Differentiating Solution Mappings of Non-smooth Optimization Problems

joint work: Sheheryar Mehmood

$$
\min _{x} E_{\lambda}(x), \quad E_{\lambda}(x)=\underbrace{D(x)}_{\text {data term }}+\lambda \underbrace{R(x)}_{\begin{array}{c}
\text { regularization } \\
\text { term }
\end{array}}
$$

$\diamond \lambda>0$ is a regularization parameter.

Regularization weight has a huge impact on the result!

Variational Problems with Regularization

What about learning the whole regularization term?

$$
R(x, \nu, \vartheta):=\sum_{i, j}\left(\sum_{k=1}^{m} \nu_{k} \rho\left(\sum_{l=1}^{L} \vartheta_{k l}\left(K_{l} x\right)_{i j}\right)\right)
$$

$\diamond K_{l}$ are predefined basis filters (e.g. DCT filter)
ρ is a potential function (convex)
(This regularizer reflects a 1-hidden-layer neural network.)

Variational Problems with Regularization

What about learning the whole regularization term?

$$
R(x, \nu, \vartheta):=\sum_{i, j}\left(\sum_{k=1}^{m} \nu_{k} \rho\left(\sum_{l=1}^{L} \vartheta_{k l}\left(K_{l} x\right)_{i j}\right)\right)
$$

$\diamond K_{l}$ are predefined basis filters (e.g. DCT filter)
$\diamond \rho$ is a potential function (convex)
(This regularizer reflects a 1-hidden-layer neural network.)
How to find the best weights ν, ϑ ?
\diamond hand-tuning and grid search are not feasible
\diamond sampling and regression of loss function using
Gaussian processes or Random Fields (up to ≈ 200 parameters)
\diamond gradient based bi-level optimization (several 100000 parameters)

Applications in Machine Learning

Similar Problems:

(Hyper)Parameter Learning [Domke '12], [Kunisch, Pock '13], [0. et al '16], ...
Implicit Models [Amos, Kolter '17], [Agrawal et al. '19], [Bai, Kolter, Koltun '19], [Chen et al. '21], ...
Meta Learning [Hospedales et al. '21], ...
Learning to Optimize [Chen et al. '21], ...
Sensitivity Analysis.

$$
\begin{array}{rll}
\min _{\theta \in \mathbb{R}^{P}} & \mathcal{L}\left(x^{*}(\theta), \theta\right) & \text { (upper level) } \\
\text { s.t. } & x^{*}(\theta) \in \arg \min _{x \in \mathbb{R}^{N}} E(x, \theta) & \text { (lower level) }
\end{array}
$$

$\diamond \theta \in \mathbb{R}^{P}$: optimization variable parameter (vector).
$\diamond \mathcal{L}: \mathbb{R}^{N} \times \mathbb{R}^{P} \rightarrow \mathbb{R}$: smooth loss function.
$\diamond E: \mathbb{R}^{N} \times \mathbb{R}^{P} \rightarrow \overline{\mathbb{R}}$: parametric (energy) minimization problem. (convex for each $\theta \in \mathbb{R}^{P}$)
$x^{*}: \mathbb{R}^{P} \rightarrow \mathbb{R}^{N}$ is a selection of the solution mapping of E.

$$
\begin{array}{rll}
\min _{\theta \in \mathbb{R}^{P}} & \mathcal{L}\left(x^{*}(\theta), \theta\right) & \text { (upper level) } \\
\text { s.t. } & x^{*}(\theta) \in \arg \min _{x \in \mathbb{R}^{N}} E(x, \theta) & \text { (lower level) }
\end{array}
$$

$\diamond \theta \in \mathbb{R}^{P}$: optimization variable parameter (vector).
$\diamond \mathcal{L}: \mathbb{R}^{N} \times \mathbb{R}^{P} \rightarrow \mathbb{R}$: smooth loss function.
$\diamond E: \mathbb{R}^{N} \times \mathbb{R}^{P} \rightarrow \overline{\mathbb{R}}$: parametric (energy) minimization problem. (convex for each $\theta \in \mathbb{R}^{P}$)
$x^{*}: \mathbb{R}^{P} \rightarrow \mathbb{R}^{N}$ is a selection of the solution mapping of E.

Gradient based optimization requires $\nabla_{\theta} \mathcal{L}\left(x^{*}\left(\theta^{(k)}\right), \theta^{(k)}\right)$, i.e., in particular, the sensitivity of the solution mapping $\frac{\partial x^{*}}{\partial \theta}$.

$$
\begin{array}{rll}
\min _{\theta \in \mathbb{R}^{P}} & \mathcal{L}\left(x^{*}(\theta), \theta\right) & \text { (upper level) } \\
\text { s.t. } & x^{*}(\theta) \in \arg \min _{x \in \mathbb{R}^{N}} E(x, \theta) & \text { (lower level) }
\end{array}
$$

$\diamond \theta \in \mathbb{R}^{P}$: optimization variable parameter (vector).
$\diamond \mathcal{L}: \mathbb{R}^{N} \times \mathbb{R}^{P} \rightarrow \mathbb{R}$: smooth loss function.
$\diamond E: \mathbb{R}^{N} \times \mathbb{R}^{P} \rightarrow \overline{\mathbb{R}}$: parametric (energy) minimization problem. (convex for each $\theta \in \mathbb{R}^{P}$)
$x^{*}: \mathbb{R}^{P} \rightarrow \mathbb{R}^{N}$ is a selection of the solution mapping of E.

Gradient based optimization requires $\nabla_{\theta} \mathcal{L}\left(x^{*}\left(\theta^{(k)}\right), \theta^{(k)}\right)$, i.e., in particular, the sensitivity of the solution mapping $\frac{\partial x^{*}}{\partial \theta}$.

Outline:	E	type of bilevel algorithm
(I) smooth setting	smooth	gradient
(II) partly smooth setting	structured non-smooth	gradient
(III) non-smooth setting	non-smooth	generalized derivative

(I) Smooth Setting: Strategies for differentiation

In the following:

$$
x^{*}(\theta) \in \arg \min _{x \in \mathbb{R}^{N}} E(x, \theta) \quad(E \text { smooth })
$$

Goal: Compute $\quad \frac{\partial x^{*}}{\partial \theta}(\theta)$
In the following:

$$
x^{*}(\theta) \in \arg \min _{x \in \mathbb{R}^{N}} E(x, \theta)
$$

(E smooth)
Goal: Compute

$$
\frac{\partial x^{*}}{\partial \theta}(\theta)
$$

Strategies:

\diamond Implicit differentiation. (requires E strictly convex)
\diamond Unrolling an algorithm. (use automatic differentiation)
\diamond Unrolling of a fixed point equation.

Warning:

\diamond Even for smooth E, the solution mapping $x^{*}(\theta)$ is often non-smooth.
\diamond Solution mapping multivalued, when $\arg \min _{x \in \mathbb{R}^{N}} E(x, \theta)$ is not unique.

The optimality condition is $\nabla_{x} E(x, \theta)=0$.
This implicitly defines $x^{*}(\theta)$ (implicit function theorem).
Let $\left(x^{*}, \theta\right)$ be such that $\nabla_{x} E\left(x^{*}, \theta\right)=0$, then, if $[\ldots]$ we have

$$
\frac{\partial x^{*}}{\partial \theta}(\theta)=-\left(\frac{\partial^{2} E}{\partial x^{2}}\left(x^{*}, \theta\right)\right)^{-1} \frac{\partial^{2} E}{\partial \theta \partial x}\left(x^{*}, \theta\right) .
$$

\diamond The optimality condition is $\nabla_{x} E(x, \theta)=0$.
This implicitly defines $x^{*}(\theta)$ (implicit function theorem).
\diamond Let $\left(x^{*}, \theta\right)$ be such that $\nabla_{x} E\left(x^{*}, \theta\right)=0$, then, if $[\ldots]$ we have

$$
\frac{\partial x^{*}}{\partial \theta}(\theta)=-\left(\frac{\partial^{2} E}{\partial x^{2}}\left(x^{*}, \theta\right)\right)^{-1} \frac{\partial^{2} E}{\partial \theta \partial x}\left(x^{*}, \theta\right) .
$$

Disadvantages:

\diamond Requires twice differentiability of E.
\diamond Requires several approximations: x^{*} and $\left(\frac{\partial^{2} E}{\partial x^{2}}\right)^{-1}$ (solve linear system).
\diamond Unstable for badly conditioned $\frac{\partial^{2} E}{\partial x^{2}}$.
\diamond Requires estimation (and storing) $\frac{\partial^{2} E}{\partial x^{2}}$.

Approximate by a fixed $n \in \mathbb{N}$: (where $x^{(0)}$ is some fixed initialization)

$$
x^{*}(\theta) \approx x^{(n+1)}:=\mathcal{A}^{(n+1)}\left(x^{(0)}, \theta\right)=\mathcal{A} \circ \ldots \circ \mathcal{A}\left(x^{(0)}, \theta\right)
$$

Evaluate the chain rule by reverse mode AD (backpropagation):

$$
\frac{\partial \mathcal{A}^{(n+1)}}{\partial \theta}\left(x^{(0)}, \theta\right)=\frac{\partial \mathcal{A}}{\partial x}\left(x^{(n)}, \theta\right) \frac{\partial \mathcal{A}^{(n)}}{\partial \theta}\left(x^{(0)}, \theta\right)+\frac{\partial \mathcal{A}}{\partial \theta}\left(x^{(n)}, \theta\right)=\ldots \text { unroll } \ldots
$$

Approximate by a fixed $n \in \mathbb{N}$: (where $x^{(0)}$ is some fixed initialization)

$$
x^{*}(\theta) \approx x^{(n+1)}:=\mathcal{A}^{(n+1)}\left(x^{(0)}, \theta\right)=\mathcal{A} \circ \ldots \circ \mathcal{A}\left(x^{(0)}, \theta\right)
$$

Algorithmic formulation: Set $J_{\theta}^{(1)}:=\frac{\partial \mathcal{A}}{\partial \theta}\left(x^{(0)}, \theta\right)$ and for $n=1,2, \ldots$:

$$
J_{\theta}^{(n+1)}=\frac{\partial \mathcal{A}}{\partial x}\left(x^{(n)}, \theta\right) J_{\theta}^{(n)}+\frac{\partial \mathcal{A}}{\partial \theta}\left(x^{(n)}, \theta\right)
$$

\diamond Approximate by a fixed $n \in \mathbb{N}$: (where $x^{(0)}$ is some fixed initialization)

$$
x^{*}(\theta) \approx x^{(n+1)}:=\mathcal{A}^{(n+1)}\left(x^{(0)}, \theta\right)=\mathcal{A} \circ \ldots \circ \mathcal{A}\left(x^{(0)}, \theta\right)
$$

Algorithmic formulation: Set $J_{\theta}^{(1)}:=\frac{\partial \mathcal{A}}{\partial \theta}\left(x^{(0)}, \theta\right)$ and for $n=1,2, \ldots$:

$$
J_{\theta}^{(n+1)}=\frac{\partial \mathcal{A}}{\partial x}\left(x^{(n)}, \theta\right) J_{\theta}^{(n)}+\frac{\partial \mathcal{A}}{\partial \theta}\left(x^{(n)}, \theta\right)
$$

Advantages:

\diamond Output is unambiguous (unique), even in case $\operatorname{argmin} E$ is multi-valued.
\diamond After the algorithm \mathcal{A} and $n \in \mathbb{N}$ are fixed, the approach is exact.
\diamond All iterations depend on the same parameter \rightsquigarrow possibly truncate backprop.
\diamond Easy implementation using standard AD packages.
\diamond For E strongly convex, we have convergence rates for

$$
J_{\theta}^{(n+1)} \xrightarrow{n \rightarrow \infty} \frac{\partial x^{*}}{\partial \theta}(\theta)
$$

Accelerated convergence for accelerated algorithms! [Mehmood, 0. '20]

Disadvantages: Store all intermediate iterates (in reverse mode).

Replace $\arg \min E(x, \theta)$ by a fixed point equation:

$$
x^{*}(\theta)=\mathcal{A}\left(x^{*}(\theta), \theta\right)
$$

\diamond Imitate $n \in \mathbb{N}$ iterations of \mathcal{A} starting at $x^{(0)}:=x^{*}$:

$$
\mathcal{A}^{(n+1)}\left(x^{*}, \theta\right)=\mathcal{A} \circ \ldots \circ \mathcal{A}\left(x^{*}, \theta\right)
$$

\diamond Replace $\arg \min E(x, \theta)$ by a fixed point equation:

$$
x^{*}(\theta)=\mathcal{A}\left(x^{*}(\theta), \theta\right)
$$

Imitate $n \in \mathbb{N}$ iterations of \mathcal{A} starting at $x^{(0)}:=x^{*}$:

$$
\mathcal{A}^{(n+1)}\left(x^{*}, \theta\right)=\mathcal{A} \circ \ldots \circ \mathcal{A}\left(x^{*}, \theta\right)
$$

Evaluate the chain rule by reverse mode AD (backpropagation): For $n=1,2, \ldots$:

$$
\hat{J}_{\theta}^{(n+1)}=\frac{\partial \mathcal{A}}{\partial x}\left(x^{*}, \theta\right) \hat{J}_{\theta}^{(n)}+\frac{\partial \mathcal{A}}{\partial \theta}\left(x^{*}, \theta\right)
$$

\diamond Replace $\arg \min E(x, \theta)$ by a fixed point equation:

$$
x^{*}(\theta)=\mathcal{A}\left(x^{*}(\theta), \theta\right)
$$

\diamond Imitate $n \in \mathbb{N}$ iterations of \mathcal{A} starting at $x^{(0)}:=x^{*}$:

$$
\mathcal{A}^{(n+1)}\left(x^{*}, \theta\right)=\mathcal{A} \circ \ldots \circ \mathcal{A}\left(x^{*}, \theta\right)
$$

Evaluate the chain rule by reverse mode AD (backpropagation): For $n=1,2, \ldots$.

$$
\hat{J}_{\theta}^{(n+1)}=\frac{\partial \mathcal{A}}{\partial x}\left(x^{*}, \theta\right) \hat{J}_{\theta}^{(n)}+\frac{\partial \mathcal{A}}{\partial \theta}\left(x^{*}, \theta\right) \quad \xrightarrow{n \rightarrow \infty} \frac{\partial x^{*}}{\partial \theta}(\theta)
$$

\rightsquigarrow faster convergence rate of derivative sequence [Mehmood, O . '20].
(known in AD community [Gilbert' '92, Christianson '94]; connection to ID via Von Neumann series.)
\diamond Replace $\arg \min E(x, \theta)$ by a fixed point equation:

$$
x^{*}(\theta)=\mathcal{A}\left(x^{*}(\theta), \theta\right)
$$

\diamond Imitate $n \in \mathbb{N}$ iterations of \mathcal{A} starting at $x^{(0)}:=x^{*}$:

$$
\mathcal{A}^{(n+1)}\left(x^{*}, \theta\right)=\mathcal{A} \circ \ldots \circ \mathcal{A}\left(x^{*}, \theta\right)
$$

Evaluate the chain rule by reverse mode AD (backpropagation): For $n=1,2, \ldots$.

$$
\hat{J}_{\theta}^{(n+1)}=\frac{\partial \mathcal{A}}{\partial x}\left(x^{*}, \theta\right) \hat{J}_{\theta}^{(n)}+\frac{\partial \mathcal{A}}{\partial \theta}\left(x^{*}, \theta\right) \quad \xrightarrow{n \rightarrow \infty} \frac{\partial x^{*}}{\partial \theta}(\theta)
$$

\rightsquigarrow faster convergence rate of derivative sequence [Mehmood, O . '20].
(known in AD community [Gilbert' '92, Christianson '94];
connection to ID via Von Neumann series.)
Equivalent to AD with intermediate variables replaced by the optimum: [0. et al. '16]

$$
J_{\theta}^{(n+1)}=\frac{\partial \mathcal{A}}{\partial x}\left(x^{(n)}, \theta\right) J_{\theta}^{(n)}+\frac{\partial \mathcal{A}}{\partial \theta}\left(x^{(n)}, \theta\right)
$$

\diamond Replace $\arg \min E(x, \theta)$ by a fixed point equation:

$$
x^{*}(\theta)=\mathcal{A}\left(x^{*}(\theta), \theta\right)
$$

\diamond Imitate $n \in \mathbb{N}$ iterations of \mathcal{A} starting at $x^{(0)}:=x^{*}$:

$$
\mathcal{A}^{(n+1)}\left(x^{*}, \theta\right)=\mathcal{A} \circ \ldots \circ \mathcal{A}\left(x^{*}, \theta\right)
$$

\diamond Evaluate the chain rule by reverse mode AD (backpropagation): For $n=1,2, \ldots$:

$$
\hat{J}_{\theta}^{(n+1)}=\frac{\partial \mathcal{A}}{\partial x}\left(x^{*}, \theta\right) \hat{J}_{\theta}^{(n)}+\frac{\partial \mathcal{A}}{\partial \theta}\left(x^{*}, \theta\right) \quad \xrightarrow{n \rightarrow \infty} \quad \frac{\partial x^{*}}{\partial \theta}(\theta)
$$

\rightsquigarrow faster convergence rate of derivative sequence [Mehmood, 0 . '20].
(known in AD community [Gilbert' 92 , Christianson '94]; connection to ID via Von Neumann series.)

Equivalent to AD with intermediate variables replaced by the optimum: [0. et al. '16]

$$
J_{\theta}^{(n+1)}=\frac{\partial \mathcal{A}}{\partial x}\left(x^{(n)}, \theta\right) J_{\theta}^{(n)}+\frac{\partial \mathcal{A}}{\partial \theta}\left(x^{(n)}, \theta\right)
$$

Key advantages:
\diamond Requires to store only x^{*}.
Easy implementation using standard AD packages.

(III) Structured Non-Smooth Setting: Strategies for differentiation

In the following:

Goal: Compute
$x^{*}(\theta) \in \arg \min _{x \in \mathbb{R}^{N}} E(x, \theta) \quad$ (E structured non-smooth)

$$
\frac{\partial x^{*}}{\partial \theta}(\theta) \quad!?
$$

In the following: $\quad x^{*}(\theta) \in \arg \min _{x \in \mathbb{R}^{N}} E(x, \theta) \quad$ (E structured non-smooth)
Goal: Compute $\quad \frac{\partial x^{*}}{\partial \theta}(\theta)$!?
Strategies that compute (classic) gradients:
\diamond Strategies above after smoothing E (ID, AD, FPAD):
\rightsquigarrow often instable or requires significant smoothing
\rightsquigarrow no approximation bounds

In the following:

$$
\left.x^{*}(\theta) \in \arg \min _{x \in \mathbb{R}^{N}} E(x, \theta) \quad \text { (} E \text { structured non-smooth }\right)
$$

Goal: Compute $\quad \frac{\partial x^{*}}{\partial \theta}(\theta)$!?
Strategies that compute (classic) gradients:
\diamond Strategies above after smoothing E (ID, AD, FPAD):
\rightsquigarrow often instable or requires significant smoothing
\rightsquigarrow no approximation bounds
\diamond Unrolling a "smooth algorithm" that solves the non-smooth problem. [0. etal. '16]

- $\mathcal{A}^{(n+1)}\left(x^{(0)}, \theta\right) \rightarrow x^{*}(\theta)$ for $n \rightarrow \infty$, where \mathcal{A} is a smooth mapping.
- Idea: Assert that iterates lie in interior of constraint set. (e.g. Bregman Proximal Gradient Method)
\rightsquigarrow Smoothing is controlled by the number of iterations $n \in \mathbb{N}$.
\leadsto Convergence of derivative sequence was not studied. Limit requires generalized notion of derivatives.

In the following:

$$
\left.x^{*}(\theta) \in \arg \min _{x \in \mathbb{R}^{N}} E(x, \theta) \quad \text { (} E \text { structured non-smooth }\right)
$$

Goal: Compute $\quad \frac{\partial x^{*}}{\partial \theta}(\theta)$!?
Strategies that compute (classic) gradients:
\diamond Strategies above after smoothing E (ID, AD, FPAD):
\rightsquigarrow often instable or requires significant smoothing
\rightsquigarrow no approximation bounds
\diamond Unrolling a "smooth algorithm" that solves the non-smooth problem. [0. etal. '16]

- $\mathcal{A}^{(n+1)}\left(x^{(0)}, \theta\right) \rightarrow x^{*}(\theta)$ for $n \rightarrow \infty$, where \mathcal{A} is a smooth mapping.
- Idea: Assert that iterates lie in interior of constraint set.
(e.g. Bregman Proximal Gradient Method)
\rightsquigarrow Smoothing is controlled by the number of iterations $n \in \mathbb{N}$.
\leadsto Convergence of derivative sequence was not studied. Limit requires generalized notion of derivatives.
- FPAD variant requires x^{*} to lie in the interior of the constraint set.

Differentiation Strategies for Partly Smooth Functions

Definition of partial smoothness for convex E from [Liang, Fadili, Peyré '14] (original [Lewis '02]):
E with $\partial E(x) \neq \emptyset$ is partly smooth at x relative to $\mathcal{M} \ni x$, if
\diamond (Smoothness) \mathcal{M} is a C^{2}-Manifold around x and $\left.E\right|_{\mathcal{M}} \in C^{2}$,
\diamond (Sharpness) the normal space $\mathcal{N}_{\mathcal{M}}$ is $\operatorname{par}(\partial E(x))$, and
\diamond (Continuity) ∂E is continuous at x relative to \mathcal{M}.

Examples: ℓ_{1}-norm, $\ell_{2,1}$-norm, ℓ_{∞}-norm, nuclear norm, TV-norm, ...

> from [G. Peyré, talk "Low Complexity Regularization of Inverse Problems", 2014]

(III) Implicit Differentiation (ID) under Partial Smoothness

Consider: $\quad x^{*}(\theta) \in \arg \min _{x \in \mathbb{R}^{N}} E(x, \theta)$
Theorem: [ID under Partial Smoothness [Lewis '02], [Vaiter et al. '177]

Assumptions:

$\diamond E$ is partly smooth relative to $\mathcal{M} \times \Omega$ where $\Omega \subset \mathbb{R}^{P}$ is open, and
\diamond for some $\left(x^{*}, \theta^{*}\right)$, the following restricted positive definiteness holds

$$
\forall v \in \mathcal{T}_{x^{*}} \mathcal{M}: \quad\left\langle v, \nabla_{\mathcal{M}}^{2} E\left(x^{*}, \theta^{*}\right) v\right\rangle>0
$$

and non-degeneracy holds

$$
0 \in \operatorname{ri}\left(\partial_{x} E\left(x^{*}, \theta^{*}\right)\right) .
$$

Then the manifold version of the Implicit Differentiation (ID) holds:
\diamond There exists a neighborhood Θ of θ^{*} and a C^{1} mapping $\psi: \Theta \rightarrow \mathcal{M}$ such that
$\diamond \Theta \ni \theta \mapsto \psi(\theta)=\operatorname{argmin}_{x} E(x, \theta)$, and
$\diamond \Theta \ni \theta \mapsto \frac{\partial \psi}{\partial \theta}(\theta)=-\nabla_{\mathcal{M}}^{2} E(\psi(\theta), \theta)^{\dagger} \frac{\partial}{\partial \theta} \nabla \mathcal{M} E(\psi(\theta), \theta)$.
\diamond Idea: Many algorithms have the finite identification property (see papers by [J. Liang]):

$$
\exists n_{0} \in \mathbb{N}: \quad x^{(n)} \in \mathcal{M} \text { for all } n \geq n_{0}
$$

hence the update mapping \mathcal{A} becomes smooth eventually.
Examples: Forward-backward Splitting (Proximal Gradient Descent), FISTA, ...

(III) Unrolling / Automatic Differentiation (AD) under Partial Smoothness

\diamond Idea: Many algorithms have the finite identification property (see papers by [J. Liang]):

$$
\exists n_{0} \in \mathbb{N}: \quad x^{(n)} \in \mathcal{M} \text { for all } n \geq n_{0},
$$

hence the update mapping \mathcal{A} becomes smooth eventually.
Examples: Forward-backward Splitting (Proximal Gradient Descent), FISTA, ...

Theorem: [AD for Forward-backward Splitting [Liang et al. '14], [Mehmood, o. '22]]

Assumptions:

\diamond Partial smoothness, restricted positive definiteness, the non-degeneracy assumption, and convergence of the iterates.

Then,
\diamond the rate of convergence for $\left(x^{(n)}\right)_{n \in \mathbb{N}}$ is actually locally linear.
\diamond If, additionally, $x^{(0)}$ is close enough to x^{*}, then

$$
\frac{\partial \mathcal{A}^{(n+1)}}{\partial \theta}\left(x^{(0)}, \theta\right)=: J_{\theta}^{(n)} \xrightarrow{n \rightarrow \infty} \frac{\partial \psi}{\partial \theta}(\theta) .
$$

\rightsquigarrow Crucial issue: Derivatives are not defined for $x^{(n)} \notin \mathcal{M}$.
\diamond Linear convergence, if all involved derivatives are locally Lipschitz.

Remedy of Differentiation Issue:

\diamond Since $x^{*} \in \mathcal{M}$, by definition, all iteration mappings in FPAD are well defined.

Remedy of Differentiation Issue:

Since $x^{*} \in \mathcal{M}$, by definition, all iteration mappings in FPAD are well defined.

Theorem: [Convergence of FPAD for Forward-backward Splitting [Mehmood, o. '22]]

Assumptions:

\diamond Partial smoothness, restricted positive definiteness and the non-degeneracy.

Then,

\diamond the derivative sequence converges linearly

$$
\frac{\partial \mathcal{A}^{(n+1)}}{\partial \theta}\left(x^{*}, \theta\right)=: \hat{J}_{\theta}^{(n)} \xrightarrow{n \rightarrow \infty} \frac{\partial \psi}{\partial \theta}(\theta) .
$$

(III) Non-Smooth Setting: Strategies for Generalized Differentiation

In the following: $\quad x^{*}(\theta) \in \arg \min _{x \in \mathbb{R}^{N}} E(x, \theta) \quad$ (E non-smooth)
Goal: Compute $\quad \frac{\partial x^{*}}{\partial \theta}(\theta) \quad!?$

(III) Non-Smooth Setting: Strategies for Generalized Differentiation

In the following: $\quad x^{*}(\theta) \in \arg \min _{x \in \mathbb{R}^{N}} E(x, \theta) \quad$ (E non-smooth)
Goal: Compute $\quad \frac{\partial x^{*}}{\partial \theta}(\theta) \quad!?$

Strategies:

\diamond Weak differentiation of iterative algorithms. [Deledalle et al. '14] (using Rademacher Theorem; show update map is Lipschitz)
\rightsquigarrow yields only weak derivatives (not defined pointwise)
\rightsquigarrow convergence of derivative sequence unknown
\diamond Using generalized non-smooth derivatives. [Bolte et al. '21]
\rightsquigarrow Some details on next slides.

(III) Path Differentiability

Definition: [Bolte, Pauwels '19]

A locally Lipschitz function $F: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is path differentiable, if
\diamond there exists a nowhere empty-valued mapping $D_{F}: \mathbb{R}^{N} \rightrightarrows \mathbb{R}^{N}$
\diamond that has a closed graph and is locally bounded, such that
\diamond for any absolutely continuous curve $\gamma:[0,1] \rightarrow \mathbb{R}^{N}$

$$
\frac{d}{d t} F \circ \gamma(t)=A \dot{\gamma}(t), \quad \forall A \in D_{F}(\gamma(t)), \quad \text { a.e. for } t \in[0,1] .
$$

\diamond Call D_{F} conservative Jacobian of F.

Construction idea:

\rightsquigarrow By definition, path differentiable functions admit a chain rule.
\rightsquigarrow Formalization of backpropagation used in AD packages for neural networks.
\rightsquigarrow Straightforward generalization to locally Lipschitz mappings.

Theorem: [Implicit Path Differentiation (ID) [Bolte et al. '211, [Bolte, Pauwels, Silveti-Falls '233]

Assumptions:

$\diamond F: \mathbb{R}^{N} \times \mathbb{R}^{P} \rightarrow \mathbb{R}^{N}$ is path differentiable.
$\diamond\left(x^{*}, \theta^{*}\right)$ satisfies the optimality condition

$$
F\left(x^{*}, \theta^{*}\right)=0 .
$$

$\diamond D_{F}\left(x^{*}, \theta^{*}\right)$ is convex and $\forall[A, B] \in D_{F}\left(x^{*}, \theta^{*}\right)$, we have that A is invertible.
Then the path differentiable version of the Implicit Differentiation (ID) holds:
$\diamond \exists \Theta$ neighborhood of θ^{*} and path differentiable $\Psi: \Theta \rightarrow \mathbb{R}^{N}$ such that

$$
\forall \theta \in \Theta: \quad F(\Psi(\theta), \theta)=0,
$$

\diamond and $\Theta \ni \theta \mapsto D_{\Psi}(\theta)=\left\{-A^{-1} B \mid[A, B] \in D_{F}(\Psi(\theta), \theta)\right\}$.

Key Disadvantage:

\diamond Invertibility condition for all A above; Sufficient condition by strong monotonicity of F.

Idea:

\diamond Compositions of path differentiable functions are path differentiable.
\diamond Path differentiable functions admit a chain rule.

Unrolling:

Evaluate the chain rule. Set $\mathcal{J}_{\theta}^{(1)}:=\left\{J_{\theta}^{(1)} \mid\left[A_{x}^{(1)}, J_{\theta}^{(1)}\right]=D_{\mathcal{A}}\left(x^{(0)}, \theta\right)\right\}$ and for $n=1,2, \ldots$:

$$
\mathcal{J}_{\theta}^{(n+1)}=\left\{A_{x}^{(n)} J_{\theta}^{(n)}+A_{\theta}^{(n)} \mid\left[A_{x}^{(n)}, A_{\theta}^{(n)}\right] \in D_{\mathcal{A}}\left(x^{(n)}, \theta\right), J_{\theta}^{(n)} \in \mathcal{J}_{\theta}^{(n)}\right\} .
$$

Theorem: [Convergence of AD under path differentiability [Bolte, Pauwels, Vaiter '22]]

Assumption:

$\diamond \mathcal{A}$ is locally Lipschitz with unique fixed point $x^{*}(\theta)$, path differentiable in (x, θ),
\diamond and $\exists \rho \in[0,1): \forall(x, \theta)$ and all $[A, B] \in D_{\mathcal{A}}(x, \theta)$, we have $\|A\| \leq \rho$.

Then:

The gap between $\mathcal{J}_{\theta}^{(n+1)}$ and $\operatorname{fix}\left(D_{\mathcal{A}}\left(x^{*}(\theta), \theta\right)\right)$ vanishes as $n \rightarrow \infty$.
\diamond Under additional assumptions on a Lipschitz gradient selection structure, the convergence is linear.

Bi-level optimization / parameter learning

$$
\begin{array}{rll}
\min _{\theta \in \mathbb{R}^{P}} & \mathcal{L}\left(x^{*}(\theta), \theta\right) & \text { (upper level) } \\
\text { s.t. } & x^{*}(\theta) \in \arg \min _{x \in \mathbb{R}^{N}} E(x, \theta) & \text { (lower level) }
\end{array}
$$

Goal: Compute $\quad \frac{\partial x^{*}}{\partial \theta}(\theta)!?$

Outline:	E	type of bilevel algorithm
(I) smooth setting	smooth	gradient
(II) partly smooth setting	structured non-smooth	gradient
(III) non-smooth setting	non-smooth	generalized derivative

For each part:

\diamond Implicit differentiation
\diamond Automatic Differentiation / Backpropagation
\diamond Fixed Point Automatic Differentiation
Generalized derivatives of $x^{*}(\theta)$ requires algorithms for non-smooth bi-level opt.

