
11th Applied Inverse Problems Conference

PAC-Bayesian Learning of Optimization Algorithms

Peter Ochs
Mathematical Optimization for Data Science

Saarland University

— 07.09.2023 —

joint work: Michael Sucker

© 2023 — Peter Ochs Mathematical Optimization for Data Science 1 / 21

Inverse Problems are often Modelled as an Optimization Problem

Example 1:

min
x

f(x) , f(x) :=
1

2
∥Ax− b∥2 .

Inspect the properties of the problem.

Example: Smooth/Quadratic problem with L = ∥A∥2-Lipschitz gradient.

Embed the problem into a class of problems for which algorithms are available.

Example: Use Gradient Descent with step size α = 1/L

x(k+1) = x(k) − α∇f(x(k)) .

Worst case convergence guarantee:

f(x(k))−min f ≤ O(1/k) .

© 2023 — Peter Ochs Mathematical Optimization for Data Science 2 / 21

Inverse Problems are often Modelled as an Optimization Problem

Example 1:

min
x

f(x) , f(x) :=
1

2
∥Ax− b∥2 .

How do we solve the problem?

Inspect the properties of the problem.

Example: Smooth/Quadratic problem with L = ∥A∥2-Lipschitz gradient.

Embed the problem into a class of problems for which algorithms are available.

Example: Use Gradient Descent with step size α = 1/L

x(k+1) = x(k) − α∇f(x(k)) .

Worst case convergence guarantee:

f(x(k))−min f ≤ O(1/k) .

© 2023 — Peter Ochs Mathematical Optimization for Data Science 2 / 21

Inverse Problems are often Modelled as an Optimization Problem

Example 1:

min
x

f(x) , f(x) :=
1

2
∥Ax− b∥2 .

How do we solve the problem?
Inspect the properties of the problem.

Example: Smooth/Quadratic problem with L = ∥A∥2-Lipschitz gradient.

Embed the problem into a class of problems for which algorithms are available.

Example: Use Gradient Descent with step size α = 1/L

x(k+1) = x(k) − α∇f(x(k)) .

Worst case convergence guarantee:

f(x(k))−min f ≤ O(1/k) .

© 2023 — Peter Ochs Mathematical Optimization for Data Science 2 / 21

Inverse Problems are often Modelled as an Optimization Problem

Example 1:

min
x

f(x) , f(x) :=
1

2
∥Ax− b∥2 .

How do we solve the problem?
Inspect the properties of the problem.

Example: Smooth/Quadratic problem with L = ∥A∥2-Lipschitz gradient.

Embed the problem into a class of problems for which algorithms are available.

Example: Use Gradient Descent with step size α = 1/L

x(k+1) = x(k) − α∇f(x(k)) .

Worst case convergence guarantee:

f(x(k))−min f ≤ O(1/k) .

© 2023 — Peter Ochs Mathematical Optimization for Data Science 2 / 21

Hidden Structures

If we knew ...

that A is actually of the form

A =


10 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1

 ?

We would write down a different algorithm (that directly returns the solution).

© 2023 — Peter Ochs Mathematical Optimization for Data Science 3 / 21

Hidden Structures

If we knew ...

that A is actually of the form

A =


10 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1

 ?

We would write down a different algorithm (that directly returns the solution).

© 2023 — Peter Ochs Mathematical Optimization for Data Science 3 / 21

Hidden Structures

If we knew ...

that A is actually of the form

A =


10 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1

 ?

We would write down a different algorithm (that directly returns the solution).

Game-changer, if many such problems for different b need to be solved.

Sometimes the “best” class of problems is not obvious!

© 2023 — Peter Ochs Mathematical Optimization for Data Science 3 / 21

Hidden Structures

If we knew ...

that A is actually of the form

A =


10 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1

 ?

We would write down a different algorithm (that directly returns the solution).

Game-changer, if many such problems for different b need to be solved.

Sometimes the “best” class of problems is not obvious!

Can we construct an algorithm that adapts to hidden problem structures?

© 2023 — Peter Ochs Mathematical Optimization for Data Science 3 / 21

Example with Noisy Operator A

Example 2: Solve many problems of the form

min
x

fA(x) , fA(x) :=
1

2
∥Ax− b∥2 where A = Ā+ noise .

© 2023 — Peter Ochs Mathematical Optimization for Data Science 4 / 21

Example with Noisy Operator A

Example 2: Solve many problems of the form

min
x

fA(x) , fA(x) :=
1

2
∥Ax− b∥2 where A = Ā+ noise .

Using Gradient Descent:

For each problem fA, we need to compute L = ∥A∥2,

and run Gradient Descent with α = 1/L to solve the problem.

Computation of ∥A∥ can be expensive.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 4 / 21

Example with Noisy Operator A

Example 2: Solve many problems of the form

min
x

fA(x) , fA(x) :=
1

2
∥Ax− b∥2 where A = Ā+ noise .

Using Gradient Descent:
For each problem fA, we need to compute L = ∥A∥2,

and run Gradient Descent with α = 1/L to solve the problem.

Computation of ∥A∥ can be expensive.

Or ...

if the noise is bounded, we can use a worst case estimate for L.

Results in small step sizes.

Upper bound may be too pessimistic for most problems in practice.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 4 / 21

Example with Noisy Operator A

Example 2: Solve many problems of the form

min
x

fA(x) , fA(x) :=
1

2
∥Ax− b∥2 where A = Ā+ noise .

Using Gradient Descent:
For each problem fA, we need to compute L = ∥A∥2,

and run Gradient Descent with α = 1/L to solve the problem.

Computation of ∥A∥ can be expensive.

Or ...

if the noise is bounded, we can use a worst case estimate for L.

Results in small step sizes.

Upper bound may be too pessimistic for most problems in practice.

Can we construct an algorithm with good performance for more likely problems?

© 2023 — Peter Ochs Mathematical Optimization for Data Science 4 / 21

Data Driven Approach

Yes, using data driven approaches / learning !

Learning alleviates the bounds of analytical tractability
by providing more:

Information: Leverage more structure.

Automation: Less “hand-crafting”.

Possibilities: More building blocks.

Our goals:

Breaking the barrier of worst-case estimates.

Adapt algorithms to hidden problem structures.

Define tight classes of problems.

We insist on having some theoretical guarantees.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 5 / 21

Data Driven Approach

Yes, using data driven approaches / learning !

Learning alleviates the bounds of analytical tractability
by providing more:

Information: Leverage more structure.

Automation: Less “hand-crafting”.

Possibilities: More building blocks.

Our goals:

Breaking the barrier of worst-case estimates.

Adapt algorithms to hidden problem structures.

Define tight classes of problems.

We insist on having some theoretical guarantees.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 5 / 21

Data Driven Approach

Yes, using data driven approaches / learning !

Learning alleviates the bounds of analytical tractability
by providing more:

Information: Leverage more structure.

Automation: Less “hand-crafting”.

Possibilities: More building blocks.

Our goals:

Breaking the barrier of worst-case estimates.

Adapt algorithms to hidden problem structures.

Define tight classes of problems.

We insist on having some theoretical guarantees.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 5 / 21

Formalize the Problem

Consider the random parametric optimization problem:

min
x∈Rn

ℓ(x,S)

ℓ : Rn ×Θ → R≥0 is a given measurable loss-function.
S :

(
Ω,F ,P

)
→ Θ is a random variable.

Use a parametric optimization algorithm, i.e. a measurable function:

A : H× Rn ×Θ → Rn, (α, x(0), θ) 7→ A(α, x(0), θ)

Regularized Inverse Problem:

ℓ(x, λ) =
1

2
∥Ax− b∥2 + λR(x), i.e. θ := λ, Θ = [0, 1] .

Concatenation of a fixed number of Preconditioned Gradient Descent steps:

x(k+1) = x(k) − P∇ℓ(x(k), θ), i.e. α := P , H := Rn×n .

⇝ Learning boils down to hyperparameter optimization, i.e. how to choose α ∈ H.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 6 / 21

Formalize the Problem

Consider the random parametric optimization problem:

min
x∈Rn

ℓ(x,S)

ℓ : Rn ×Θ → R≥0 is a given measurable loss-function.
S :

(
Ω,F ,P

)
→ Θ is a random variable.

Use a parametric optimization algorithm, i.e. a measurable function:

A : H× Rn ×Θ → Rn, (α, x(0), θ) 7→ A(α, x(0), θ)

Example:

Regularized Inverse Problem:

ℓ(x, λ) =
1

2
∥Ax− b∥2 + λR(x), i.e. θ := λ, Θ = [0, 1] .

Concatenation of a fixed number of Preconditioned Gradient Descent steps:

x(k+1) = x(k) − P∇ℓ(x(k), θ), i.e. α := P , H := Rn×n .

⇝ Learning boils down to hyperparameter optimization, i.e. how to choose α ∈ H.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 6 / 21

Formalize the Problem

Consider the random parametric optimization problem:

min
x∈Rn

ℓ(x,S)

ℓ : Rn ×Θ → R≥0 is a given measurable loss-function.
S :

(
Ω,F ,P

)
→ Θ is a random variable.

Use a parametric optimization algorithm, i.e. a measurable function:

A : H× Rn ×Θ → Rn, (α, x(0), θ) 7→ A(α, x(0), θ)

Example:

Regularized Inverse Problem:

ℓ(x, λ) =
1

2
∥Ax− b∥2 + λR(x), i.e. θ := λ, Θ = [0, 1] .

Concatenation of a fixed number of Preconditioned Gradient Descent steps:

x(k+1) = x(k) − P∇ℓ(x(k), θ), i.e. α := P , H := Rn×n .

⇝ Learning boils down to hyperparameter optimization, i.e. how to choose α ∈ H.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 6 / 21

Formalize the Problem

Consider the random parametric optimization problem:

min
x∈Rn

ℓ(x,S)

ℓ : Rn ×Θ → R≥0 is a given measurable loss-function.
S :

(
Ω,F ,P

)
→ Θ is a random variable.

Use a parametric optimization algorithm, i.e. a measurable function:

A : H× Rn ×Θ → Rn, (α, x(0), θ) 7→ A(α, x(0), θ)

Example:

Regularized Inverse Problem:

ℓ(x, λ) =
1

2
∥Ax− b∥2 + λR(x), i.e. θ := λ, Θ = [0, 1] .

Concatenation of a fixed number of Preconditioned Gradient Descent steps:

x(k+1) = x(k) − P∇ℓ(x(k), θ), i.e. α := P , H := Rn×n .

⇝ Learning boils down to hyperparameter optimization, i.e. how to choose α ∈ H.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 6 / 21

Formalize the Problem

Consider the random parametric optimization problem:

min
x∈Rn

ℓ(x,S)

ℓ : Rn ×Θ → R≥0 is a given measurable loss-function.
S :

(
Ω,F ,P

)
→ Θ is a random variable.

Use a parametric optimization algorithm, i.e. a measurable function:

A : H× Rn ×Θ → Rn, (α, x(0), θ) 7→ A(α, x(0), θ)

Example:

Regularized Inverse Problem:

ℓ(x, λ) =
1

2
∥Ax− b∥2 + λR(x), i.e. θ := λ, Θ = [0, 1] .

Concatenation of a fixed number of Preconditioned Gradient Descent steps:

x(k+1) = x(k) − P∇ℓ(x(k), θ), i.e. α := P , H := Rn×n .

⇝ Learning boils down to hyperparameter optimization, i.e. how to choose α ∈ H.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 6 / 21

Quest for Theoretical Convergence Guarantees

Deterministic/Analytic Approach: Worst case performance

min
α∈H

sup
θ∈Θ

ℓ
(
A(α, θ), θ

)
.

Only possible for certain classes of problems.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 7 / 21

Quest for Theoretical Convergence Guarantees

Deterministic/Analytic Approach: Worst case performance

min
α∈H

sup
θ∈Θ

ℓ
(
A(α, θ), θ

)
.

Only possible for certain classes of problems.

Learning Based Approach: Expected case performance:

Minimize the risk R(α), defined as the expected loss:

min
α∈H

R(α) , R(α) := E
[
ℓ
(
A(α,S),S

)]
.

This is intractable, since the distribution PS is unknown.

Hence, resort to minimizing the empirical risk R̂(α,DN) over some dataset
DN := {Si}Ni=1:

min
α∈H

R̂(α,DN) , R̂(α,DN) :=
1

N

N∑
i=1

ℓ(A(α,Si),Si) .

© 2023 — Peter Ochs Mathematical Optimization for Data Science 7 / 21

Quest for Theoretical Convergence Guarantees

Deterministic/Analytic Approach: Worst case performance

min
α∈H

sup
θ∈Θ

ℓ
(
A(α, θ), θ

)
.

Only possible for certain classes of problems.

Learning Based Approach: Expected case performance:

Minimize the risk R(α), defined as the expected loss:

min
α∈H

R(α) , R(α) := E
[
ℓ
(
A(α,S),S

)]
.

This is intractable, since the distribution PS is unknown.

Hence, resort to minimizing the empirical risk R̂(α,DN) over some dataset
DN := {Si}Ni=1:

min
α∈H

R̂(α,DN) , R̂(α,DN) :=
1

N

N∑
i=1

ℓ(A(α,Si),Si) .

© 2023 — Peter Ochs Mathematical Optimization for Data Science 7 / 21

Quest for Theoretical Convergence Guarantees

Deterministic/Analytic Approach: Worst case performance

min
α∈H

sup
θ∈Θ

ℓ
(
A(α, θ), θ

)
.

Only possible for certain classes of problems.

Learning Based Approach: Expected case performance:

Minimize the risk R(α), defined as the expected loss:

min
α∈H

R(α) , R(α) := E
[
ℓ
(
A(α,S),S

)]
.

This is intractable, since the distribution PS is unknown.

Hence, resort to minimizing the empirical risk R̂(α,DN) over some dataset
DN := {Si}Ni=1:

min
α∈H

R̂(α,DN) , R̂(α,DN) :=
1

N

N∑
i=1

ℓ(A(α,Si),Si) .

© 2023 — Peter Ochs Mathematical Optimization for Data Science 7 / 21

Why do we need Generalization Guarantees?

Is the performance on R̂ representative for the overall performance R?

Yes, if we have uniform generalization bounds, i.e. bounds of the form: ∀ε > 0:

P
{
R
(
α∗(DN)

)
≤ inf

α∈H
R̂(α,DN) +K(N,α, ϵ)

}
≥ 1− ϵ .

Such bounds are called PAC-bounds, which is an acronym for:

Probably︸ ︷︷ ︸
With high probability,

Approximately︸ ︷︷ ︸
the empirical risk is close to

Correct︸ ︷︷ ︸
the true risk.

.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 8 / 21

Why do we need Generalization Guarantees?

Is the performance on R̂ representative for the overall performance R?

Yes, if we have uniform generalization bounds, i.e. bounds of the form: ∀ε > 0:

P
{
R
(
α∗(DN)

)
≤ inf

α∈H
R̂(α,DN) +K(N,α, ϵ)

}
≥ 1− ϵ .

Such bounds are called PAC-bounds, which is an acronym for:

Probably︸ ︷︷ ︸
With high probability,

Approximately︸ ︷︷ ︸
the empirical risk is close to

Correct︸ ︷︷ ︸
the true risk.

.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 8 / 21

Why do we need Generalization Guarantees?

Is the performance on R̂ representative for the overall performance R?

Yes, if we have uniform generalization bounds, i.e. bounds of the form: ∀ε > 0:

P
{
R
(
α∗(DN)

)
≤ inf

α∈H
R̂(α,DN) +K(N,α, ϵ)

}
≥ 1− ϵ .

Such bounds are called PAC-bounds, which is an acronym for:

Probably︸ ︷︷ ︸
With high probability,

Approximately︸ ︷︷ ︸
the empirical risk is close to

Correct︸ ︷︷ ︸
the true risk.

.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 8 / 21

Why do we need Generalization Guarantees?

Is the performance on R̂ representative for the overall performance R?

Yes, if we have uniform generalization bounds, i.e. bounds of the form: ∀ε > 0:

P
{
R
(
α∗(DN)

)
≤ inf

α∈H
R̂(α,DN) +K(N,α, ϵ)

}
≥ 1− ϵ .

Such bounds are called PAC-bounds, which is an acronym for:

Probably︸ ︷︷ ︸
With high probability,

Approximately︸ ︷︷ ︸
the empirical risk is close to

Correct︸ ︷︷ ︸
the true risk.

.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 8 / 21

Why do we need Generalization Guarantees?

Is the performance on R̂ representative for the overall performance R?

Yes, if we have uniform generalization bounds, i.e. bounds of the form: ∀ε > 0:

P
{
R
(
α∗(DN)

)
≤ inf

α∈H
R̂(α,DN) +K(N,α, ϵ)

}
≥ 1− ϵ .

Such bounds are called PAC-bounds, which is an acronym for:

Probably︸ ︷︷ ︸
With high probability,

Approximately︸ ︷︷ ︸
the empirical risk is close to

Correct︸ ︷︷ ︸
the true risk.

.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 8 / 21

Why do we need Generalization Guarantees?

Is the performance on R̂ representative for the overall performance R?

Yes, if we have uniform generalization bounds, i.e. bounds of the form: ∀ε > 0:

P
{
R
(
α∗(DN)

)
≤ inf

α∈H
R̂(α,DN) +K(N,α, ϵ)

}
≥ 1− ϵ .

Such bounds are called PAC-bounds, which is an acronym for:

Probably︸ ︷︷ ︸
With high probability,

Approximately︸ ︷︷ ︸
the empirical risk is close to

Correct︸ ︷︷ ︸
the true risk.

.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 8 / 21

... and what actually is PAC-Bayes?

PAC-Bayes extends this to the Bayes-risk:

Such bounds hold for posterior distributions Q ∈ M(PH):

P
{
EQ∗(DN)[R] ≤ inf

Q∈M(PH)
EQ[R̂(DN)] +K(Q, N, ϵ)

}
≥ 1− ϵ ,

where M(PH) denotes some class of (probability) measures on H that satisfy a
certain property w.r.t. the prior distribution PH.

This is a naming convention! Not to be confused with prior and posterior in Bayesian analysis,
which are linked by a likelihood.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 9 / 21

For good reviews of two long lines of work see...

PAC-Bayes [Alquier ’21] Learning-to-Optimize [Chen et al. ’22]

PAC-Bayesian Learning of Optimization Algorithms [Sucker, O. 22]

[Alquier ’21]: “User-friendly introduction to PAC-Bayes bounds”, arXiv:2110.11216 (2021).
[Chen et al. ’22]: “Learning to optimize: A primer and a benchmark”, Journal of Machine Learning Research
(2022), pp. 8562–8620.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 10 / 21

Towards a PAC-Bayes Theorem for Exponential Families

A Form of the Donsker–Varadhan Variational Formulation

Lemma: Consider an exponential family (Qλ)λ∈Λ w.r.t. the prior PH, i.e. distri-
butions of the form:

Qλ ∝ exp(⟨η(λ), T ⟩) · PH, λ ∈ Λ

and denote c(λ) := EPH
[
exp(⟨η(λ), T ⟩)

]
. Then it holds:

log
(
c(λ)

)
= sup

Q≪PH
EQ[⟨η(λ), T ⟩]−DKL(Q ∥ PH)

Furthermore, for every λ ∈ Λ, the supremum is attained at Qλ.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 11 / 21

Towards a PAC-Bayes Theorem for Exponential Families

A Form of the Donsker–Varadhan Variational Formulation

Lemma: Consider an exponential family (Qλ)λ∈Λ w.r.t. the prior PH, i.e. distri-
butions of the form:

Qλ ∝ exp(⟨η(λ), T ⟩) · PH, λ ∈ Λ

and denote c(λ) := EPH
[
exp(⟨η(λ), T ⟩)

]
. Then it holds:

log
(
c(λ)

)
= sup

Q≪PH
EQ[⟨η(λ), T ⟩]−DKL(Q ∥ PH)

Furthermore, for every λ ∈ Λ, the supremum is attained at Qλ.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 11 / 21

Towards a PAC-Bayes Theorem for Exponential Families

A Form of the Donsker–Varadhan Variational Formulation

Lemma: Consider an exponential family (Qλ)λ∈Λ w.r.t. the prior PH, i.e. distri-
butions of the form:

Qλ ∝ exp(⟨η(λ), T ⟩) · PH, λ ∈ Λ

and denote c(λ) := EPH
[
exp(⟨η(λ), T ⟩)

]
. Then it holds:

log
(
c(λ)

)
= sup

Q≪PH
EQ[⟨η(λ), T ⟩]−DKL(Q ∥ PH)

Furthermore, for every λ ∈ Λ, the supremum is attained at Qλ.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 11 / 21

Towards a PAC-Bayes Theorem for Exponential Families

A Form of the Donsker–Varadhan Variational Formulation

Lemma: Consider an exponential family (Qλ)λ∈Λ w.r.t. the prior PH, i.e. distri-
butions of the form:

Qλ ∝ exp(⟨η(λ), T ⟩) · PH, λ ∈ Λ

and denote c(λ) := EPH
[
exp(⟨η(λ), T ⟩)

]
. Then it holds:

log
(
c(λ)

)
= sup

Q≪PH
EQ[⟨η(λ), T ⟩]−DKL(Q ∥ PH)

Furthermore, for every λ ∈ Λ, the supremum is attained at Qλ.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 11 / 21

Towards a PAC-Bayes Theorem for Exponential Families

Theorem: If EDN

[
c(λ)

]
≤ 1, then for all ε > 0:

PDN

{
∀λ ∈ Λ: ∀Q ≪ PH : EQ

[
⟨η(λ), T ⟩

]
≤ DKL(Q ∥ PH) + log(|Λ|/ε)

}
≥ 1− ε

© 2023 — Peter Ochs Mathematical Optimization for Data Science 12 / 21

Towards a PAC-Bayes Theorem for Exponential Families

Theorem: If EDN

[
c(λ)

]
≤ 1, then for all ε > 0:

PDN

{
∀λ ∈ Λ: ∀Q ≪ PH : EQ

[
⟨η(λ), T ⟩

]
≤ DKL(Q ∥ PH) + log(|Λ|/ε)

}
≥ 1− ε

Sketch of Proof.
Use Markov’s inequality

PDN

{
c(λ) ≥ exp(s)

}
≤

EDN

[
c(λ)

]
exp(s)

≤ 1/ exp(s) =: 1/s′ .

Union-bound argument: (use covering argument for compact continuous Λ)

PDN

{
sup
λ∈Λ

c(λ) > s′
}
= PDN

{⋃
λ∈Λ

{c(λ) > s′}
}
≤

∑
λ∈Λ

PDN

{
{c(λ) > s′}

}
≤ |Λ|/s′ =: ε

Apply Donsker–Varadhan variational formulation in

PDN

{
sup
λ∈Λ

log(c(λ)) ≤ log(|Λ|/ε)
}
≥ 1− ε .

© 2023 — Peter Ochs Mathematical Optimization for Data Science 12 / 21

Towards a PAC-Bayes Theorem for Exponential Families

Theorem: If EDN

[
c(λ)

]
≤ 1, then for all ε > 0:

PDN

{
∀λ ∈ Λ: ∀Q ≪ PH : EQ

[
⟨η(λ), T ⟩

]
≤ DKL(Q ∥ PH) + log(|Λ|/ε)

}
≥ 1− ε

Sketch of Proof.
Use Markov’s inequality

PDN

{
c(λ) ≥ exp(s)

}
≤

EDN

[
c(λ)

]
exp(s)

≤ 1/ exp(s) =: 1/s′ .

Union-bound argument: (use covering argument for compact continuous Λ)

PDN

{
sup
λ∈Λ

c(λ) > s′
}
= PDN

{⋃
λ∈Λ

{c(λ) > s′}
}
≤

∑
λ∈Λ

PDN

{
{c(λ) > s′}

}
≤ |Λ|/s′ =: ε

Apply Donsker–Varadhan variational formulation in

PDN

{
sup
λ∈Λ

log(c(λ)) ≤ log(|Λ|/ε)
}
≥ 1− ε .

© 2023 — Peter Ochs Mathematical Optimization for Data Science 12 / 21

Towards a PAC-Bayes Theorem for Exponential Families

Theorem: If EDN

[
c(λ)

]
≤ 1, then for all ε > 0:

PDN

{
∀λ ∈ Λ: ∀Q ≪ PH : EQ

[
⟨η(λ), T ⟩

]
≤ DKL(Q ∥ PH) + log(|Λ|/ε)

}
≥ 1− ε

Sketch of Proof.
Use Markov’s inequality

PDN

{
c(λ) ≥ exp(s)

}
≤

EDN

[
c(λ)

]
exp(s)

≤ 1/ exp(s) =: 1/s′ .

Union-bound argument: (use covering argument for compact continuous Λ)

PDN

{
sup
λ∈Λ

c(λ) > s′
}
= PDN

{⋃
λ∈Λ

{c(λ) > s′}
}
≤

∑
λ∈Λ

PDN

{
{c(λ) > s′}

}
≤ |Λ|/s′ =: ε

Apply Donsker–Varadhan variational formulation in

PDN

{
sup
λ∈Λ

log(c(λ)) ≤ log(|Λ|/ε)
}
≥ 1− ε .

© 2023 — Peter Ochs Mathematical Optimization for Data Science 12 / 21

Learning with Guarantees - A Constructive Approach

Specify η and T accordingly to construct a PAC-Bayesian generalization bound:

η(λ) = (η1(λ), η
′(λ))

and
T (α,DN) = (R(α)− R̂(α,DN), T ′(α,DN)) .

This provides a bound of the following form:

Theorem: Under mild assumptions, it holds for ϵ > 0:

PDN

{
∀λ ∈ Λ, ∀Q ≪ PH : EQ[R] ≤EQ[R̂] +G(N,λ,Q, ϵ)

}
≥ 1− ϵ .

Note:
(i) By the definition of the risk and the algorithm, this bound gives a guarantee for the

function value of the algorithm’s output.

(ii) This is a statement about relative values, not absolute ones.

⇝ Since supremum is attained at Qλ, learning can be phrased as an optimization in λ
(possibly very low-dimensional).

© 2023 — Peter Ochs Mathematical Optimization for Data Science 13 / 21

Learning with Guarantees - A Constructive Approach

Specify η and T accordingly to construct a PAC-Bayesian generalization bound:

η(λ) = (η1(λ), η
′(λ))

and
T (α,DN) = (R(α)− R̂(α,DN), T ′(α,DN)) .

This provides a bound of the following form:

Theorem: Under mild assumptions, it holds for ϵ > 0:

PDN

{
∀λ ∈ Λ, ∀Q ≪ PH : EQ[R] ≤EQ[R̂] +G(N,λ,Q, ϵ)

}
≥ 1− ϵ .

Note:
(i) By the definition of the risk and the algorithm, this bound gives a guarantee for the

function value of the algorithm’s output.

(ii) This is a statement about relative values, not absolute ones.

⇝ Since supremum is attained at Qλ, learning can be phrased as an optimization in λ
(possibly very low-dimensional).

© 2023 — Peter Ochs Mathematical Optimization for Data Science 13 / 21

Learning with Guarantees - A Constructive Approach

Specify η and T accordingly to construct a PAC-Bayesian generalization bound:

η(λ) = (η1(λ), η
′(λ))

and
T (α,DN) = (R(α)− R̂(α,DN), T ′(α,DN)) .

This provides a bound of the following form:

Theorem: Under mild assumptions, it holds for ϵ > 0:

PDN

{
∀λ ∈ Λ, ∀Q ≪ PH : EQ[R] ≤EQ[R̂] +G(N,λ,Q, ϵ)

}
≥ 1− ϵ .

Note:
(i) By the definition of the risk and the algorithm, this bound gives a guarantee for the

function value of the algorithm’s output.

(ii) This is a statement about relative values, not absolute ones.

⇝ Since supremum is attained at Qλ, learning can be phrased as an optimization in λ
(possibly very low-dimensional).

© 2023 — Peter Ochs Mathematical Optimization for Data Science 13 / 21

Simple Case Study: Gradient Descent
Issue: A bad performance on a single problem dominates the average.

Sometimes, analytic worst-case bounds are sharp.

Gradient Descent on quadratics diverges for α > 2/L.

Trying to learn the step size (without this bound) yields an extremely large loss for
α > 2/L, which dominates the cost of the “average performance” (the empirical risk).
Therefore, learnable step sizes obey the deterministic step size rule α ∈ (0, 2/L).

0 1 2 3 4

α ×10−4

0.00

0.02

0.04

0.06

0.08

0.10 nit = 5

nit = 15

nit = 45

nit = 135

prior

αstd
1
L

In this case, the analytically best known step size is recoverd by learning.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 14 / 21

Trade-Off Guarantees and Speed

However this might correspond to unlikely special/extreme cases:

We develop a variant that allows to Trade-Off Guarantees and Speed.

The algorithm may diverge (for extreme cases), if this happens in rare cases and the
Trade-Off can be controlled.

Account for likelihood of e.g. the worst-case.

Encode properties of the algorithm in the convergence set C ⊂ H×Θ, e.g.,

Cα := {θ ∈ Θ : ℓ(A(α, θ), θ) ≤ ℓ(x(0), θ)} .

Condition on it to get the convergence risk Rc : H → R≥0:

Rc(α) := E
[
ℓ(A(α,S),S) | Cα

]
.

Guarantees in form of the convergence probability PS[Cα] instead of convergence for
every sample.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 15 / 21

Trade-Off Guarantees and Speed

However this might correspond to unlikely special/extreme cases:

We develop a variant that allows to Trade-Off Guarantees and Speed.

The algorithm may diverge (for extreme cases), if this happens in rare cases and the
Trade-Off can be controlled.

Account for likelihood of e.g. the worst-case.

Encode properties of the algorithm in the convergence set C ⊂ H×Θ, e.g.,

Cα := {θ ∈ Θ : ℓ(A(α, θ), θ) ≤ ℓ(x(0), θ)} .

Condition on it to get the convergence risk Rc : H → R≥0:

Rc(α) := E
[
ℓ(A(α,S),S) | Cα

]
.

Guarantees in form of the convergence probability PS[Cα] instead of convergence for
every sample.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 15 / 21

Trade-Off Guarantees and Speed

However this might correspond to unlikely special/extreme cases:

We develop a variant that allows to Trade-Off Guarantees and Speed.

The algorithm may diverge (for extreme cases), if this happens in rare cases and the
Trade-Off can be controlled.

Account for likelihood of e.g. the worst-case.

Encode properties of the algorithm in the convergence set C ⊂ H×Θ, e.g.,

Cα := {θ ∈ Θ : ℓ(A(α, θ), θ) ≤ ℓ(x(0), θ)} .

Condition on it to get the convergence risk Rc : H → R≥0:

Rc(α) := E
[
ℓ(A(α,S),S) | Cα

]
.

Guarantees in form of the convergence probability PS[Cα] instead of convergence for
every sample.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 15 / 21

Trade-Off Guarantees and Speed

However this might correspond to unlikely special/extreme cases:

We develop a variant that allows to Trade-Off Guarantees and Speed.

The algorithm may diverge (for extreme cases), if this happens in rare cases and the
Trade-Off can be controlled.

Account for likelihood of e.g. the worst-case.

Encode properties of the algorithm in the convergence set C ⊂ H×Θ, e.g.,

Cα := {θ ∈ Θ : ℓ(A(α, θ), θ) ≤ ℓ(x(0), θ)} .

Condition on it to get the convergence risk Rc : H → R≥0:

Rc(α) := E
[
ℓ(A(α,S),S) | Cα

]
.

Guarantees in form of the convergence probability PS[Cα] instead of convergence for
every sample.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 15 / 21

Trade-Off Guarantees and Speed

However this might correspond to unlikely special/extreme cases:

We develop a variant that allows to Trade-Off Guarantees and Speed.

The algorithm may diverge (for extreme cases), if this happens in rare cases and the
Trade-Off can be controlled.

Account for likelihood of e.g. the worst-case.

Encode properties of the algorithm in the convergence set C ⊂ H×Θ, e.g.,

Cα := {θ ∈ Θ : ℓ(A(α, θ), θ) ≤ ℓ(x(0), θ)} .

Condition on it to get the convergence risk Rc : H → R≥0:

Rc(α) := E
[
ℓ(A(α,S),S) | Cα

]
.

Guarantees in form of the convergence probability PS[Cα] instead of convergence for
every sample.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 15 / 21

Trade-Off Guarantees and Speed

However this might correspond to unlikely special/extreme cases:

We develop a variant that allows to Trade-Off Guarantees and Speed.

The algorithm may diverge (for extreme cases), if this happens in rare cases and the
Trade-Off can be controlled.

Account for likelihood of e.g. the worst-case.

Encode properties of the algorithm in the convergence set C ⊂ H×Θ, e.g.,

Cα := {θ ∈ Θ : ℓ(A(α, θ), θ) ≤ ℓ(x(0), θ)} .

Condition on it to get the convergence risk Rc : H → R≥0:

Rc(α) := E
[
ℓ(A(α,S),S) | Cα

]
.

Guarantees in form of the convergence probability PS[Cα] instead of convergence for
every sample.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 15 / 21

Trade-Off Guarantees and Speed

Applying the same machinery again yields the following generalization:

Theorem: Under mild assumptions, it holds for ε > 0:

PDN

{
∀λ ∈ Λ, ∀Q ≪ PH : EQ[Rc] ≤ EQ[R̂c] +G(N,λ,Q, ε)

}
≥ 1− ε .

Learning must achieve that A converges for “sufficiently many problems” (according to
the convergence probability).

Therefore, the algorithm can focus on quickly solving the remaining problems.

Example Statement: With high probability, the algorithm that is trained to optimize
95% of all problems in DN quickly, will optimize 95% of all problems quickly.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 16 / 21

Trade-Off Guarantees and Speed

Applying the same machinery again yields the following generalization:

Theorem: Under mild assumptions, it holds for ε > 0:

PDN

{
∀λ ∈ Λ, ∀Q ≪ PH : EQ[Rc] ≤ EQ[R̂c] +G(N,λ,Q, ε)

}
≥ 1− ε .

Learning must achieve that A converges for “sufficiently many problems” (according to
the convergence probability).

Therefore, the algorithm can focus on quickly solving the remaining problems.

Example Statement: With high probability, the algorithm that is trained to optimize
95% of all problems in DN quickly, will optimize 95% of all problems quickly.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 16 / 21

Trade-Off Guarantees and Speed

Applying the same machinery again yields the following generalization:

Theorem: Under mild assumptions, it holds for ε > 0:

PDN

{
∀λ ∈ Λ, ∀Q ≪ PH : EQ[Rc] ≤ EQ[R̂c] +G(N,λ,Q, ε)

}
≥ 1− ε .

Learning must achieve that A converges for “sufficiently many problems” (according to
the convergence probability).

Therefore, the algorithm can focus on quickly solving the remaining problems.

Example Statement: With high probability, the algorithm that is trained to optimize
95% of all problems in DN quickly, will optimize 95% of all problems quickly.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 16 / 21

The Whole Training Process

α

f(α)

1) Find a “trainable” initialization by following
another algorithm.

α

f(α)

supp(PH)

2) Find a point inside the constraint with small
empirical risk.

α

f(α)

3) Run a specifically constrained sampling
procedure.

α

f(α)

4) Find λ∗ and perform a reweighting based
on closed-form of the posterior.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 17 / 21

Learn an Algorithm to Train 2-Layer Regression Networks

Training a 2-layer neural network with ReLU-
activations ...

−1.5 −1.0 −0.5 0.0 0.5 1.0

x

−4

−3

−2

−1

0

1

g
(x

)

gt

obs.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

x

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

g
(x

)

gt

obs.

... to perform regression.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 18 / 21

Results

0 50 100 150 200

nit

100

101

102

103

104

`(
x

(i
)
)

Loss over Iterations, Conv. Prob. = 100.0 %

Adam

PAC

c(g(x), yobs)

ntrain

100 101

`(x(nmax))

0

10

20

30

40

50

Loss Histogram and PAC-Bound

PAC-Bound

PAC

Adam

0 50 100 150 200 250

nproblem

0

50

100

150

200

t
[s

]

Cumulative Time to Solve the Test Set

1.00E+00

1.00E-01

1.00E-02

© 2023 — Peter Ochs Mathematical Optimization for Data Science 19 / 21

Learning gets faster...

−1.0 −0.5 0.0 0.5 1.0 1.5

x

−10

−5

0

5

10

15

g
(x

)

Iteration 1

PAC

Adam

g(x)

obs.

−1.0 −0.5 0.0 0.5 1.0 1.5

x

−10

−5

0

5

10

15

g
(x

)

Iteration 3

PAC

Adam

g(x)

obs.

−1.0 −0.5 0.0 0.5 1.0 1.5

x

−10

−5

0

5

10

15

g
(x

)

Iteration 6

PAC

Adam

g(x)

obs.

−1.0 −0.5 0.0 0.5 1.0 1.5

x

−10

−5

0

5

10

15

g
(x

)

Iteration 9

PAC

Adam

g(x)

obs.

−1.0 −0.5 0.0 0.5 1.0 1.5

x

−10

−5

0

5

10

15

g
(x

)

Iteration 12

PAC

Adam

g(x)

obs.

−1.0 −0.5 0.0 0.5 1.0 1.5

x

−10

−5

0

5

10

15

g
(x

)

Iteration 15

PAC

Adam

g(x)

obs.

© 2023 — Peter Ochs Mathematical Optimization for Data Science 20 / 21

Conclusion

PAC-Bayes Learning-to-Optimize

PAC-Bayesian Learning of Optimization Algorithms [Sucker, O. 22]

Breaking the barrier of worst-case estimates

min
α∈H

R(α) , R(α) := E
[
ℓ
(
A(α,S),S

)]
.

by learning spezialized optimization algorithms

min
α∈H

R̂(α,DN) , R̂(α,DN) :=
1

N

N∑
i=1

ℓ(A(α,Si),Si) .

with theoretical guarantees via PAC-Bayes generalization bounds:

PDN

{
∀λ ∈ Λ, ∀Q ≪ PH : EQ[R] ≤ EQ[R̂] +G(N,λ,Q, ϵ)

}
≥ 1− ϵ .

© 2023 — Peter Ochs Mathematical Optimization for Data Science 21 / 21

	Conditioning on Convergence
	Training Neural Networks

