PAC-Bayesian Learning of Optimization Algorithms

Peter Ochs
Mathematical Optimization for Data Science Saarland University
- 07.09.2023 -

joint work: Michael Sucker

Example 1:

$$
\min _{x} f(x), \quad f(x):=\frac{1}{2}\|A x-b\|^{2} .
$$

Example 1:

$$
\min _{x} f(x), \quad f(x):=\frac{1}{2}\|A x-b\|^{2} .
$$

How do we solve the problem?

Example 1:

$$
\min _{x} f(x), \quad f(x):=\frac{1}{2}\|A x-b\|^{2} .
$$

How do we solve the problem?
\diamond Inspect the properties of the problem.
Example: Smooth/Quadratic problem with $L=\|A\|^{2}$-Lipschitz gradient.

Inverse Problems are often Modelled as an Optimization Problem

Example 1:

$$
\min _{x} f(x), \quad f(x):=\frac{1}{2}\|A x-b\|^{2}
$$

How do we solve the problem?
\diamond Inspect the properties of the problem.
Example: Smooth/Quadratic problem with $L=\|A\|^{2}$-Lipschitz gradient.
Embed the problem into a class of problems for which algorithms are available.
Example: Use Gradient Descent with step size $\alpha=1 / L$

$$
x^{(k+1)}=x^{(k)}-\alpha \nabla f\left(x^{(k)}\right)
$$

Worst case convergence guarantee:

$$
f\left(x^{(k)}\right)-\min f \leq O(1 / k)
$$

Hidden Structures

If we knew ...

If we knew ...

that A is actually of the form

$$
A=\left(\begin{array}{cccc}
10 & 0 & \cdots & 0 \\
0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 1
\end{array}\right) ?
$$

Hidden Structures

If we knew ...
\diamond that A is actually of the form

$$
A=\left(\begin{array}{cccc}
10 & 0 & \cdots & 0 \\
0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 1
\end{array}\right) \quad ?
$$

\diamond We would write down a different algorithm (that directly returns the solution).
\diamond Game-changer, if many such problems for different b need to be solved.
\diamond Sometimes the "best" class of problems is not obvious!

Hidden Structures

If we knew ...
\diamond that A is actually of the form

$$
A=\left(\begin{array}{cccc}
10 & 0 & \cdots & 0 \\
0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 1
\end{array}\right) \quad ?
$$

\diamond We would write down a different algorithm (that directly returns the solution).
\diamond Game-changer, if many such problems for different b need to be solved.
\diamond Sometimes the "best" class of problems is not obvious!

Can we construct an algorithm that adapts to hidden problem structures?

Example with Noisy Operator A

Example 2: Solve many problems of the form

$$
\min _{x} f_{A}(x), \quad f_{A}(x):=\frac{1}{2}\|A x-b\|^{2} \quad \text { where } \quad A=\bar{A}+\text { noise } .
$$

Example with Noisy Operator A

Example 2: Solve many problems of the form

$$
\min _{x} f_{A}(x), \quad f_{A}(x):=\frac{1}{2}\|A x-b\|^{2} \quad \text { where } \quad A=\bar{A}+\text { noise } .
$$

Using Gradient Descent:

\diamond For each problem f_{A}, we need to compute $L=\|A\|^{2}$,
\diamond and run Gradient Descent with $\alpha=1 / L$ to solve the problem.
\diamond Computation of $\|A\|$ can be expensive.

Example with Noisy Operator A

Example 2: Solve many problems of the form

$$
\min _{x} f_{A}(x), \quad f_{A}(x):=\frac{1}{2}\|A x-b\|^{2} \quad \text { where } \quad A=\bar{A}+\text { noise } .
$$

Using Gradient Descent:

\diamond For each problem f_{A}, we need to compute $L=\|A\|^{2}$,
\diamond and run Gradient Descent with $\alpha=1 / L$ to solve the problem.
\diamond Computation of $\|A\|$ can be expensive.

Or ...
\diamond if the noise is bounded, we can use a worst case estimate for L.
\diamond Results in small step sizes.
\diamond Upper bound may be too pessimistic for most problems in practice.

Example with Noisy Operator A

Example 2: Solve many problems of the form

$$
\min _{x} f_{A}(x), \quad f_{A}(x):=\frac{1}{2}\|A x-b\|^{2} \quad \text { where } \quad A=\bar{A}+\text { noise } .
$$

Using Gradient Descent:

\diamond For each problem f_{A}, we need to compute $L=\|A\|^{2}$,
\diamond and run Gradient Descent with $\alpha=1 / L$ to solve the problem.
\diamond Computation of $\|A\|$ can be expensive.

Or ...
\diamond if the noise is bounded, we can use a worst case estimate for L.
\diamond Results in small step sizes.
\diamond Upper bound may be too pessimistic for most problems in practice.

Can we construct an algorithm with good performance for more likely problems?

Data Driven Approach

Yes, using data driven approaches / learning !

Data Driven Approach

Learning alleviates the bounds of analytical tractability by providing more:
\diamond Information: Leverage more structure.
Automation: Less "hand-crafting".
Possibilities: More building blocks.

Data Driven Approach

Yes, using data driven approaches / learning !

Learning alleviates the bounds of analytical tractability by providing more:
\diamond Information: Leverage more structure.
Automation: Less "hand-crafting".
Possibilities: More building blocks.

Our goals:

\diamond Breaking the barrier of worst-case estimates.
\diamond Adapt algorithms to hidden problem structures.
\diamond Define tight classes of problems.
\diamond We insist on having some theoretical guarantees.

Consider the random parametric optimization problem:

$$
\min _{x \in \mathbb{R}^{n}} \ell(x, \mathfrak{S})
$$

$\diamond \ell: \mathbb{R}^{n} \times \Theta \rightarrow \mathbb{R}_{\geq 0}$ is a given measurable loss-function.
$\diamond \mathfrak{S}:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow \Theta$ is a random variable.

Consider the random parametric optimization problem:

$$
\min _{x \in \mathbb{R}^{n}} \ell(x, \mathfrak{S})
$$

$\diamond \ell: \mathbb{R}^{n} \times \Theta \rightarrow \mathbb{R}_{\geq 0}$ is a given measurable loss-function.
$\diamond \mathfrak{S}:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow \Theta$ is a random variable.

Example:

Regularized Inverse Problem:

$$
\ell(x, \lambda)=\frac{1}{2}\|A x-b\|^{2}+\lambda R(x), \quad \text { i.e. } \theta:=\lambda, \Theta=[0,1]
$$

Consider the random parametric optimization problem:

$$
\min _{x \in \mathbb{R}^{n}} \ell(x, \mathfrak{S})
$$

$\diamond \ell: \mathbb{R}^{n} \times \Theta \rightarrow \mathbb{R}_{\geq 0}$ is a given measurable loss-function.
$\diamond \mathfrak{S}:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow \Theta$ is a random variable.
\diamond Use a parametric optimization algorithm, i.e. a measurable function:

$$
\mathcal{A}: \mathcal{H} \times \mathbb{R}^{n} \times \Theta \rightarrow \mathbb{R}^{n}, \quad\left(\alpha, x^{(0)}, \theta\right) \mapsto \mathcal{A}\left(\alpha, x^{(0)}, \theta\right)
$$

Example:

Regularized Inverse Problem:

$$
\ell(x, \lambda)=\frac{1}{2}\|A x-b\|^{2}+\lambda R(x), \quad \text { i.e. } \theta:=\lambda, \Theta=[0,1] .
$$

Consider the random parametric optimization problem:

$$
\min _{x \in \mathbb{R}^{n}} \ell(x, \mathfrak{S})
$$

$\diamond \ell: \mathbb{R}^{n} \times \Theta \rightarrow \mathbb{R}_{\geq 0}$ is a given measurable loss-function.
$\diamond \mathfrak{S}:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow \Theta$ is a random variable.
\diamond Use a parametric optimization algorithm, i.e. a measurable function:

$$
\mathcal{A}: \mathcal{H} \times \mathbb{R}^{n} \times \Theta \rightarrow \mathbb{R}^{n}, \quad\left(\alpha, x^{(0)}, \theta\right) \mapsto \mathcal{A}\left(\alpha, x^{(0)}, \theta\right)
$$

Example:

Regularized Inverse Problem:

$$
\ell(x, \lambda)=\frac{1}{2}\|A x-b\|^{2}+\lambda R(x), \quad \text { i.e. } \theta:=\lambda, \Theta=[0,1] .
$$

Concatenation of a fixed number of Preconditioned Gradient Descent steps:

$$
x^{(k+1)}=x^{(k)}-P \nabla \ell\left(x^{(k)}, \theta\right), \quad \text { i.e. } \alpha:=P, \mathcal{H}:=\mathbb{R}^{n \times n} .
$$

Consider the random parametric optimization problem:

$$
\min _{x \in \mathbb{R}^{n}} \ell(x, \mathfrak{S})
$$

$\diamond \ell: \mathbb{R}^{n} \times \Theta \rightarrow \mathbb{R}_{\geq 0}$ is a given measurable loss-function.
$\diamond \mathfrak{S}:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow \Theta$ is a random variable.
\diamond Use a parametric optimization algorithm, i.e. a measurable function:

$$
\mathcal{A}: \mathcal{H} \times \mathbb{R}^{n} \times \Theta \rightarrow \mathbb{R}^{n}, \quad\left(\alpha, x^{(0)}, \theta\right) \mapsto \mathcal{A}\left(\alpha, x^{(0)}, \theta\right)
$$

Example:

Regularized Inverse Problem:

$$
\ell(x, \lambda)=\frac{1}{2}\|A x-b\|^{2}+\lambda R(x), \quad \text { i.e. } \theta:=\lambda, \Theta=[0,1] .
$$

Concatenation of a fixed number of Preconditioned Gradient Descent steps:

$$
x^{(k+1)}=x^{(k)}-P \nabla \ell\left(x^{(k)}, \theta\right), \quad \text { i.e. } \alpha:=P, \mathcal{H}:=\mathbb{R}^{n \times n} .
$$

\rightsquigarrow Learning boils down to hyperparameter optimization, i.e. how to choose $\alpha \in \mathcal{H}$.

Quest for Theoretical Convergence Guarantees

Deterministic/Analytic Approach: Worst case performance

$$
\min _{\alpha \in \mathcal{H}} \sup _{\theta \in \Theta} \ell(\mathcal{A}(\alpha, \theta), \theta) .
$$

Only possible for certain classes of problems.

Quest for Theoretical Convergence Guarantees

Deterministic/Analytic Approach: Worst case performance

$$
\min _{\alpha \in \mathcal{H}} \sup _{\theta \in \Theta} \ell(\mathcal{A}(\alpha, \theta), \theta) .
$$

Only possible for certain classes of problems.

Learning Based Approach: Expected case performance:
\diamond Minimize the risk $\mathcal{R}(\alpha)$, defined as the expected loss:

$$
\min _{\alpha \in \mathcal{H}} \mathcal{R}(\alpha), \quad \mathcal{R}(\alpha):=\mathbb{E}[\ell(\mathcal{A}(\alpha, \mathfrak{S}), \mathfrak{S})]
$$

Quest for Theoretical Convergence Guarantees

Deterministic/Analytic Approach: Worst case performance

$$
\min _{\alpha \in \mathcal{H}} \sup _{\theta \in \Theta} \ell(\mathcal{A}(\alpha, \theta), \theta) .
$$

Only possible for certain classes of problems.

Learning Based Approach: Expected case performance:
\diamond Minimize the risk $\mathcal{R}(\alpha)$, defined as the expected loss:

$$
\min _{\alpha \in \mathcal{H}} \mathcal{R}(\alpha), \quad \mathcal{R}(\alpha):=\mathbb{E}[\ell(\mathcal{A}(\alpha, \mathfrak{S}), \mathfrak{S})] .
$$

This is intractable, since the distribution $\mathbb{P}_{\mathfrak{S}}$ is unknown.

Quest for Theoretical Convergence Guarantees

Deterministic/Analytic Approach: Worst case performance

$$
\min _{\alpha \in \mathcal{H}} \sup _{\theta \in \Theta} \ell(\mathcal{A}(\alpha, \theta), \theta) \text {. }
$$

Only possible for certain classes of problems.

Learning Based Approach: Expected case performance:
\diamond Minimize the risk $\mathcal{R}(\alpha)$, defined as the expected loss:

$$
\min _{\alpha \in \mathcal{H}} \mathcal{R}(\alpha), \quad \mathcal{R}(\alpha):=\mathbb{E}[\ell(\mathcal{A}(\alpha, \mathfrak{S}), \mathfrak{S})] .
$$

This is intractable, since the distribution $\mathbb{P}_{\mathfrak{E}}$ is unknown.
\diamond Hence, resort to minimizing the empirical risk $\hat{\mathcal{R}}\left(\alpha, \mathfrak{D}_{N}\right)$ over some dataset $\mathfrak{D}_{N}:=\left\{\mathfrak{S}_{i}\right\}_{i=1}^{N}:$

$$
\min _{\alpha \in \mathcal{H}} \hat{\mathcal{R}}\left(\alpha, \mathfrak{D}_{N}\right), \quad \hat{\mathcal{R}}\left(\alpha, \mathfrak{D}_{N}\right):=\frac{1}{N} \sum_{i=1}^{N} \ell\left(\mathcal{A}\left(\alpha, \mathfrak{S}_{i}\right), \mathfrak{S}_{i}\right) .
$$

Why do we need Generalization Guarantees?

Is the performance on $\hat{\mathcal{R}}$ representative for the overall performance \mathcal{R} ?

Why do we need Generalization Guarantees?

Is the performance on $\hat{\mathcal{R}}$ representative for the overall performance \mathcal{R} ?
\diamond Yes, if we have uniform generalization bounds, i.e. bounds of the form: $\forall \varepsilon>0$:

$$
\mathbb{P}\left\{\mathcal{R}\left(\alpha^{*}\left(\mathfrak{D}_{N}\right)\right) \leq \inf _{\alpha \in \mathcal{H}} \hat{\mathcal{R}}\left(\alpha, \mathfrak{D}_{N}\right)+K(N, \alpha, \epsilon)\right\} \geq 1-\epsilon
$$

Why do we need Generalization Guarantees?

Is the performance on $\hat{\mathcal{R}}$ representative for the overall performance \mathcal{R} ?
\diamond Yes, if we have uniform generalization bounds, i.e. bounds of the form: $\forall \varepsilon>0$:

$$
\mathbb{P}\left\{\mathcal{R}\left(\alpha^{*}\left(\mathfrak{D}_{N}\right)\right) \leq \inf _{\alpha \in \mathcal{H}} \hat{\mathcal{R}}\left(\alpha, \mathfrak{D}_{N}\right)+K(N, \alpha, \epsilon)\right\} \geq 1-\epsilon
$$

Why do we need Generalization Guarantees?

Is the performance on $\hat{\mathcal{R}}$ representative for the overall performance \mathcal{R} ?
\diamond Yes, if we have uniform generalization bounds, i.e. bounds of the form: $\forall \varepsilon>0$:

$$
\mathbb{P}\left\{\mathcal{R}\left(\alpha^{*}\left(\mathfrak{D}_{N}\right)\right) \leq \inf _{\alpha \in \mathcal{H}} \hat{\mathcal{R}}\left(\alpha, \mathfrak{D}_{N}\right)+K(N, \alpha, \epsilon)\right\} \geq 1-\epsilon
$$

Why do we need Generalization Guarantees?

Is the performance on $\hat{\mathcal{R}}$ representative for the overall performance \mathcal{R} ?
\diamond Yes, if we have uniform generalization bounds, i.e. bounds of the form: $\forall \varepsilon>0$:

$$
\mathbb{P}\left\{\mathcal{R}\left(\alpha^{*}\left(\mathfrak{D}_{N}\right)\right) \leq \inf _{\alpha \in \mathcal{H}} \hat{\mathcal{R}}\left(\alpha, \mathfrak{D}_{N}\right)+K(N, \alpha, \epsilon)\right\} \geq 1-\epsilon .
$$

Is the performance on $\hat{\mathcal{R}}$ representative for the overall performance \mathcal{R} ?

\diamond Yes, if we have uniform generalization bounds, i.e. bounds of the form: $\forall \varepsilon>0$:

$$
\mathbb{P}\left\{\mathcal{R}\left(\alpha^{*}\left(\mathfrak{D}_{N}\right)\right) \leq \inf _{\alpha \in \mathcal{H}} \hat{\mathcal{R}}\left(\alpha, \mathfrak{D}_{N}\right)+K(N, \alpha, \epsilon)\right\} \geq 1-\epsilon .
$$

Such bounds are called PAC-bounds, which is an acronym for:

With high probability, the empirical risk is close to the true risk.

PAC-Bayes extends this to the Bayes-risk:

Such bounds hold for posterior distributions $\mathbb{Q} \in \mathcal{M}\left(\mathbb{P}_{\mathfrak{F}}\right)$:

$$
\mathbb{P}\left\{\mathbb{E}_{\mathbb{Q}^{*}\left(\mathscr{D}_{N}\right)}[\mathcal{R}] \leq \inf _{\mathbb{Q} \in \mathcal{M}\left(\mathbb{P}_{\mathfrak{S})}\right)} \mathbb{E}_{\mathbb{Q}}\left[\hat{\mathcal{R}}\left(\mathfrak{D}_{N}\right)\right]+K(\mathbb{Q}, N, \epsilon)\right\} \geq 1-\epsilon,
$$

where $\mathcal{M}\left(\mathbb{P}_{\mathfrak{H}}\right)$ denotes some class of (probability) measures on \mathcal{H} that satisfy a certain property w.r.t. the prior distribution $\mathbb{P}_{\mathfrak{f}}$.

This is a naming convention! Not to be confused with prior and posterior in Bayesian analysis, which are linked by a likelihood.

For good reviews of two long lines of work see...

PAC-Bayes [Alquier '21]

PAC-Bayesian Learning of Optimization Algorithms [Sucker, ©. 22]

[^0]\diamond [Chen et al. '22]: "Learning to optimize: A primer and a benchmark", Journal of Machine Learning Research (2022), pp. 8562-8620.

Towards a PAC-Bayes Theorem for Exponential Families

A Form of the Donsker-Varadhan Variational Formulation

Lemma: Consider an exponential family $\left(\mathbb{Q}_{\lambda}\right)_{\lambda \in \Lambda}$ w.r.t. the prior $\mathbb{P}_{\mathfrak{H}}$, i.e. distributions of the form:

$$
\mathbb{Q}_{\lambda} \propto \exp (\langle\eta(\lambda), T\rangle) \cdot \mathbb{P}_{\mathfrak{j}}, \quad \lambda \in \Lambda
$$

and denote $c(\lambda):=\mathbb{E}_{\mathbb{P}_{\mathfrak{S}}}[\exp (\langle\eta(\lambda), T\rangle)]$. Then it holds:

$$
\log (c(\lambda))=\sup _{\mathbb{Q} \ll \mathbb{P}_{\mathfrak{H}}} \mathbb{E}_{\mathbb{Q}}[\langle\eta(\lambda), T\rangle]-D_{K L}\left(\mathbb{Q} \| \mathbb{P}_{\mathfrak{H}}\right)
$$

Furthermore, for every $\lambda \in \Lambda$, the supremum is attained at \mathbb{Q}_{λ}.

Towards a PAC-Bayes Theorem for Exponential Families

A Form of the Donsker-Varadhan Variational Formulation

Lemma: Consider an exponential family $\left(\mathbb{Q}_{\lambda}\right)_{\lambda \in \Lambda}$ w.r.t. the prior $\mathbb{P}_{\mathfrak{H}}$, i.e. distributions of the form:

$$
\mathbb{Q}_{\lambda} \propto \exp (\langle\eta(\lambda), T\rangle) \cdot \mathbb{P}_{\mathfrak{j}}, \quad \lambda \in \Lambda
$$

and denote $c(\lambda):=\mathbb{E}_{\mathbb{P}_{5}}[\exp (\langle\eta(\lambda), T\rangle)]$. Then it holds:

$$
\log (c(\lambda))=\sup _{\mathbb{Q} \ll \mathbb{P}_{\mathfrak{H}}} \mathbb{E}_{\mathbb{Q}}[\langle\eta(\lambda), T\rangle]-D_{K L}\left(\mathbb{Q} \| \mathbb{P}_{\mathfrak{H}}\right)
$$

Furthermore, for every $\lambda \in \Lambda$, the supremum is attained at \mathbb{Q}_{λ}.

Towards a PAC-Bayes Theorem for Exponential Families

A Form of the Donsker-Varadhan Variational Formulation

Lemma: Consider an exponential family $\left(\mathbb{Q}_{\lambda}\right)_{\lambda \in \Lambda}$ w.r.t. the prior $\mathbb{P}_{\mathfrak{H}}$, i.e. distributions of the form:

$$
\mathbb{Q}_{\lambda} \propto \exp (\langle\eta(\lambda), T\rangle) \cdot \mathbb{P}_{\mathfrak{H}}, \quad \lambda \in \Lambda
$$

and denote $c(\lambda):=\mathbb{E}_{\mathbb{P}_{\mathfrak{S}}}[\exp (\langle\eta(\lambda), T\rangle)]$. Then it holds:

$$
\log (c(\lambda))=\sup _{\mathbb{Q} \ll \mathbb{P}_{\mathfrak{H}}} \mathbb{E}_{\mathbb{Q}}[\langle\eta(\lambda), T\rangle]-D_{K L}\left(\mathbb{Q} \| \mathbb{P}_{\mathfrak{H}}\right)
$$

Furthermore, for every $\lambda \in \Lambda$, the supremum is attained at \mathbb{Q}_{λ}.

Towards a PAC-Bayes Theorem for Exponential Families

A Form of the Donsker-Varadhan Variational Formulation

Lemma: Consider an exponential family $\left(\mathbb{Q}_{\lambda}\right)_{\lambda \in \Lambda}$ w.r.t. the prior $\mathbb{P}_{\mathfrak{H}}$, i.e. distributions of the form:

$$
\mathbb{Q}_{\lambda} \propto \exp (\langle\eta(\lambda), T\rangle) \cdot \mathbb{P}_{\mathfrak{H}}, \quad \lambda \in \Lambda
$$

and denote $c(\lambda):=\mathbb{E}_{\mathbb{P}_{\mathfrak{S}}}[\exp (\langle\eta(\lambda), T\rangle)]$. Then it holds:

$$
\log (c(\lambda))=\sup _{\mathbb{Q} \ll \mathbb{P}_{\mathfrak{H}}} \mathbb{E}_{\mathbb{Q}}[\langle\eta(\lambda), T\rangle]-D_{K L}\left(\mathbb{Q} \| \mathbb{P}_{\mathfrak{H}}\right)
$$

Furthermore, for every $\lambda \in \Lambda$, the supremum is attained at \mathbb{Q}_{λ}.

Towards a PAC-Bayes Theorem for Exponential Families

Theorem: If $\mathbb{E}_{\mathfrak{D}_{N}}[c(\lambda)] \leq 1$, then for all $\varepsilon>0$:

$$
\mathbb{P}_{\mathfrak{D}_{N}}\left\{\forall \lambda \in \Lambda: \forall \mathbb{Q} \ll \mathbb{P}_{\mathfrak{5}}: \mathbb{E}_{\mathbb{Q}}[\langle\eta(\lambda), T\rangle] \leq D_{\mathrm{KL}}\left(\mathbb{Q} \| \mathbb{P}_{\mathfrak{5}}\right)+\log (|\Lambda| / \varepsilon)\right\} \geq 1-\varepsilon
$$

Theorem: If $\mathbb{E}_{\mathfrak{D}_{N}}[c(\lambda)] \leq 1$, then for all $\varepsilon>0$:

$$
\mathbb{P}_{\mathfrak{D}_{N}}\left\{\forall \lambda \in \Lambda: \forall \mathbb{Q} \ll \mathbb{P}_{\mathfrak{5}}: \mathbb{E}_{\mathbb{Q}}[\langle\eta(\lambda), T\rangle] \leq D_{\mathrm{KL}}\left(\mathbb{Q} \| \mathbb{P}_{\mathfrak{5}}\right)+\log (|\Lambda| / \varepsilon)\right\} \geq 1-\varepsilon
$$

Sketch of Proof.

Use Markov's inequality

$$
\mathbb{P}_{\mathfrak{P}_{N}}\{c(\lambda) \geq \exp (s)\} \leq \frac{\mathbb{E}_{\mathfrak{Q}_{N}}[c(\lambda)]}{\exp (s)} \leq 1 / \exp (s)=: 1 / s^{\prime} .
$$

Theorem: If $\mathbb{E}_{\mathfrak{D}_{N}}[c(\lambda)] \leq 1$, then for all $\varepsilon>0$:

$$
\mathbb{P}_{\mathfrak{D}_{N}}\left\{\forall \lambda \in \Lambda: \forall \mathbb{Q} \ll \mathbb{P}_{\mathfrak{S}}: \mathbb{E}_{\mathbb{Q}}[\langle\eta(\lambda), T\rangle] \leq D_{\mathrm{KL}}\left(\mathbb{Q} \| \mathbb{P}_{\mathfrak{5}}\right)+\log (|\Lambda| / \varepsilon)\right\} \geq 1-\varepsilon
$$

Sketch of Proof.

\diamond Use Markov's inequality

$$
\mathbb{P}_{\mathfrak{P}_{N}}\{c(\lambda) \geq \exp (s)\} \leq \frac{\mathbb{E}_{\mathfrak{D}_{N}}[c(\lambda)]}{\exp (s)} \leq 1 / \exp (s)=: 1 / s^{\prime} .
$$

\diamond Union-bound argument: (use covering argument for compact continuous Λ)

$$
\mathbb{P}_{\mathfrak{O}_{N}}\left\{\sup _{\lambda \in \Lambda} c(\lambda)>s^{\prime}\right\}=\mathbb{P}_{\mathfrak{D}_{N}}\left\{\bigcup_{\lambda \in \Lambda}\left\{c(\lambda)>s^{\prime}\right\}\right\} \leq \sum_{\lambda \in \Lambda} \mathbb{P}_{\mathfrak{D}_{N}}\left\{\left\{c(\lambda)>s^{\prime}\right\}\right\} \leq|\Lambda| / s^{\prime}=: \varepsilon
$$

Towards a PAC-Bayes Theorem for Exponential Families

Theorem: If $\mathbb{E}_{\mathfrak{D}_{N}}[c(\lambda)] \leq 1$, then for all $\varepsilon>0$:

$$
\mathbb{P}_{\mathfrak{D}_{N}}\left\{\forall \lambda \in \Lambda: \forall \mathbb{Q} \ll \mathbb{P}_{\mathfrak{S}}: \mathbb{E}_{\mathbb{Q}}[\langle\eta(\lambda), T\rangle] \leq D_{\mathrm{KL}}\left(\mathbb{Q} \| \mathbb{P}_{\mathfrak{5}}\right)+\log (|\Lambda| / \varepsilon)\right\} \geq 1-\varepsilon
$$

Sketch of Proof.

\diamond Use Markov's inequality

$$
\mathbb{P}_{\mathfrak{D}_{N}}\{c(\lambda) \geq \exp (s)\} \leq \frac{\mathbb{E}_{\mathfrak{D}_{N}}[c(\lambda)]}{\exp (s)} \leq 1 / \exp (s)=: 1 / s^{\prime} .
$$

\diamond Union-bound argument: (use covering argument for compact continuous Λ)

$$
\mathbb{P}_{\mathcal{O}_{N}}\left\{\sup _{\lambda \in \Lambda} c(\lambda)>s^{\prime}\right\}=\mathbb{P}_{\mathcal{O}_{N}}\left\{\bigcup_{\lambda \in \Lambda}\left\{c(\lambda)>s^{\prime}\right\}\right\} \leq \sum_{\lambda \in \Lambda} \mathbb{P}_{\mathfrak{O}_{N}}\left\{\left\{c(\lambda)>s^{\prime}\right\}\right\} \leq|\Lambda| / s^{\prime}=: \varepsilon
$$

\diamond Apply Donsker-Varadhan variational formulation in

$$
\mathbb{P}_{\mathfrak{D}_{N}}\left\{\sup _{\lambda \in \Lambda} \log (c(\lambda)) \leq \log (|\Lambda| / \varepsilon)\right\} \geq 1-\varepsilon .
$$

Specify η and T accordingly to construct a PAC-Bayesian generalization bound:

$$
\eta(\lambda)=\left(\eta_{1}(\lambda), \eta^{\prime}(\lambda)\right)
$$

and

$$
T\left(\alpha, \mathfrak{D}_{N}\right)=\left(\mathcal{R}(\alpha)-\hat{\mathcal{R}}\left(\alpha, \mathfrak{D}_{N}\right), T^{\prime}\left(\alpha, \mathfrak{D}_{N}\right)\right)
$$

Specify η and T accordingly to construct a PAC-Bayesian generalization bound:

$$
\eta(\lambda)=\left(\eta_{1}(\lambda), \eta^{\prime}(\lambda)\right)
$$

and

$$
T\left(\alpha, \mathfrak{D}_{N}\right)=\left(\mathcal{R}(\alpha)-\hat{\mathcal{R}}\left(\alpha, \mathfrak{D}_{N}\right), T^{\prime}\left(\alpha, \mathfrak{D}_{N}\right)\right) .
$$

This provides a bound of the following form:
Theorem: Under mild assumptions, it holds for $\epsilon>0$:

$$
\mathbb{P}_{\mathfrak{D}_{N}}\left\{\forall \lambda \in \Lambda, \forall \mathbb{Q} \ll \mathbb{P}_{\mathfrak{H}}: \mathbb{E}_{\mathbb{Q}}[\mathcal{R}] \leq \mathbb{E}_{\mathbb{Q}}[\hat{\mathcal{R}}]+G(N, \lambda, \mathbb{Q}, \epsilon)\right\} \geq 1-\epsilon .
$$

Note:

(i) By the definition of the risk and the algorithm, this bound gives a guarantee for the function value of the algorithm's output.
(ii) This is a statement about relative values, not absolute ones.

Specify η and T accordingly to construct a PAC-Bayesian generalization bound:

$$
\eta(\lambda)=\left(\eta_{1}(\lambda), \eta^{\prime}(\lambda)\right)
$$

and

$$
T\left(\alpha, \mathfrak{D}_{N}\right)=\left(\mathcal{R}(\alpha)-\hat{\mathcal{R}}\left(\alpha, \mathfrak{D}_{N}\right), T^{\prime}\left(\alpha, \mathfrak{D}_{N}\right)\right) .
$$

This provides a bound of the following form:
Theorem: Under mild assumptions, it holds for $\epsilon>0$:

$$
\mathbb{P}_{\mathfrak{D}_{N}}\left\{\forall \lambda \in \Lambda, \forall \mathbb{Q} \ll \mathbb{P}_{\mathfrak{H}}: \mathbb{E}_{\mathbb{Q}}[\mathcal{R}] \leq \mathbb{E}_{\mathbb{Q}}[\hat{\mathcal{R}}]+G(N, \lambda, \mathbb{Q}, \epsilon)\right\} \geq 1-\epsilon .
$$

Note:

(i) By the definition of the risk and the algorithm, this bound gives a guarantee for the function value of the algorithm's output.
(ii) This is a statement about relative values, not absolute ones.

Since supremum is attained at \mathbb{Q}_{λ}, learning can be phrased as an optimization in λ (possibly very low-dimensional).

Simple Case Study: Gradient Descent

Issue: A bad performance on a single problem dominates the average.

\diamond Sometimes, analytic worst-case bounds are sharp.
\diamond Gradient Descent on quadratics diverges for $\alpha>2 / L$.
\diamond Trying to learn the step size (without this bound) yields an extremely large loss for $\alpha>2 / L$, which dominates the cost of the "average performance" (the empirical risk). Therefore, learnable step sizes obey the deterministic step size rule $\alpha \in(0,2 / L)$.

In this case, the analytically best known step size is recoverd by learning.

Trade-Off Guarantees and Speed

However this might correspond to unlikely special/extreme cases:

We develop a variant that allows to Trade-Off Guarantees and Speed.

Trade-Off Guarantees and Speed

However this might correspond to unlikely special/extreme cases:

We develop a variant that allows to Trade-Off Guarantees and Speed.

The algorithm may diverge (for extreme cases), if this happens in rare cases and the Trade-Off can be controlled.

Trade-Off Guarantees and Speed

However this might correspond to unlikely special/extreme cases:

We develop a variant that allows to Trade-Off Guarantees and Speed.

The algorithm may diverge (for extreme cases), if this happens in rare cases and the Trade-Off can be controlled.

Account for likelihood of e.g. the worst-case.

Trade-Off Guarantees and Speed

However this might correspond to unlikely special/extreme cases:

We develop a variant that allows to Trade-Off Guarantees and Speed.

The algorithm may diverge (for extreme cases), if this happens in rare cases and the Trade-Off can be controlled.

Account for likelihood of e.g. the worst-case.
Encode properties of the algorithm in the convergence set $\mathrm{C} \subset \mathcal{H} \times \Theta$, e.g.,

$$
\mathrm{C}_{\alpha}:=\left\{\theta \in \Theta: \ell(\mathcal{A}(\alpha, \theta), \theta) \leq \ell\left(x^{(0)}, \theta\right)\right\}
$$

Trade-Off Guarantees and Speed

However this might correspond to unlikely special/extreme cases:

We develop a variant that allows to Trade-Off Guarantees and Speed.

The algorithm may diverge (for extreme cases), if this happens in rare cases and the Trade-Off can be controlled.

Account for likelihood of e.g. the worst-case.
Encode properties of the algorithm in the convergence set $\mathrm{C} \subset \mathcal{H} \times \Theta$, e.g.,

$$
\mathrm{C}_{\alpha}:=\left\{\theta \in \Theta: \ell(\mathcal{A}(\alpha, \theta), \theta) \leq \ell\left(x^{(0)}, \theta\right)\right\}
$$

Condition on it to get the convergence risk $\mathcal{R}_{c}: \mathcal{H} \rightarrow \mathbb{R}_{\geq 0}$:

$$
\mathcal{R}_{c}(\alpha):=\mathbb{E}\left[\ell(\mathcal{A}(\alpha, \mathfrak{S}), \mathfrak{S}) \mid \mathrm{C}_{\alpha}\right]
$$

Trade-Off Guarantees and Speed

However this might correspond to unlikely special/extreme cases:

We develop a variant that allows to Trade-Off Guarantees and Speed.

The algorithm may diverge (for extreme cases), if this happens in rare cases and the Trade-Off can be controlled.

Account for likelihood of e.g. the worst-case.
Encode properties of the algorithm in the convergence set $\mathrm{C} \subset \mathcal{H} \times \Theta$, e.g.,

$$
\mathrm{C}_{\alpha}:=\left\{\theta \in \Theta: \ell(\mathcal{A}(\alpha, \theta), \theta) \leq \ell\left(x^{(0)}, \theta\right)\right\}
$$

Condition on it to get the convergence risk $\mathcal{R}_{c}: \mathcal{H} \rightarrow \mathbb{R}_{\geq 0}$:

$$
\mathcal{R}_{c}(\alpha):=\mathbb{E}\left[\ell(\mathcal{A}(\alpha, \mathfrak{S}), \mathfrak{S}) \mid \mathrm{C}_{\alpha}\right]
$$

\diamond Guarantees in form of the convergence probability $\mathbb{P}_{\mathfrak{S}}\left[\mathrm{C}_{\alpha}\right]$ instead of convergence for every sample.

Trade-Off Guarantees and Speed

Applying the same machinery again yields the following generalization:

Theorem: Under mild assumptions, it holds for $\varepsilon>0$:

$$
\mathbb{P}_{\mathfrak{D}_{N}}\left\{\forall \lambda \in \Lambda, \forall \mathbb{Q} \ll \mathbb{P}_{\mathfrak{H}}: \mathbb{E}_{\mathbb{Q}}\left[\mathcal{R}_{c}\right] \leq \mathbb{E}_{\mathbb{Q}}\left[\hat{\mathcal{R}}_{c}\right]+G(N, \lambda, \mathbb{Q}, \varepsilon)\right\} \geq 1-\varepsilon .
$$

Trade-Off Guarantees and Speed

Applying the same machinery again yields the following generalization:

Theorem: Under mild assumptions, it holds for $\varepsilon>0$:

$$
\mathbb{P}_{\mathfrak{D}_{N}}\left\{\forall \lambda \in \Lambda, \forall \mathbb{Q} \ll \mathbb{P}_{\mathfrak{H}}: \mathbb{E}_{\mathbb{Q}}\left[\mathcal{R}_{c}\right] \leq \mathbb{E}_{\mathbb{Q}}\left[\hat{\mathcal{R}}_{c}\right]+G(N, \lambda, \mathbb{Q}, \varepsilon)\right\} \geq 1-\varepsilon
$$

\diamond Learning must achieve that \mathcal{A} converges for "sufficiently many problems" (according to the convergence probability).

Therefore, the algorithm can focus on quickly solving the remaining problems.

Trade-Off Guarantees and Speed

Applying the same machinery again yields the following generalization:

Theorem: Under mild assumptions, it holds for $\varepsilon>0$:

$$
\mathbb{P}_{\mathfrak{D}_{N}}\left\{\forall \lambda \in \Lambda, \forall \mathbb{Q} \ll \mathbb{P}_{\mathfrak{H}}: \mathbb{E}_{\mathbb{Q}}\left[\mathcal{R}_{c}\right] \leq \mathbb{E}_{\mathbb{Q}}\left[\hat{\mathcal{R}}_{c}\right]+G(N, \lambda, \mathbb{Q}, \varepsilon)\right\} \geq 1-\varepsilon
$$

\diamond Learning must achieve that \mathcal{A} converges for "sufficiently many problems" (according to the convergence probability).

Therefore, the algorithm can focus on quickly solving the remaining problems.
Example Statement: With high probability, the algorithm that is trained to optimize 95% of all problems in \mathfrak{D}_{N} quickly, will optimize 95% of all problems quickly.

The Whole Training Process

1) Find a "trainable" initialization by following another algorithm.

2) Run a specifically constrained sampling procedure.

3) Find a point inside the constraint with small empirical risk.

4) Find λ^{*} and perform a reweighting based on closed-form of the posterior.

Training a 2-layer neural network with ReLUactivations ...

... to perform regression.

Cumulative Time to Solve the Test Set

Learning gets faster...

Iteration 9

Iteration 12

Iteration 6

Iteration 15

PAC-Bayes

Learning-to-Optimize

PAC-Bayesian Learning of Optimization Algorithms [Sucker, 0. 22]

Breaking the barrier of worst-case estimates

$$
\min _{\alpha \in \mathcal{H}} \mathcal{R}(\alpha), \quad \mathcal{R}(\alpha):=\mathbb{E}[\ell(\mathcal{A}(\alpha, \mathfrak{S}), \mathfrak{S})]
$$

\diamond by learning spezialized optimization algorithms

$$
\min _{\alpha \in \mathcal{H}} \hat{\mathcal{R}}\left(\alpha, \mathfrak{D}_{N}\right), \quad \hat{\mathcal{R}}\left(\alpha, \mathfrak{D}_{N}\right):=\frac{1}{N} \sum_{i=1}^{N} \ell\left(\mathcal{A}\left(\alpha, \mathfrak{S}_{i}\right), \mathfrak{S}_{i}\right) .
$$

\diamond with theoretical guarantees via PAC-Bayes generalization bounds:

$$
\mathbb{P}_{\mathfrak{D}_{N}}\left\{\forall \lambda \in \Lambda, \forall \mathbb{Q} \ll \mathbb{P}_{\mathfrak{H}}: \mathbb{E}_{\mathbb{Q}}[\mathcal{R}] \leq \mathbb{E}_{\mathbb{Q}}[\hat{\mathcal{R}}]+G(N, \lambda, \mathbb{Q}, \epsilon)\right\} \geq 1-\epsilon
$$

[^0]: \diamond [Alquier '21]: "User-friendly introduction to PAC-Bayes bounds", arXiv:2110.11216 (2021).

