
11th Applied Inverse Problems Conference

Differentiating Solution Mappings
of Non-smooth Optimization Problems

Peter Ochs
Mathematical Optimization for Data Science

Saarland University

— 04.09.2023 —

joint work: Sheheryar Mehmood

© 2023 — Peter Ochs Mathematical Optimization for Data Science 1 / 19

Variational Problems with Regularization

min
x

Eλ(x) , Eλ(x) = D(x)︸ ︷︷ ︸
data term

+ λ R(x)︸ ︷︷ ︸
regularization

term

.

λ > 0 is a regularization parameter.

ground truth

noisy input

reconstruction; small λ

reconstruction; large λ

Regularization weight has a huge impact on the result!

© 2023 — Peter Ochs Mathematical Optimization for Data Science 2 / 19

Variational Problems with Regularization

What about learning the whole regularization term?

R(x, ν, ϑ) :=
∑
i,j

(
m∑

k=1

νkρ
(L∑

l=1

ϑkl(Klx)ij
))

Kl are predefined basis filters (e.g. DCT filter)

ρ is a potential function (convex)

(This regularizer reflects a 1-hidden-layer neural network.)

How to find the best weights ν, ϑ?
hand-tuning and grid search are not feasible

sampling and regression of loss function using
Gaussian processes or Random Fields (up to ≈ 200 parameters)

gradient based bi-level optimization (several 100 000 parameters)

© 2023 — Peter Ochs Mathematical Optimization for Data Science 3 / 19

Variational Problems with Regularization

What about learning the whole regularization term?

R(x, ν, ϑ) :=
∑
i,j

(
m∑

k=1

νkρ
(L∑

l=1

ϑkl(Klx)ij
))

Kl are predefined basis filters (e.g. DCT filter)

ρ is a potential function (convex)

(This regularizer reflects a 1-hidden-layer neural network.)

How to find the best weights ν, ϑ?
hand-tuning and grid search are not feasible

sampling and regression of loss function using
Gaussian processes or Random Fields (up to ≈ 200 parameters)

gradient based bi-level optimization (several 100 000 parameters)

© 2023 — Peter Ochs Mathematical Optimization for Data Science 3 / 19

Applications in Machine Learning

Similar Problems:

(Hyper)Parameter Learning [Domke ’12], [Kunisch, Pock ’13], [O. et al ’16], ...

Implicit Models [Amos, Kolter ’17], [Agrawal et al. ’19], [Bai, Kolter, Koltun ’19], [Chen et al. ’21], ...

Meta Learning [Hospedales et al. ’21], ...

Learning to Optimize [Chen et al. ’21], ...

Sensitivity Analysis.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 4 / 19

Bilevel optimization / parameter learning

min
θ∈RP

L(x∗(θ), θ) (upper level)

s.t. x∗(θ) ∈ arg min
x∈RN

E(x, θ) (lower level)

θ ∈ RP : optimization variable parameter (vector).

L : RN × RP → R: smooth loss function.

E : RN × RP → R: parametric (energy) minimization problem.
(convex for each θ ∈ RP)

x∗ : RP → RN is a selection of the solution mapping of E.

Gradient based optimization requires ∇θL(x∗(θ(k)), θ(k)),

i.e., in particular, the sensitivity of the solution mapping
∂x∗

∂θ
.

Outline: E type of bilevel algorithm
(I) smooth setting smooth gradient
(II) partly smooth setting structured non-smooth gradient
(III) non-smooth setting non-smooth generalized derivative

© 2023 — Peter Ochs Mathematical Optimization for Data Science 5 / 19

Bilevel optimization / parameter learning

min
θ∈RP

L(x∗(θ), θ) (upper level)

s.t. x∗(θ) ∈ arg min
x∈RN

E(x, θ) (lower level)

θ ∈ RP : optimization variable parameter (vector).

L : RN × RP → R: smooth loss function.

E : RN × RP → R: parametric (energy) minimization problem.
(convex for each θ ∈ RP)

x∗ : RP → RN is a selection of the solution mapping of E.

Gradient based optimization requires ∇θL(x∗(θ(k)), θ(k)),

i.e., in particular, the sensitivity of the solution mapping
∂x∗

∂θ
.

Outline: E type of bilevel algorithm
(I) smooth setting smooth gradient
(II) partly smooth setting structured non-smooth gradient
(III) non-smooth setting non-smooth generalized derivative

© 2023 — Peter Ochs Mathematical Optimization for Data Science 5 / 19

Bilevel optimization / parameter learning

min
θ∈RP

L(x∗(θ), θ) (upper level)

s.t. x∗(θ) ∈ arg min
x∈RN

E(x, θ) (lower level)

θ ∈ RP : optimization variable parameter (vector).

L : RN × RP → R: smooth loss function.

E : RN × RP → R: parametric (energy) minimization problem.
(convex for each θ ∈ RP)

x∗ : RP → RN is a selection of the solution mapping of E.

Gradient based optimization requires ∇θL(x∗(θ(k)), θ(k)),

i.e., in particular, the sensitivity of the solution mapping
∂x∗

∂θ
.

Outline: E type of bilevel algorithm
(I) smooth setting smooth gradient
(II) partly smooth setting structured non-smooth gradient
(III) non-smooth setting non-smooth generalized derivative

© 2023 — Peter Ochs Mathematical Optimization for Data Science 5 / 19

(I) Smooth Setting: Strategies for differentiation

In the following: x∗(θ) ∈ arg min
x∈RN

E(x, θ) (E smooth)

Goal: Compute
∂x∗

∂θ
(θ)

Strategies:
Implicit differentiation. (requires E strictly convex)

Unrolling an algorithm. (use automatic differentiation)

Unrolling of a fixed point equation.

Warning:
Even for smooth E, the solution mapping x∗(θ) is often non-smooth.

Solution mapping multivalued, when arg min
x∈RN

E(x, θ) is not unique.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 6 / 19

(I) Smooth Setting: Strategies for differentiation

In the following: x∗(θ) ∈ arg min
x∈RN

E(x, θ) (E smooth)

Goal: Compute
∂x∗

∂θ
(θ)

Strategies:
Implicit differentiation. (requires E strictly convex)

Unrolling an algorithm. (use automatic differentiation)

Unrolling of a fixed point equation.

Warning:
Even for smooth E, the solution mapping x∗(θ) is often non-smooth.

Solution mapping multivalued, when arg min
x∈RN

E(x, θ) is not unique.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 6 / 19

(I) Implicit Differentiation (ID)

The optimality condition is ∇xE(x, θ) = 0.

This implicitly defines x∗(θ) (implicit function theorem).

Let (x∗, θ) be such that ∇xE(x∗, θ) = 0, then, if [...] we have

∂x∗

∂θ
(θ) = −

(∂2E

∂x2
(x∗, θ)

)−1 ∂2E

∂θ∂x
(x∗, θ) .

Disadvantages:
Requires twice differentiability of E.

Requires several approximations: x∗ and (∂
2E

∂x2)
−1 (solve linear system).

Unstable for badly conditioned ∂2E
∂x2 .

Requires estimation (and storing) ∂2E
∂x2 .

© 2023 — Peter Ochs Mathematical Optimization for Data Science 7 / 19

(I) Implicit Differentiation (ID)

The optimality condition is ∇xE(x, θ) = 0.

This implicitly defines x∗(θ) (implicit function theorem).

Let (x∗, θ) be such that ∇xE(x∗, θ) = 0, then, if [...] we have

∂x∗

∂θ
(θ) = −

(∂2E

∂x2
(x∗, θ)

)−1 ∂2E

∂θ∂x
(x∗, θ) .

Disadvantages:
Requires twice differentiability of E.

Requires several approximations: x∗ and (∂
2E

∂x2)
−1 (solve linear system).

Unstable for badly conditioned ∂2E
∂x2 .

Requires estimation (and storing) ∂2E
∂x2 .

© 2023 — Peter Ochs Mathematical Optimization for Data Science 7 / 19

(I) Unrolling / Automatic Differentiation (AD)

Approximate by a fixed n ∈ N: (where x(0) is some fixed initialization)

x∗(θ) ≈ x(n+1) := A(n+1)(x(0), θ) = A ◦ . . . ◦ A(x(0), θ)

Evaluate the chain rule by reverse mode AD (backpropagation):

∂A(n+1)

∂θ
(x(0), θ) =

∂A
∂x

(x(n), θ)
∂A(n)

∂θ
(x(0), θ) +

∂A
∂θ

(x(n), θ) = . . . unroll . . .

© 2023 — Peter Ochs Mathematical Optimization for Data Science 8 / 19

(I) Unrolling / Automatic Differentiation (AD)

Approximate by a fixed n ∈ N: (where x(0) is some fixed initialization)

x∗(θ) ≈ x(n+1) := A(n+1)(x(0), θ) = A ◦ . . . ◦ A(x(0), θ)

Algorithmic formulation: Set J(1)
θ := ∂A

∂θ
(x(0), θ) and for n = 1, 2, . . .:

J
(n+1)
θ =

∂A
∂x

(x(n), θ)J
(n)
θ +

∂A
∂θ

(x(n), θ)

© 2023 — Peter Ochs Mathematical Optimization for Data Science 8 / 19

(I) Unrolling / Automatic Differentiation (AD)

Approximate by a fixed n ∈ N: (where x(0) is some fixed initialization)

x∗(θ) ≈ x(n+1) := A(n+1)(x(0), θ) = A ◦ . . . ◦ A(x(0), θ)

Algorithmic formulation: Set J(1)
θ := ∂A

∂θ
(x(0), θ) and for n = 1, 2, . . .:

J
(n+1)
θ =

∂A
∂x

(x(n), θ)J
(n)
θ +

∂A
∂θ

(x(n), θ)

Advantages:
Output is unambiguous (unique), even in case argminE is multi-valued.

After the algorithm A and n ∈ N are fixed, the approach is exact.

All iterations depend on the same parameter⇝ possibly truncate backprop.

Easy implementation using standard AD packages.

For E strongly convex, we have convergence rates for

J
(n+1)
θ

n→∞−→ ∂x∗

∂θ
(θ) Accelerated convergence for

accelerated algorithms! [Mehmood, O. ’20]

Disadvantages: Store all intermediate iterates (in reverse mode).

© 2023 — Peter Ochs Mathematical Optimization for Data Science 8 / 19

(I) Fixed Point Automatic Differentiation (FPAD)

Replace argminE(x, θ) by a fixed point equation:

x∗(θ) = A(x∗(θ), θ)

Imitate n ∈ N iterations of A starting at x(0) := x∗:

A(n+1)(x∗, θ) = A ◦ . . . ◦ A(x∗, θ)

Evaluate the chain rule by reverse mode AD (backpropagation): For n = 1, 2, . . .:

Ĵ
(n+1)
θ =

∂A
∂x

(x∗, θ)Ĵ
(n)
θ +

∂A
∂θ

(x∗, θ)

⇝ faster convergence rate of derivative sequence [Mehmood, O. ’20].
(known in AD community [Gilbert ’92, Christianson ’94];
connection to ID via Von Neumann series.)

Equivalent to AD with intermediate variables replaced by the optimum: [O. et al. ’16]

J
(n+1)
θ =

∂A
∂x

(x(n), θ)J
(n)
θ +

∂A
∂θ

(x(n), θ)

Requires to store only x∗.

Easy implementation using standard AD packages.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 9 / 19

(I) Fixed Point Automatic Differentiation (FPAD)

Replace argminE(x, θ) by a fixed point equation:

x∗(θ) = A(x∗(θ), θ)

Imitate n ∈ N iterations of A starting at x(0) := x∗:

A(n+1)(x∗, θ) = A ◦ . . . ◦ A(x∗, θ)

Evaluate the chain rule by reverse mode AD (backpropagation): For n = 1, 2, . . .:

Ĵ
(n+1)
θ =

∂A
∂x

(x∗, θ)Ĵ
(n)
θ +

∂A
∂θ

(x∗, θ)

⇝ faster convergence rate of derivative sequence [Mehmood, O. ’20].
(known in AD community [Gilbert ’92, Christianson ’94];
connection to ID via Von Neumann series.)

Equivalent to AD with intermediate variables replaced by the optimum: [O. et al. ’16]

J
(n+1)
θ =

∂A
∂x

(x(n), θ)J
(n)
θ +

∂A
∂θ

(x(n), θ)

Requires to store only x∗.

Easy implementation using standard AD packages.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 9 / 19

(I) Fixed Point Automatic Differentiation (FPAD)

Replace argminE(x, θ) by a fixed point equation:

x∗(θ) = A(x∗(θ), θ)

Imitate n ∈ N iterations of A starting at x(0) := x∗:

A(n+1)(x∗, θ) = A ◦ . . . ◦ A(x∗, θ)

Evaluate the chain rule by reverse mode AD (backpropagation): For n = 1, 2, . . .:

Ĵ
(n+1)
θ =

∂A
∂x

(x∗, θ)Ĵ
(n)
θ +

∂A
∂θ

(x∗, θ)
n→∞−→ ∂x∗

∂θ
(θ)

⇝ faster convergence rate of derivative sequence [Mehmood, O. ’20].
(known in AD community [Gilbert ’92, Christianson ’94];
connection to ID via Von Neumann series.)

Equivalent to AD with intermediate variables replaced by the optimum: [O. et al. ’16]

J
(n+1)
θ =

∂A
∂x

(x(n), θ)J
(n)
θ +

∂A
∂θ

(x(n), θ)

Requires to store only x∗.

Easy implementation using standard AD packages.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 9 / 19

(I) Fixed Point Automatic Differentiation (FPAD)

Replace argminE(x, θ) by a fixed point equation:

x∗(θ) = A(x∗(θ), θ)

Imitate n ∈ N iterations of A starting at x(0) := x∗:

A(n+1)(x∗, θ) = A ◦ . . . ◦ A(x∗, θ)

Evaluate the chain rule by reverse mode AD (backpropagation): For n = 1, 2, . . .:

Ĵ
(n+1)
θ =

∂A
∂x

(x∗, θ)Ĵ
(n)
θ +

∂A
∂θ

(x∗, θ)
n→∞−→ ∂x∗

∂θ
(θ)

⇝ faster convergence rate of derivative sequence [Mehmood, O. ’20].
(known in AD community [Gilbert ’92, Christianson ’94];
connection to ID via Von Neumann series.)

Equivalent to AD with intermediate variables replaced by the optimum: [O. et al. ’16]

J
(n+1)
θ =

∂A
∂x

(x(n), θ)J
(n)
θ +

∂A
∂θ

(x(n), θ)

Requires to store only x∗.

Easy implementation using standard AD packages.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 9 / 19

(I) Fixed Point Automatic Differentiation (FPAD)

Replace argminE(x, θ) by a fixed point equation:

x∗(θ) = A(x∗(θ), θ)

Imitate n ∈ N iterations of A starting at x(0) := x∗:

A(n+1)(x∗, θ) = A ◦ . . . ◦ A(x∗, θ)

Evaluate the chain rule by reverse mode AD (backpropagation): For n = 1, 2, . . .:

Ĵ
(n+1)
θ =

∂A
∂x

(x∗, θ)Ĵ
(n)
θ +

∂A
∂θ

(x∗, θ)
n→∞−→ ∂x∗

∂θ
(θ)

⇝ faster convergence rate of derivative sequence [Mehmood, O. ’20].
(known in AD community [Gilbert ’92, Christianson ’94];
connection to ID via Von Neumann series.)

Equivalent to AD with intermediate variables replaced by the optimum: [O. et al. ’16]

J
(n+1)
θ =

∂A
∂x

(x(n), θ)J
(n)
θ +

∂A
∂θ

(x(n), θ)

Key advantages:
Requires to store only x∗.

Easy implementation using standard AD packages.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 9 / 19

(II) Structured Non-Smooth Setting: Strategies for differentiation

In the following: x∗(θ) ∈ arg min
x∈RN

E(x, θ) (E structured non-smooth)

Goal: Compute
∂x∗

∂θ
(θ) !?

Strategies that compute (classic) gradients:
Strategies above after smoothing E (ID, AD, FPAD):

⇝ often instable or requires significant smoothing
⇝ no approximation bounds

Unrolling a “smooth algorithm” that solves the non-smooth problem. [O. et al. ’16]

• A(n+1)(x(0), θ) → x∗(θ) for n→ ∞, where A is a smooth mapping.
• Idea: Assert that iterates lie in interior of constraint set.

(e.g. Bregman Proximal Gradient Method)

⇝ Smoothing is controlled by the number of iterations n ∈ N.
⇝ Convergence of derivative sequence was not studied.

Limit requires generalized notion of derivatives.

• FPAD variant requires x∗ to lie in the interior of the constraint set.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 10 / 19

(II) Structured Non-Smooth Setting: Strategies for differentiation

In the following: x∗(θ) ∈ arg min
x∈RN

E(x, θ) (E structured non-smooth)

Goal: Compute
∂x∗

∂θ
(θ) !?

Strategies that compute (classic) gradients:
Strategies above after smoothing E (ID, AD, FPAD):

⇝ often instable or requires significant smoothing
⇝ no approximation bounds

Unrolling a “smooth algorithm” that solves the non-smooth problem. [O. et al. ’16]

• A(n+1)(x(0), θ) → x∗(θ) for n→ ∞, where A is a smooth mapping.
• Idea: Assert that iterates lie in interior of constraint set.

(e.g. Bregman Proximal Gradient Method)

⇝ Smoothing is controlled by the number of iterations n ∈ N.
⇝ Convergence of derivative sequence was not studied.

Limit requires generalized notion of derivatives.

• FPAD variant requires x∗ to lie in the interior of the constraint set.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 10 / 19

(II) Structured Non-Smooth Setting: Strategies for differentiation

In the following: x∗(θ) ∈ arg min
x∈RN

E(x, θ) (E structured non-smooth)

Goal: Compute
∂x∗

∂θ
(θ) !?

Strategies that compute (classic) gradients:
Strategies above after smoothing E (ID, AD, FPAD):

⇝ often instable or requires significant smoothing
⇝ no approximation bounds

Unrolling a “smooth algorithm” that solves the non-smooth problem. [O. et al. ’16]

• A(n+1)(x(0), θ) → x∗(θ) for n→ ∞, where A is a smooth mapping.
• Idea: Assert that iterates lie in interior of constraint set.

(e.g. Bregman Proximal Gradient Method)

⇝ Smoothing is controlled by the number of iterations n ∈ N.
⇝ Convergence of derivative sequence was not studied.

Limit requires generalized notion of derivatives.

• FPAD variant requires x∗ to lie in the interior of the constraint set.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 10 / 19

(II) Structured Non-Smooth Setting: Strategies for differentiation

In the following: x∗(θ) ∈ arg min
x∈RN

E(x, θ) (E structured non-smooth)

Goal: Compute
∂x∗

∂θ
(θ) !?

Strategies that compute (classic) gradients:
Strategies above after smoothing E (ID, AD, FPAD):

⇝ often instable or requires significant smoothing
⇝ no approximation bounds

Unrolling a “smooth algorithm” that solves the non-smooth problem. [O. et al. ’16]

• A(n+1)(x(0), θ) → x∗(θ) for n→ ∞, where A is a smooth mapping.
• Idea: Assert that iterates lie in interior of constraint set.

(e.g. Bregman Proximal Gradient Method)

⇝ Smoothing is controlled by the number of iterations n ∈ N.
⇝ Convergence of derivative sequence was not studied.

Limit requires generalized notion of derivatives.

• FPAD variant requires x∗ to lie in the interior of the constraint set.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 10 / 19

(II) Differentiation Strategies for Partly Smooth Functions

Definition of partial smoothness for convex E from [Liang, Fadili, Peyré ’14] (original [Lewis ’02]):

E with ∂E(x) ̸= ∅ is partly smooth at x relative to M ∋ x, if

(Smoothness) M is a C2-Manifold around x and E|M ∈ C2,

(Sharpness) the normal space NM is par(∂E(x)), and

(Continuity) ∂E is continuous at x relative to M.

Examples: ℓ1-norm, ℓ2,1-norm, ℓ∞-norm,
nuclear norm, TV-norm, ...

E(x) = max(0, ∥x∥ − 1)

from [G. Peyré, talk “Low Complexity Regularization of Inverse Problems”, 2014]

© 2023 — Peter Ochs Mathematical Optimization for Data Science 11 / 19

(II) Implicit Differentiation (ID) under Partial Smoothness

Consider: x∗(θ) ∈ arg min
x∈RN

E(x, θ)

Theorem: [ID under Partial Smoothness [Lewis ’02], [Vaiter et al. ’17]]

Assumptions:
E is partly smooth relative to M× Ω where Ω ⊂ RP is open, and

for some (x∗, θ∗), the following restricted positive definiteness holds

∀v ∈ Tx∗M : ⟨v,∇2
ME(x∗, θ∗)v⟩ > 0

and non-degeneracy holds

0 ∈ ri (∂xE(x∗, θ∗)) .

Then the manifold version of the Implicit Differentiation (ID) holds:

There exists a neighborhood Θ of θ∗ and a C1 mapping ψ : Θ → M such that

Θ ∋ θ 7→ ψ(θ) = argminxE(x, θ), and

Θ ∋ θ 7→ ∂ψ

∂θ
(θ) = −∇2

ME(ψ(θ), θ)†
∂

∂θ
∇ME(ψ(θ), θ).

© 2023 — Peter Ochs Mathematical Optimization for Data Science 12 / 19

(II) Unrolling / Automatic Differentiation (AD) under Partial Smoothness

Idea: Many algorithms have the finite identification property (see papers by [J. Liang]):

∃n0 ∈ N : x(n) ∈ M for all n ≥ n0 ,

hence the update mapping A becomes smooth eventually.

Examples: Forward–backward Splitting (Proximal Gradient Descent), FISTA, ...

Theorem: [AD for Forward–backward Splitting [Liang et al. ’14], [Mehmood, O. ’22]]

Assumptions:
Partial smoothness, restricted positive definiteness, the non-degeneracy as-
sumption, and convergence of the iterates.

Then,

the rate of convergence for (x(n))n∈N is actually locally linear.

If, additionally, x(0) is close enough to x∗, then

∂A(n+1)

∂θ
(x(0), θ) =: J

(n)
θ

n→∞−→ ∂ψ

∂θ
(θ) .

⇝ Crucial issue: Derivatives are not defined for x(n) ̸∈ M.

Linear convergence, if all involved derivatives are locally Lipschitz.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 13 / 19

(II) Unrolling / Automatic Differentiation (AD) under Partial Smoothness

Idea: Many algorithms have the finite identification property (see papers by [J. Liang]):

∃n0 ∈ N : x(n) ∈ M for all n ≥ n0 ,

hence the update mapping A becomes smooth eventually.

Examples: Forward–backward Splitting (Proximal Gradient Descent), FISTA, ...

Theorem: [AD for Forward–backward Splitting [Liang et al. ’14], [Mehmood, O. ’22]]

Assumptions:
Partial smoothness, restricted positive definiteness, the non-degeneracy as-
sumption, and convergence of the iterates.

Then,

the rate of convergence for (x(n))n∈N is actually locally linear.

If, additionally, x(0) is close enough to x∗, then

∂A(n+1)

∂θ
(x(0), θ) =: J

(n)
θ

n→∞−→ ∂ψ

∂θ
(θ) .

⇝ Crucial issue: Derivatives are not defined for x(n) ̸∈ M.

Linear convergence, if all involved derivatives are locally Lipschitz.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 13 / 19

(II) Fixed Point Automatic Differentiation (FPAD)

Remedy of Differentiation Issue:
Since x∗ ∈ M, by definition, all iteration mappings in FPAD are well defined.

Theorem: [Convergence of FPAD for Forward–backward Splitting [Mehmood, O. ’22]]

Assumptions:
Partial smoothness, restricted positive definiteness and the non-degeneracy.

Then,

the derivative sequence converges linearly

∂A(n+1)

∂θ
(x∗, θ) =: Ĵ

(n)
θ

n→∞−→ ∂ψ

∂θ
(θ) .

© 2023 — Peter Ochs Mathematical Optimization for Data Science 14 / 19

(II) Fixed Point Automatic Differentiation (FPAD)

Remedy of Differentiation Issue:
Since x∗ ∈ M, by definition, all iteration mappings in FPAD are well defined.

Theorem: [Convergence of FPAD for Forward–backward Splitting [Mehmood, O. ’22]]

Assumptions:
Partial smoothness, restricted positive definiteness and the non-degeneracy.

Then,

the derivative sequence converges linearly

∂A(n+1)

∂θ
(x∗, θ) =: Ĵ

(n)
θ

n→∞−→ ∂ψ

∂θ
(θ) .

© 2023 — Peter Ochs Mathematical Optimization for Data Science 14 / 19

(III) Non-Smooth Setting: Strategies for Generalized Differentiation

In the following: x∗(θ) ∈ arg min
x∈RN

E(x, θ) (E non-smooth)

Goal: Compute
∂x∗

∂θ
(θ) !?

Strategies:
Weak differentiation of iterative algorithms. [Deledalle et al. ’14]

(using Rademacher Theorem; show update map is Lipschitz)

⇝ yields only weak derivatives (not defined pointwise)
⇝ convergence of derivative sequence unknown

Using generalized non-smooth derivatives. [Bolte et al. ’21]

⇝ Some details on next slides.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 15 / 19

(III) Non-Smooth Setting: Strategies for Generalized Differentiation

In the following: x∗(θ) ∈ arg min
x∈RN

E(x, θ) (E non-smooth)

Goal: Compute
∂x∗

∂θ
(θ) !?

Strategies:
Weak differentiation of iterative algorithms. [Deledalle et al. ’14]

(using Rademacher Theorem; show update map is Lipschitz)

⇝ yields only weak derivatives (not defined pointwise)
⇝ convergence of derivative sequence unknown

Using generalized non-smooth derivatives. [Bolte et al. ’21]

⇝ Some details on next slides.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 15 / 19

(III) Path Differentiability

Definition: [Bolte, Pauwels ’19]

A locally Lipschitz function F : RN → R is path differentiable, if

there exists a nowhere empty-valued mapping DF : RN ⇒ RN

that has a closed graph and is locally bounded, such that

for any absolutely continuous curve γ : [0, 1] → RN

d

dt
F ◦ γ(t) = Aγ̇(t) , ∀A ∈ DF (γ(t)) , a.e. for t ∈ [0, 1] .

Call DF conservative Jacobian of F .

Construction idea:
⇝ By definition, path differentiable functions admit a chain rule.

⇝ Formalization of backpropagation used in AD packages for neural networks.

⇝ Straightforward generalization to locally Lipschitz mappings.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 16 / 19

(III) Implicit Path Differentiation (ID)

Theorem: [Implicit Path Differentiation (ID) [Bolte et al. ’21], [Bolte, Pauwels, Silveti–Falls ’23]]

Assumptions:
F : RN × RP → RN is path differentiable.

(x∗, θ∗) satisfies the optimality condition

F (x∗, θ∗) = 0 .

DF (x
∗, θ∗) is convex and ∀[A ,B] ∈ DF (x

∗, θ∗), we have that A is invertible.

Then the path differentiable version of the Implicit Differentiation (ID) holds:

∃Θ neighborhood of θ∗ and path differentiable Ψ: Θ → RN such that

∀θ ∈ Θ: F (Ψ(θ), θ) = 0 ,

and Θ ∋ θ 7→ DΨ(θ) = {−A−1B | [A ,B] ∈ DF (Ψ(θ), θ)}.

Key Disadvantage:
Invertibility condition for all A above; Sufficient condition by strong monotonicity of F .

© 2023 — Peter Ochs Mathematical Optimization for Data Science 17 / 19

(III) Unrolling / Automatic Differentiation (AD)

Idea:
Compositions of path differentiable functions are path differentiable.

Path differentiable functions admit a chain rule.

Unrolling:
Evaluate the chain rule. Set J (1)

θ := {J(1)
θ | [A(1)

x , J
(1)
θ] = DA(x(0), θ)} and for

n = 1, 2, . . .:

J (n+1)
θ = {A(n)

x J
(n)
θ +A

(n)
θ | [A(n)

x , A
(n)
θ] ∈ DA(x(n), θ), J

(n)
θ ∈ J (n)

θ } .

Theorem: [Convergence of AD under path differentiability [Bolte, Pauwels, Vaiter ’22]]

Assumption:
A is locally Lipschitz with unique fixed point x∗(θ), path differentiable in (x, θ),

and ∃ρ ∈ [0, 1) : ∀(x, θ) and all [A ,B] ∈ DA(x, θ), we have ∥A∥ ≤ ρ.

Then:
The gap between J (n+1)

θ and fix(DA(x∗(θ), θ)) vanishes as n→ ∞.

Under additional assumptions on a Lipschitz gradient selection structure, the
convergence is linear.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 18 / 19

Conclusion

Bi-level optimization / parameter learning

min
θ∈RP

L(x∗(θ), θ) (upper level)

s.t. x∗(θ) ∈ arg min
x∈RN

E(x, θ) (lower level)

Goal: Compute
∂x∗

∂θ
(θ) !?

Outline: E type of bilevel algorithm
(I) smooth setting smooth gradient
(II) partly smooth setting structured non-smooth gradient
(III) non-smooth setting non-smooth generalized derivative

For each part:

Implicit differentiation

Automatic Differentiation / Backpropagation

Fixed Point Automatic Differentiation

Generalized derivatives of x∗(θ) requires algorithms for non-smooth bi-level opt.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 19 / 19

