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Variational Problems with Regularization

mxin Ex(z), Ex(z)= D(z) +X R(z)

data term regularization
term

< X\ > 0is aregularization parameter.

reconstruction; small A |

noisy input reconstruction; large A |

Regularization weight has a huge impact on the result!
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Variational Problems with Regularization

What about learning the whole regularization term?

Rie,v,0) = (Zl/kp(zﬁkl (Kiz) ”)>

@7

& K are predefined basis filters (e.g. DCT filter)

& pis a potential function (convex)

(This regularizer reflects a 1-hidden-layer neural network.)
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Variational Problems with Regularization

What about learning the whole regularization term?

Rie,v,0) = <Zukp(2ﬁm (Kiz) ”)>

%)

K are predefined basis filters (e.g. DCT filter)
p is a potential function (convex)

(This regularizer reflects a 1-hidden-layer neural network.)

How to find the best weights v, ¥?
hand-tuning and grid search are not feasible

sampling and regression of loss function using
Gaussian processes or Random Fields (up to & 200 parameters)

gradient based bi-level optimization (several 100 000 parameters)
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Applications in Machine Learning

Similar Problems:

& (Hyper)Parameter Learning [pomke '12], [Kunisch, Pock 18], [O. et al ‘1], ...

o ImpI|C|t Models [Amos, Kolter '17], [Agrawal et al. '19], [Bai, Kolter, Koltun '19], [Chen et al. '21], ...

< Meta Learning [Hospedales et al. '21], ...
< Learning to Optimize [chenetal. 21], ...

<& Sensitivity Analysis.
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Bilevel optimization / parameter learning

min  L(z"(9),6) (upper level)
0ERP
s.t.  x*(0) € arg min E(x,0) (lower level)
z€RN

6 € RP: optimization variable parameter (vector).
L£: RY x R — R: smooth loss function.

E: RY x RF — R: parametric (energy) minimization problem.
(convex for each 8 ¢ R”)

z*: R” — R" is a selection of the solution mapping of £.
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Bilevel optimization / parameter learning

min  L(z"(9),6) (upper level)
0ERP
s.t.  x(0) € arg min E(z,0) (lower level)
z€RN

6 € RP: optimization variable parameter (vector).
L£: RY x R — R: smooth loss function.

E: RY x RF — R: parametric (energy) minimization problem.
(convex for each 8 ¢ R”)

z*: R” — R" is a selection of the solution mapping of £.

Gradient based optimization requires V,£(z*(0)), 69),

i.e., in particular, the sensitivity of the solution mapping (gé .
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Bilevel optimization / parameter learning

min  L(z"(9),6) (upper level)
0ERP
s.t.  x(0) € arg min E(z,0) (lower level)
z€RN

6 € RP: optimization variable parameter (vector).
L£: RY x R — R: smooth loss function.

E: RY x RF — R: parametric (energy) minimization problem.
(convex for each 8 ¢ R”)

z*: R” — R" is a selection of the solution mapping of £.

Gradient based optimization requires V,£(z*(0™%)), 6%),

i.e., in particular, the sensitivity of the solution mapping (Zf)lé .

Outline: \ E type of bilevel algorithm
smooth setting smooth gradient
partly smooth setting | structured non-smooth gradient

(1) non-smooth setting non-smooth generalized derivative
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(I) Smooth Setting: Strategies for differentiation

In the following: z*(0) € arg min E(z,0) (E smooth)
zER
Goal: Compute Oz 0)
- omp a0
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(I) Smooth Setting: Strategies for differentiation

Goal: Compute

In the following: z*(0) € arg min E(x,0) (E smooth)
zER

ox*
00

()

Strategies:

Implicit differentiation. (requires E strictly convex)
Unrolling an algorithm. (use automatic differentiation)

Unrolling of a fixed point equation.

Warning:

Even for smooth FE, the solution mapping =*(9) is often non-smooth.

Solution mapping multivalued, when arg mir}V E(x,0) is not unique.
zeR

© 2023 — Peter Ochs Mathematical Optimization for Data Science

6/19



(I) Implicit Differentiation (ID)

< The optimality condition is V. E(x,0) = 0.
< This implicitly defines x*(6) (implicit function theorem).

< Let (z*,0) be such that V,E(z*,0) = 0, then, if [...] we have

oz* 9’E , . -1 9°E .
a0 ()= _(89[:2 (@ ’9)> 9095 % 2 0)-
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Implicit Differentiation (ID)
The optimality condition is V, E(z, 6) = 0.
This implicitly defines x*(6) (implicit function theorem).

Let (z*, 6) be such that V. E(x*,0) = 0, then, if [...] we have

oz* 9’E , . -1 9°E .
0 =(Gw0) " 0

Disadvantages:
Requires twice differentiability of E.

; ; ; . 92EN\—1 ;
Requires several approximations: z* and (5-z) "~ (solve linear system).

Unstable for badly conditioned 3;7’5.

Requires estimation (and storing) ‘3275.
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(I) Unrolling / Automatic Differentiation (AD)

% Approximate by a fixed n € N:  (where () is some fixed initialization)
27 (0) ~ 2T = AT (O 9y = Ao, o A, 0)
< Evaluate the chain rule by reverse mode AD (backpropagation):

DAY

90 (x("),e) =...unroll...

© gy _ A ) 0 DA™ () 0A
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(I) Unrolling / Automatic Differentiation (AD)

% Approximate by a fixed n € N:  (where () is some fixed initialization)
27 (0) ~ 2T = AT (O 9y = Ao, o A, 0)
© Algorithmic formulation: Set J;" := 24(z(® §) andforn = 1,2,...:

n 0A, ny  OA
Ty = @05 + S @™,0)
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(I) Unrolling / Automatic Differentiation (AD)

Approximate by a fixed n € N:  (where z(*) is some fixed initialization)

27 (0) ~ 2T = AT (O 9y = Ao, o A, 0)
Algorithmic formulation: Set J;" := 24 (2 9) and forn = 1,2,.. .:

0A

n a n n
Jé+1>:aA((>9)J(>+a

(x (n)’g)

Advantages:
Output is unambiguous (unique), even in case argmin F is multi-valued.

After the algorithm A and n € N are fixed, the approach is exact.

All iterations depend on the same parameter ~ possibly truncate backprop.

Easy implementation using standard AD packages.

For E strongly convex, we have convergence rates for

1) noge ox”* ) Accelerated convergence for
o olY) accelerated algorithms! [Mehmood, 0. 20]

Disadvantages: Store all intermediate iterates (in reverse mode).
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(I) Fixed Point Automatic Differentiation (FPAD)

< Replace arg min F(z, 6) by a fixed point equation:
z"(0) = A(z"(0),0)
< Imitate n € N iterations of A starting at 2(*) := 2*:
AP (270) = Ao ..o Az",0)
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(I) Fixed Point Automatic Differentiation (FPAD)

< Replace arg min F(z, 6) by a fixed point equation:
z"(0) = A(z"(0),0)

< Imitate n € N iterations of A starting at 2(*) := 2*:
AT (2% ) = Ao ... o A(z",0)

< Evaluate the chain rule by reverse mode AD (backpropagation): Forn =1,2,...:

0A

7(n 8A * 7(n
Jé +1)::}i;(x ,H)Jé )+-}i§

(z",0)
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(I) Fixed Point Automatic Differentiation (FPAD)

< Replace arg min E(z, 6) by a fixed point equation:
z"(0) = A(z"(0),0)
< Imitate n € N iterations of A starting at (¥ := z*:
AT (27 0) = Ao...0 Az",6)

< Evaluate the chain rule by reverse mode AD (backpropagation): Forn =1,2,...:

2(n 8-/4 * 2(n a.A * n—oo BZIJ*
T = @I + Gt e T T (0)

~ faster convergence rate of derivative sequence [Mehmood, 0. 20].

(known in AD community [Gilbert '92, Christianson '94];
connection to ID via Von Neumann series.)
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(I) Fixed Point Automatic Differentiation (FPAD)

Replace arg min E(z, 0) by a fixed point equation:
z"(0) = A(z"(0),0)

Imitate n € N iterations of A starting at z(* := z*:
A (2% 9) = Ao ... o A(z",0)

Evaluate the chain rule by reverse mode AD (backpropagation): Forn =1,2,...:

int1) _ OA, L i) 9A noe  Oz”
~ faster convergence rate of derivative sequence [Mehmood, O.20].

(known in AD community [Gilbert '92, Christianson '94];
connection to ID via Von Neumann series.)

Equivalent to AD with intermediate variables replaced by the optimum: 0. ctal. '16]

I = S8 00 + S 0)
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(I) Fixed Point Automatic Differentiation (FPAD)

Replace arg min E(z, 0) by a fixed point equation:
z"(0) = A(z(0),0)

*

Imitate n € N iterations of A starting at (%) := z*:
AT (2% 0) = Ao ... o A(z",0)

Evaluate the chain rule by reverse mode AD (backpropagation): Forn =1,2,...:

7(n 8~A * F(n a-A n—oo 81'*
Iy = S0+ S8 T (6)

~ faster convergence rate of derivative sequence [Mehmood, 0. '20].

(known in AD community [Gilbert '92, Christianson '94];
connection to ID via Von Neumann series.)

Equivalent to AD with intermediate variables replaced by the optimum: (0. ctal. '16]
n OA n , OA
Jé+1):8((>9)Jé)+ (,(>79)

Key advantages:
Requires to store only z*.

Easy implementation using standard AD packages.
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(I) Structured Non-Smooth Setting: Strategies for differentiation

In the following: z*(0) € arg min E(z,0) (F structured non-smooth)
zER
Goal: Compute Oz @) 1?
: p 50 12
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Strategies for differentiation

In the following: z*(0) € arg min E(z,0) (E structured non-smooth)
z€eR
Goal: Compute Oz @) 1?
: p 50 17

Strategies that compute (classic) gradients:
Strategies above after smoothing £ (ID, AD, FPAD):

~ often instable or requires significant smoothing
~» no approximation bounds
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Strategies for differentiation

In the following: z*(0) € arg min E(z,0) (E structured non-smooth)
zeR
ox*
Goal: Compute 50 ) 12

Strategies that compute (classic) gradients:
Strategies above after smoothing £ (ID, AD, FPAD):

~ often instable or requires significant smoothing
~» no approximation bounds

Unrolling a “smooth algorithm” that solves the non-smooth problem. (0. et al. '16]

o A (1O ) 5 2%(8) for n — oo, where A is a smooth mapping.
e ldea: Assert that iterates lie in interior of constraint set.
(e.g. Bregman Proximal Gradient Method)

~+ Smoothing is controlled by the number of iterations n € N.
~» Convergence of derivative sequence was not studied.
Limit requires generalized notion of derivatives.
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Strategies for differentiation

In the following: z*(0) € arg min E(z,0) (E structured non-smooth)
zeR
ox*
Goal: Compute 50 ) 12

Strategies that compute (classic) gradients:
Strategies above after smoothing £ (ID, AD, FPAD):

~ often instable or requires significant smoothing
~» no approximation bounds

Unrolling a “smooth algorithm” that solves the non-smooth problem. (0. et al. '16]

o A (1O ) 5 2%(8) for n — oo, where A is a smooth mapping.
e ldea: Assert that iterates lie in interior of constraint set.
(e.g. Bregman Proximal Gradient Method)

~+ Smoothing is controlled by the number of iterations n € N.
~» Convergence of derivative sequence was not studied.
Limit requires generalized notion of derivatives.

e FPAD variant requires z* to lie in the interior of the constraint set.
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Differentiation Strategies for Partly Smooth Functions
Definition of partial smoothness for convex E from [Liang, Fadili, Peyré *14] (original [Lewis '02]):
E with 0E(x) # 0 is partly smooth at z relative to M > z, if
< (Smoothness) M is a C*>-Manifold around = and E|, € C?,
<& (Sharpness) the normal space N4 is par(0F(z)), and

< (Continuity) OF is continuous at x relative to M.

£(z) = max(0, ||z|| —1) Examples: ¢;-norm, /> 1-norm, {o.-norm,

nuclear norm, TV-norm, ...

from [G. Peyré, talk “Low Complexity Regularization of Inverse Problems”, 2014]
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Implicit Differentiation (ID) under Partial Smoothness

Consider: x*(0) € arg min E(z,0)
z€RN

Theorem: [ID under Partial Smoothness [Lewis '02], [Vaiter et al. "17]]
Assumptions:
E is partly smooth relative to M x Q where Q ¢ R is open, and

for some (z*, 0*), the following restricted positive definiteness holds
Yv € Tor M: (0, VIE(x*,0%)v) >0
and non-degeneracy holds
0 €ri(0:E(z",07)).
Then the manifold version of the Implicit Differentiation (ID) holds:
There exists a neighborhood © of #* and a C'* mapping t): © — M such that
O 360 — ¥(0) = argmin, E(z,0), and

N . s t 8
030 25(8) = ~VAEW(©),0) 55V M EW(6),6).
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Unrolling / Automatic Differentiation (AD) under Partial Smoothness

Idea: Many algorithms have the finite identification property (see papers by [J. Liang)):
Ino eN:  z(™ e Mforalln > no,

hence the update mapping .4 becomes smooth eventually.

Examples: Forward—backward Splitting (Proximal Gradient Descent), FISTA, ...
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Unrolling / Automatic Differentiation (AD) under Partial Smoothness

Idea: Many algorithms have the finite identification property (see papers by [J. Liang):
Ino eN:  z(™ e Mforalln > no,

hence the update mapping .4 becomes smooth eventually.

Examples: Forward—backward Splitting (Proximal Gradient Descent), FISTA, ...

Theorem: [AD for Forward—backward Splitting [Liang et al. "14], [Mehmood, 0. 22]]
Assumptions:
Partial smoothness, restricted positive definiteness, the non-degeneracy as-
sumption, and convergence of the iterates.
Then,
the rate of convergence for (z™),.cx is actually locally linear.
If, additionally, z®) is close enough to z*, then

oA+
o7}

n) Nn—oo 81[)
2, 0) =: J™ "=3 =5 6)-

~~ Crucial issue: Derivatives are not defined for (™ ¢ M.
Linear convergence, if all involved derivatives are locally Lipschitz.
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Fixed Point Automatic Differentiation (FPAD)

Remedy of Differentiation Issue:
< Since z* € M, by definition, all iteration mappings in FPAD are well defined.
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Fixed Point Automatic Differentiation (FPAD)

Remedy of Differentiation Issue:
Since =™ € M, by definition, all iteration mappings in FPAD are well defined.

Theorem: [Convergence of FPAD for Forward—backward Splitting (Mehmood, 0. 22]]

Assumptions:
Partial smoothness, restricted positive definiteness and the non-degeneracy.

Then,
the derivative sequence converges linearly
aA(n+1) 7(n) n—oco 8’w
T(CE’ = Je() =3 *9(9)
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(1I1) Non-Smooth Setting: Strategies for Generalized Differentiation

In the following: z*(0) € arg min E(z,0) (FE non-smooth)
zER
Goal: Compute Oz @) 1?
: p 50 17
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(1I1) Non-Smooth Setting: Strategies for Generalized Differentiation

In the following: z*(0) € arg min E(z, 6) (F non-smooth)
zER
Goal: Compute Oz @) 1?
: p 50 17

Strategies:
Weak differentiation of iterative algorithms. [peledalle et al. '14]
(using Rademacher Theorem; show update map is Lipschitz)

~ yields only weak derivatives (not defined pointwise)
~» convergence of derivative sequence unknown

Using generalized non-smooth derivatives. [Bolte et al. '21]
~+ Some details on next slides.
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(lll) Path Differentiability

Definition: [Boite, Pauwels '19]

A locally Lipschitz function F: RY — R is path differentiable, if
there exists a nowhere empty-valued mapping Dr: RY = RV
that has a closed graph and is locally bounded, such that

for any absolutely continuous curve ~: [0,1] — RY

%F on(t) = A4(t), VA€ Dr(y(t), ae. forte(0,1].

Call Dr conservative Jacobian of F.

Construction idea:
~» By definition, path differentiable functions admit a chain rule.

~» Formalization of backpropagation used in AD packages for neural networks.

~ Straightforward generalization to locally Lipschitz mappings.
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(1) Implicit Path Differentiation (ID)

Theorem: [Implicit Path Differentiation (ID) [Bolte et al. '21], [Bolte, Pauwels, Silveti-Falls 23]
Assumptions:
F:RY x RY — RY is path differentiable.

(z*,0") satisfies the optimality condition
F(z*,0")=0.
Dr(z*,6%) is convex and V[A, B] € Dr(z*,0"), we have that A is invertible.

Then the path differentiable version of the Implicit Differentiation (ID) holds:
30 neighborhood of §* and path differentiable ¥': © — R" such that

VoeO: F(¥(0),0) =0,

and© 360 — Dy (0) = {—A'B|[A,B] € Dr(¥(9),0)}.

Key Disadvantage:
Invertibility condition for all A above; Sufficient condition by strong monotonicity of F'.
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(1) Unrolling / Automatic Differentiation (AD)

Idea:
Compositions of path differentiable functions are path differentiable.

Path differentiable functions admit a chain rule.

Unrolling:
Evaluate the chain rule. Set 7" := {J{" [[AL, J{Y] = Da(z®,6)} and for
n=12...

j(”+1) {A(H)J(n) + A(n) | [A(n) (gn)] c DA(m(n)79)7J9(n) c JQ(M}

Theorem: [Convergence of AD under path differentiability [Bolte, Pauwels, Vaiter *22]]
Assumption:
A is locally Lipschitz with unique fixed point z* (6), path differentiable in (z, 6),
and 3p € [0,1): V(z,0) and all [A, B] € Da(z,0), we have || A| < p.
Then:
The gap between je("“) and fix(D.a(x*(0),0)) vanishes as n — oo.

Under additional assumptions on a Lipschitz gradient selection structure, the
convergence is linear.
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Conclusion

Bi-level optimization / parameter learning

min  L(z*(0),0) (upper level)
0erRP
s.t.  x(0) € arg min E(z,0) (lower level)
z€RN
ox*
I: 12
Goal: Compute 50 (@]
Outline: \ E type of bilevel algorithm
smooth setting smooth gradient
partly smooth setting | structured non-smooth gradient
(1) non-smooth setting non-smooth generalized derivative

For each part:
Implicit differentiation

Automatic Differentiation / Backpropagation

Fixed Point Automatic Differentiation

Generalized derivatives of 2 () requires algorithms for non-smooth bi-level opt.
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