal on Optimization, 19 (2009),
pp. 1894–1917.

[19] C. Kanzow and T. Lechner, Globalized inexact proximal Newton-type methods for noncon-
vex composite functions, Computational Optimization and Applications, 78 (2021), pp. 377–
410.

26

[20] C. Kanzow and T. Lechner, Efficient regularized proximal quasi-Newton methods for large-
scale nonconvex composite optimization problems, tech. rep., University of Würzburg, Institute
of Mathematics, January 2022.

[21] S. Karimi and S. Vavasis, IMRO: A proximal quasi-Newton method for solving ` 1-
regularized least squares problems, SIAM Journal on Optimization, 27 (2017), pp. 583–615.

[22] P. D. Khanh, B. Mordukhovich, V. T. Phat, and D. B. Tran, Generalized damped
Newton algorithms in nonsmooth optimization with applications to lasso problems, arXiv
preprint arXiv:2101.10555, (2021).

[23] J. D. Lee, Y. Sun, and M. A. Saunders, Proximal Newton-type methods for minimizing
composite functions, SIAM Journal on Optimization, 24 (2014), pp. 1420–1443.

[24] C. Liu and L. Luo, Quasi-Newton methods for saddle point problems, arXiv preprint
arXiv:2111.02708, (2021).

[25] Y. Liu, Y. Xu, and W. Yin, Acceleration of primal–dual methods by preconditioning and
simple subproblem procedures, Journal of Scientific Computing, 86 (2021), pp. 1–34.

[26] D. A. Lorenz and T. Pock, An inertial forward-backward algorithm for monotone inclu-
sions, Journal of Mathematical Imaging and Vision, 51 (2015), pp. 311–325.

[27] P. Patrinos, L. Stella, and A. Bemporad, Forward-backward truncated Newton methods
for convex composite optimization, arXiv preprint arXiv:1402.6655, (2014).

[28] T. Pock and A. Chambolle, Diagonal preconditioning for first order primal-dual algo-
rithms in convex optimization, IEEE International Conference on Computer Vision, (2011).

[29] B. Polyak, Introduction to optimization, Optimization Software, 1987.

[30] A. Rodomanov and Y. Nesterov, Greedy quasi-Newton methods with explicit superlinear
convergence, SIAM Journal on Optimization, 31 (2021), pp. 785–811.

[31] M. Schmidt, E. Berg, M. Friedlander, and K. Murphy, Optimizing costly functions
with simple constraints: A limited-memory projected quasi-Newton algorithm, in AISTATS,
2009.

[32] M. Schmidt, D. Kim, and S. Sra, Projected Newton-type methods in machine learning,
Optimization for Machine Learning, (2012).

[33] L. Stella, A. Themelis, and P. Patrinos, Forward–backward quasi-Newton methods for
nonsmooth optimization problems, Computational Optimization and Applications, 67 (2017),
pp. 443–487.

[34] L. Van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke
Mathematical Journal, 84 (1996), pp. 497–540.

[35] S. Wright and J. Nocedal, Numerical optimization, Springer Science, (1999).

27

	1 Introduction
	1.1 Related Works

	2 Preliminaries
	3 Inertial Quasi-Newton Forward-Backward Splitting for Monotone Inclusion
	3.1 Problem setting
	3.2 Convergence
	3.2.1 Algorithm 1: Inertial Quasi-Newton Forward-Backward Splitting
	3.2.2 Algorithm 2: Quasi-Newton Forward-Backward Splitting with Relaxation

	4 Resolvent Calculus for Low-Rank Perturbed Metric
	4.1 General case
	4.2 Solving the Root-Finding Problem
	4.2.1 Semi-smooth Newton Methods
	4.2.2 Bisection

	4.3 Implementation of the quasi-Newton Forward-Backward Step

	5 A General 0SR1 Inertial Quasi-Newton Method for Monotone Inclusion
	5.1 General algorithm with generic metric TEXT

	6 Inertial Quasi-Newton PDHG for Saddle-point Problems
	7 Numerical experiments
	7.1 TV-TEXT deconvolution
	7.2 TV-TEXT deconvolution with infimal convolution type regularization
	7.2.1 Image denoising

	7.3 Conclusion

	Appendices
	A Appendix
	A.1 Proof of Lemma 2.3
	A.2 Proof of Lemma 2.4
	A.3 Proof of Theorem 3.1
	A.4 Proof of Theorem 3.2
	A.5 Proof of Theorem 4.1
	A.6 Proof of Theorem 4.1.1
	A.7 Proof of Proposition 4.2
	A.8 Proof of Proposition 4.3
	A.9 Proof of Proposition 4.5

