# **PAC-Bayesian Learning of Optimization Algorithms**



Peter Ochs Mathematical Optimization for Data Science

Saarland University

- 07.09.2023 -

joint work: Michael Sucker







Example 1:

$$\min_{x} f(x), \quad f(x) := \frac{1}{2} \|Ax - b\|^{2}.$$

Example 1:

$$\min_{x} f(x), \quad f(x) := \frac{1}{2} \|Ax - b\|^{2}.$$

How do we solve the problem?



Example 1:

$$\min_{x} f(x), \quad f(x) := \frac{1}{2} \|Ax - b\|^{2}.$$

### How do we solve the problem?

Inspect the properties of the problem.

Example: Smooth/Quadratic problem with  $L = ||A||^2$ -Lipschitz gradient.



## Example 1:

$$\min_{x} f(x), \quad f(x) := \frac{1}{2} \|Ax - b\|^{2}.$$

### How do we solve the problem?

- Inspect the properties of the problem. Example: Smooth/Quadratic problem with L = ||A||<sup>2</sup>-Lipschitz gradient.
- Embed the problem into a **class of problems** for which algorithms are available. *Example: Use Gradient Descent with step size*  $\alpha = 1/L$

$$x^{(k+1)} = x^{(k)} - \alpha \nabla f(x^{(k)}).$$

Worst case convergence guarantee:

$$f(x^{(k)}) - \min f \le O(1/k)$$
.

If we knew ...



### If we knew ...

that A is actually of the form

$$A = \begin{pmatrix} 10 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix} \quad ?$$

#### If we knew ...

that A is actually of the form

$$A = \begin{pmatrix} 10 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix} \quad ?$$

• We would write down a different algorithm (that directly returns the solution).

Game-changer, if many such problems for different *b* need to be solved.

Sometimes the "best" class of problems is not obvious!





#### If we knew ...

that A is actually of the form

$$A = \begin{pmatrix} 10 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix} \quad ?$$

• We would write down a different algorithm (that directly returns the solution).

**Game-changer**, if many such problems for different *b* need to be solved.

• Sometimes the "best" class of problems is not obvious!

### Can we construct an algorithm that adapts to hidden problem structures?



$$\min_x f_A(x)\,,\quad f_A(x):=rac{1}{2}\|Ax-b\|^2\quad ext{where}\quad A=ar{A}+ ext{noise}\,.$$



$$\min_{x} f_A(x) \,, \quad f_A(x) := \frac{1}{2} \|Ax - b\|^2 \quad \text{where} \quad A = \bar{A} + \text{noise} \,.$$

### **Using Gradient Descent:**

- For each problem  $f_A$ , we need to compute  $L = ||A||^2$ ,
- and run Gradient Descent with  $\alpha = 1/L$  to solve the problem.

• Computation of ||A|| can be expensive.





$$\min_{x} f_A(x), \quad f_A(x) := \frac{1}{2} \|Ax - b\|^2 \text{ where } A = \overline{A} + \text{noise}.$$

## **Using Gradient Descent:**

- For each problem  $f_A$ , we need to compute  $L = ||A||^2$ ,
- and run Gradient Descent with  $\alpha = 1/L$  to solve the problem.

• Computation of ||A|| can be expensive.

### Or ...

♦ if the noise is bounded, we can use a worst case estimate for *L*.

Results in **small step sizes**.

• Upper bound may be too pessimistic for most problems in practice.



$$\min_{x} f_A(x) , \quad f_A(x) := \frac{1}{2} \|Ax - b\|^2 \text{ where } A = \overline{A} + \text{noise} .$$

## **Using Gradient Descent:**

- For each problem  $f_A$ , we need to compute  $L = ||A||^2$ ,
- and run Gradient Descent with  $\alpha = 1/L$  to solve the problem.

• Computation of ||A|| can be expensive.

### Or ...

if the noise is bounded, we can use a worst case estimate for L.

Results in **small step sizes**.

• Upper bound may be **too pessimistic for most problems** in practice.

### Can we construct an algorithm with good performance for more likely problems?

Yes, using data driven approaches / learning !



### Yes, using data driven approaches / learning !

Learning alleviates the bounds of analytical tractability by providing more:

- Information: Leverage more structure.
- Automation: Less "hand-crafting".
- Possibilities: More building blocks.

### Yes, using data driven approaches / learning !

### Learning alleviates the bounds of analytical tractability by providing more:

- Information: Leverage more structure.
- Automation: Less "hand-crafting".
- Possibilities: More building blocks.

#### Our goals:

- Breaking the barrier of worst-case estimates.
- Adapt algorithms to hidden problem structures.
- Define tight classes of problems.
- We insist on having some theoretical guarantees.



 $\min_{x\in\mathbb{R}^n}\ \ell(x,\mathfrak{S})$ 

$$\begin{split} & \blacklozenge \ \ell: \mathbb{R}^n \times \Theta \to \mathbb{R}_{\geq 0} \text{ is a given measurable loss-function.} \\ & \mathfrak{S}: (\Omega, \mathcal{F}, \mathbb{P}) \to \Theta \text{ is a random variable.} \end{split}$$



 $\min_{x\in\mathbb{R}^n}\ \ell(x,\mathfrak{S})$ 

$$\begin{split} & \blacklozenge \ \ell: \mathbb{R}^n \times \Theta \to \mathbb{R}_{\geq 0} \text{ is a given measurable loss-function.} \\ & \mathfrak{S}: (\Omega, \mathcal{F}, \mathbb{P}) \to \Theta \text{ is a random variable.} \end{split}$$

#### Example:

Regularized Inverse Problem:

$$\ell(x, \lambda) = \frac{1}{2} \|Ax - b\|^2 + \lambda R(x), \quad \text{i.e. } \theta := \lambda, \Theta = [0, 1].$$



 $\min_{x\in\mathbb{R}^n}\ \ell(x,\mathfrak{S})$ 

$$\begin{split} & \blacklozenge \ \ell: \mathbb{R}^n \times \Theta \to \mathbb{R}_{\geq 0} \text{ is a given measurable loss-function.} \\ & \mathfrak{S}: (\Omega, \mathcal{F}, \mathbb{P}) \to \Theta \text{ is a random variable.} \end{split}$$

• Use a parametric optimization algorithm, i.e. a measurable function:

 $\mathcal{A}: \mathcal{H} \times \mathbb{R}^n \times \Theta \to \mathbb{R}^n, \quad (\alpha, x^{(0)}, \theta) \mapsto \mathcal{A}(\alpha, x^{(0)}, \theta)$ 

#### **Example:**

Regularized Inverse Problem:

$$\ell(x, \lambda) = \frac{1}{2} \|Ax - b\|^2 + \lambda R(x), \quad \text{i.e. } \theta := \lambda, \Theta = [0, 1].$$



 $\min_{x\in\mathbb{R}^n}\ \ell(x,\mathfrak{S})$ 

 $\begin{array}{l} \bullet \ \ \ell: \mathbb{R}^n \times \Theta \to \mathbb{R}_{\geq 0} \text{ is a given measurable loss-function.} \\ \bullet \ \ \mathfrak{S}: \left(\Omega, \mathcal{F}, \mathbb{P}\right) \to \Theta \text{ is a random variable.} \end{array}$ 

• Use a parametric optimization algorithm, i.e. a measurable function:

 $\mathcal{A}: \mathcal{H} \times \mathbb{R}^n \times \Theta \to \mathbb{R}^n, \quad (\alpha, x^{(0)}, \theta) \mapsto \mathcal{A}(\alpha, x^{(0)}, \theta)$ 

#### **Example:**

Regularized Inverse Problem:

$$\ell(x, \lambda) = rac{1}{2} \|Ax - b\|^2 + \lambda R(x), \quad \text{ i.e. } \theta := \lambda, \Theta = [0, 1].$$

• Concatenation of a fixed number of Preconditioned Gradient Descent steps:

 $x^{(k+1)} = x^{(k)} - P \nabla \ell(x^{(k)}, \theta), \qquad \text{i.e. } \alpha := P, \, \mathcal{H} := \mathbb{R}^{n \times n} \,.$ 



 $\min_{x\in\mathbb{R}^n}\ \ell(x,\mathfrak{S})$ 

 $\begin{array}{l} \bullet \ \ell: \mathbb{R}^n \times \Theta \to \mathbb{R}_{\geq 0} \text{ is a given measurable loss-function.} \\ \bullet \ \mathfrak{S}: (\Omega, \mathcal{F}, \mathbb{P}) \to \Theta \text{ is a random variable.} \end{array}$ 

• Use a parametric optimization algorithm, i.e. a measurable function:

 $\mathcal{A}: \mathcal{H} \times \mathbb{R}^n \times \Theta \to \mathbb{R}^n, \quad (\alpha, x^{(0)}, \theta) \mapsto \mathcal{A}(\alpha, x^{(0)}, \theta)$ 

### Example:

Regularized Inverse Problem:

$$\ell(x, \lambda) = \frac{1}{2} \|Ax - b\|^2 + \lambda R(x), \quad \text{ i.e. } \theta := \lambda, \Theta = [0, 1].$$

Concatenation of a fixed number of Preconditioned Gradient Descent steps:

$$x^{(k+1)} = x^{(k)} - P \nabla \ell(x^{(k)}, \theta), \quad \text{ i.e. } \alpha := P, \mathcal{H} := \mathbb{R}^{n imes n}$$

→ Learning boils down to hyperparameter optimization, i.e. how to choose  $\alpha \in \mathcal{H}$ .



#### Deterministic/Analytic Approach: Worst case performance

 $\min_{\alpha \in \mathcal{H}} \sup_{\theta \in \Theta} \ell \left( \mathcal{A}(\alpha, \theta), \theta \right).$ 

Only possible for certain classes of problems.

#### Deterministic/Analytic Approach: Worst case performance

 $\min_{\alpha \in \mathcal{H}} \sup_{\theta \in \Theta} \ell \left( \mathcal{A}(\alpha, \theta), \theta \right).$ 

Only possible for certain classes of problems.

Learning Based Approach: Expected case performance:

• Minimize the **risk**  $\mathcal{R}(\alpha)$ , defined as the **expected loss**:

 $\min_{\alpha \in \mathcal{H}} \mathcal{R}(\alpha), \quad \mathcal{R}(\alpha) := \mathbb{E}\big[\ell\big(\mathcal{A}(\alpha, \mathfrak{S}), \mathfrak{S}\big)\big].$ 

### Deterministic/Analytic Approach: Worst case performance

 $\min_{\alpha \in \mathcal{H}} \sup_{\theta \in \Theta} \ell \left( \mathcal{A}(\alpha, \theta), \theta \right).$ 

Only possible for certain classes of problems.

Learning Based Approach: Expected case performance:

• Minimize the **risk**  $\mathcal{R}(\alpha)$ , defined as the **expected loss**:

 $\min_{\alpha \in \mathcal{H}} \mathcal{R}(\alpha), \quad \mathcal{R}(\alpha) := \mathbb{E} \big[ \ell \big( \mathcal{A}(\alpha, \mathfrak{S}), \mathfrak{S} \big) \big].$ 

This is intractable, since the distribution  $\mathbb{P}_{\mathfrak{S}}$  is **unknown**.



### Deterministic/Analytic Approach: Worst case performance

 $\min_{\alpha \in \mathcal{H}} \sup_{\theta \in \Theta} \ell \left( \mathcal{A}(\alpha, \theta), \theta \right).$ 

Only possible for certain classes of problems.

Learning Based Approach: Expected case performance:

• Minimize the **risk**  $\mathcal{R}(\alpha)$ , defined as the **expected loss**:

$$\min_{lpha \in \mathcal{H}} \, \mathcal{R}(lpha) \,, \quad \mathcal{R}(lpha) := \mathbb{E} ig[ \ell ig( \mathcal{A}(lpha, \mathfrak{S}), \mathfrak{S} ig) ig] \,.$$

This is intractable, since the distribution  $\mathbb{P}_{\mathfrak{S}}$  is unknown.

• Hence, resort to minimizing the **empirical risk**  $\hat{\mathcal{R}}(\alpha, \mathfrak{D}_N)$  over some dataset  $\mathfrak{D}_N := \{\mathfrak{S}_i\}_{i=1}^N$ :

$$\min_{lpha \in \mathcal{H}} \hat{\mathcal{R}}(lpha, \mathfrak{D}_N), \quad \hat{\mathcal{R}}(lpha, \mathfrak{D}_N) := rac{1}{N} \sum_{i=1}^N \ell(\mathcal{A}(lpha, \mathfrak{S}_i), \mathfrak{S}_i).$$



Is the performance on  $\hat{\mathcal{R}}$  representative for the overall performance  $\mathcal{R}$ ?

Is the performance on  $\hat{\mathcal{R}}$  representative for the overall performance  $\mathcal{R}$ ?

• Yes, if we have uniform generalization bounds, i.e. bounds of the form:  $\forall \varepsilon > 0$ :

$$\mathbb{P}\left\{\mathcal{R}\left(\alpha^{*}(\mathfrak{D}_{N})\right) \leq \inf_{\alpha \in \mathcal{H}} \hat{\mathcal{R}}(\alpha, \mathfrak{D}_{N}) + K(N, \alpha, \epsilon)\right\} \geq 1 - \epsilon.$$

Is the performance on  $\hat{\mathcal{R}}$  representative for the overall performance  $\mathcal{R}$ ?

• Yes, if we have **uniform generalization bounds**, i.e. bounds of the form:  $\forall \varepsilon > 0$ :

$$\mathbb{P}\left\{\mathcal{R}\left(\alpha^{*}(\mathfrak{D}_{N})\right) \leq \inf_{\alpha \in \mathcal{H}} \hat{\mathcal{R}}(\alpha, \mathfrak{D}_{N}) + K(N, \alpha, \epsilon)\right\} \geq 1 - \epsilon$$

Is the performance on  $\hat{\mathcal{R}}$  representative for the overall performance  $\mathcal{R}$ ?

• Yes, if we have uniform generalization bounds, i.e. bounds of the form:  $\forall \varepsilon > 0$ :

 $\mathbb{P}\left\{\mathcal{R}\left(\alpha^{*}(\mathfrak{D}_{N})\right) \leq \inf_{\alpha \in \mathcal{H}} \hat{\mathcal{R}}(\alpha, \mathfrak{D}_{N}) + K(N, \alpha, \epsilon)\right\} \geq 1 - \epsilon.$ 



Is the performance on  $\hat{\mathcal{R}}$  representative for the overall performance  $\mathcal{R}$ ?

• Yes, if we have uniform generalization bounds, i.e. bounds of the form:  $\forall \varepsilon > 0$ :

 $\mathbb{P} \{ \mathcal{R} (lpha^*(\mathfrak{D}_N)) \leq \inf_{lpha \in \mathcal{H}} \hat{\mathcal{R}} (lpha, \mathfrak{D}_N) + K(N, lpha, \epsilon) \} \geq 1 - \epsilon \,.$ 



Is the performance on  $\hat{\mathcal{R}}$  representative for the overall performance  $\mathcal{R}$ ?

• Yes, if we have **uniform generalization bounds**, i.e. bounds of the form:  $\forall \varepsilon > 0$ :

 $\mathbb{P}\big\{\mathcal{R}\big(\alpha^*(\mathfrak{D}_N)\big) \leq \inf_{\alpha \in \mathcal{H}} \hat{\mathcal{R}}(\alpha, \mathfrak{D}_N) + K(N, \alpha, \epsilon)\big\} \geq 1 - \epsilon.$ 

• Such bounds are called **PAC-bounds**, which is an acronym for:



With high probability, the empirical risk is close to the true risk.

### PAC-Bayes extends this to the Bayes-risk:

Such bounds hold for **posterior distributions**  $\mathbb{Q} \in \mathcal{M}(\mathbb{P}_{\mathfrak{H}})$ :

 $\mathbb{P}\left\{\mathbb{E}_{\mathbb{Q}^*(\mathfrak{D}_N)}[\mathcal{R}] \leq \inf_{\mathbb{Q}\in\mathcal{M}(\mathbb{P}_{\mathfrak{H}})} \mathbb{E}_{\mathbb{Q}}[\hat{\mathcal{R}}(\mathfrak{D}_N)] + K(\mathbb{Q}, N, \epsilon)\right\} \geq 1 - \epsilon,$ 

where  $\mathcal{M}(\mathbb{P}_{\mathfrak{H}})$  denotes some class of (probability) measures on  $\mathcal{H}$  that satisfy a certain property w.r.t. the **prior distribution**  $\mathbb{P}_{\mathfrak{H}}$ .

This is a naming convention! Not to be confused with prior and posterior in Bayesian analysis, which are linked by a likelihood.



[Alquier '21]: "User-friendly introduction to PAC-Bayes bounds", arXiv:2110.11216 (2021).

[Chen et al. '22]: "Learning to optimize: A primer and a benchmark", Journal of Machine Learning Research (2022), pp. 8562–8620.





#### A Form of the Donsker–Varadhan Variational Formulation

**Lemma:** Consider an exponential family  $(\mathbb{Q}_{\lambda})_{\lambda \in \Lambda}$  w.r.t. the prior  $\mathbb{P}_{\mathfrak{H}}$ , i.e. distributions of the form:

 $\mathbb{Q}_{\lambda} \propto \exp(\langle \eta(\lambda), T \rangle) \cdot \mathbb{P}_{\mathfrak{H}}, \qquad \lambda \in \Lambda$ 

and denote  $c(\lambda) := \mathbb{E}_{\mathbb{P}_{\mathfrak{H}}} \left[ \exp(\langle \eta(\lambda), T \rangle) \right]$ . Then it holds:

 $\log(c(\lambda)) = \sup_{\mathbb{Q} \ll \mathbb{P}_{\mathfrak{H}}} \mathbb{E}_{\mathbb{Q}}[\langle \eta(\lambda), T \rangle] - D_{KL}(\mathbb{Q} \parallel \mathbb{P}_{\mathfrak{H}})$ 

Furthermore, for every  $\lambda \in \Lambda$ , the supremum is attained at  $\mathbb{Q}_{\lambda}$ .

#### A Form of the Donsker–Varadhan Variational Formulation

**Lemma:** Consider an exponential family  $(\mathbb{Q}_{\lambda})_{\lambda \in \Lambda}$  w.r.t. the prior  $\mathbb{P}_{\mathfrak{H}}$ , i.e. distributions of the form:

 $\mathbb{Q}_{\lambda} \propto \exp(\langle \eta(\lambda), T \rangle) \cdot \mathbb{P}_{\mathfrak{H}}, \qquad \lambda \in \Lambda$ 

and denote  $c(\lambda) := \mathbb{E}_{\mathbb{P}_{\mathfrak{H}}} \left[ \exp(\langle \eta(\lambda), T \rangle) \right]$ . Then it holds:

 $\log(c(\lambda)) = \sup_{\mathbb{Q} \ll \mathbb{P}_{\mathfrak{H}}} \mathbb{E}_{\mathbb{Q}}[\langle \eta(\lambda), T \rangle] - D_{KL}(\mathbb{Q} \parallel \mathbb{P}_{\mathfrak{H}})$ 

Furthermore, for every  $\lambda \in \Lambda$ , the supremum is attained at  $\mathbb{Q}_{\lambda}$ .

#### A Form of the Donsker–Varadhan Variational Formulation

**Lemma:** Consider an exponential family  $(\mathbb{Q}_{\lambda})_{\lambda \in \Lambda}$  w.r.t. the prior  $\mathbb{P}_{\mathfrak{H}}$ , i.e. distributions of the form:

$$\mathbb{Q}_{\lambda} \propto \exp(\langle \eta(\lambda), T \rangle) \cdot \mathbb{P}_{\mathfrak{H}}, \qquad \lambda \in \Lambda$$

and denote  $c(\lambda) := \mathbb{E}_{\mathbb{P}_{\mathfrak{H}}} \left[ \exp(\langle \eta(\lambda), T \rangle) \right]$ . Then it holds:

$$\log(c(\lambda)) = \sup_{\mathbb{Q} \ll \mathbb{P}_{\mathfrak{H}}} \mathbb{E}_{\mathbb{Q}}[\langle \eta(\lambda), T \rangle] - D_{KL}(\mathbb{Q} \parallel \mathbb{P}_{\mathfrak{H}})$$

Furthermore, for every  $\lambda \in \Lambda$ , the supremum is attained at  $\mathbb{Q}_{\lambda}$ .

#### A Form of the Donsker–Varadhan Variational Formulation

**Lemma:** Consider an exponential family  $(\mathbb{Q}_{\lambda})_{\lambda \in \Lambda}$  w.r.t. the prior  $\mathbb{P}_{\mathfrak{H}}$ , i.e. distributions of the form:

$$\mathbb{Q}_{\lambda} \propto \exp(\langle \eta(\lambda), T \rangle) \cdot \mathbb{P}_{\mathfrak{H}}, \qquad \lambda \in \Lambda$$

and denote  $c(\lambda) := \mathbb{E}_{\mathbb{P}_{\mathfrak{H}}} \left[ \exp(\langle \eta(\lambda), T \rangle) \right]$ . Then it holds:

$$\log(c(\lambda)) = \sup_{\mathbb{Q} \ll \mathbb{P}_{\mathfrak{H}}} \mathbb{E}_{\mathbb{Q}}[\langle \eta(\lambda), T \rangle] - D_{KL}(\mathbb{Q} \parallel \mathbb{P}_{\mathfrak{H}})$$

Furthermore, for every  $\lambda \in \Lambda$ , the supremum is attained at  $\mathbb{Q}_{\lambda}$ .

11/21

**Theorem:** If  $\mathbb{E}_{\mathfrak{D}_N}[c(\lambda)] \leq 1$ , then for all  $\varepsilon > 0$ :

 $\mathbb{P}_{\mathfrak{D}_{N}}\big\{\forall \lambda \in \Lambda \colon \forall \mathbb{Q} \ll \mathbb{P}_{\mathfrak{H}} \colon \mathbb{E}_{\mathbb{Q}}\big[\langle \eta(\lambda), T \rangle\big] \leq D_{\mathrm{KL}}(\mathbb{Q} \parallel \mathbb{P}_{\mathfrak{H}}) + \log(|\Lambda|/\varepsilon)\big\} \geq 1 - \varepsilon$ 

**Theorem:** If  $\mathbb{E}_{\mathfrak{D}_N}[c(\lambda)] \leq 1$ , then for all  $\varepsilon > 0$ :

 $\mathbb{P}_{\mathfrak{D}_N}\big\{\forall \lambda \in \Lambda \colon \forall \mathbb{Q} \ll \mathbb{P}_{\mathfrak{H}} \colon \mathbb{E}_{\mathbb{Q}}\big[\langle \eta(\lambda), T \rangle\big] \leq D_{\mathrm{KL}}(\mathbb{Q} \parallel \mathbb{P}_{\mathfrak{H}}) + \log(|\Lambda|/\varepsilon)\big\} \geq 1 - \varepsilon$ 

### Sketch of Proof.

Use Markov's inequality

$$\mathbb{P}_{\mathfrak{D}_N}\left\{c(\lambda) \ge \exp(s)\right\} \le \frac{\mathbb{E}_{\mathfrak{D}_N}\left[c(\lambda)\right]}{\exp(s)} \le 1/\exp(s) =: 1/s'.$$

**Theorem:** If  $\mathbb{E}_{\mathfrak{D}_N}[c(\lambda)] \leq 1$ , then for all  $\varepsilon > 0$ :

 $\mathbb{P}_{\mathfrak{D}_{N}}\big\{\forall \lambda \in \Lambda \colon \forall \mathbb{Q} \ll \mathbb{P}_{\mathfrak{H}} \colon \mathbb{E}_{\mathbb{Q}}\big[\langle \eta(\lambda), T \rangle\big] \leq D_{\mathrm{KL}}(\mathbb{Q} \parallel \mathbb{P}_{\mathfrak{H}}) + \log(|\Lambda|/\varepsilon)\big\} \geq 1 - \varepsilon$ 

### Sketch of Proof.

Use Markov's inequality

$$\mathbb{P}_{\mathfrak{D}_{N}}\left\{c(\lambda) \geq \exp(s)\right\} \leq \frac{\mathbb{E}_{\mathfrak{D}_{N}}\left[c(\lambda)\right]}{\exp(s)} \leq 1/\exp(s) =: 1/s'.$$

Union-bound argument: (use covering argument for compact continuous Λ)

$$\mathbb{P}_{\mathfrak{D}_{N}}\left\{\sup_{\lambda\in\Lambda}c(\lambda)>s'\right\}=\mathbb{P}_{\mathfrak{D}_{N}}\left\{\bigcup_{\lambda\in\Lambda}\left\{c(\lambda)>s'\right\}\right\}\leq\sum_{\lambda\in\Lambda}\mathbb{P}_{\mathfrak{D}_{N}}\left\{\left\{c(\lambda)>s'\right\}\right\}\leq|\Lambda|/s'=:\varepsilon$$



**Theorem:** If  $\mathbb{E}_{\mathfrak{D}_N}[c(\lambda)] \leq 1$ , then for all  $\varepsilon > 0$ :

 $\mathbb{P}_{\mathfrak{D}_{N}}\big\{\forall \lambda \in \Lambda \colon \forall \mathbb{Q} \ll \mathbb{P}_{\mathfrak{H}} \colon \mathbb{E}_{\mathbb{Q}}\big[\langle \eta(\lambda), T \rangle\big] \leq D_{\mathrm{KL}}(\mathbb{Q} \parallel \mathbb{P}_{\mathfrak{H}}) + \log(|\Lambda|/\varepsilon)\big\} \geq 1 - \varepsilon$ 

### Sketch of Proof.

Use Markov's inequality

$$\mathbb{P}_{\mathfrak{D}_{N}}\left\{c(\lambda) \geq \exp(s)\right\} \leq \frac{\mathbb{E}_{\mathfrak{D}_{N}}\left[c(\lambda)\right]}{\exp(s)} \leq 1/\exp(s) =: 1/s'.$$

Union-bound argument: (use covering argument for compact continuous Λ)

$$\mathbb{P}_{\mathfrak{D}_{N}}\left\{\sup_{\lambda\in\Lambda}c(\lambda)>s'\right\}=\mathbb{P}_{\mathfrak{D}_{N}}\left\{\bigcup_{\lambda\in\Lambda}\left\{c(\lambda)>s'\right\}\right\}\leq\sum_{\lambda\in\Lambda}\mathbb{P}_{\mathfrak{D}_{N}}\left\{\left\{c(\lambda)>s'\right\}\right\}\leq|\Lambda|/s'=:\varepsilon$$

Apply Donsker–Varadhan variational formulation in

$$\mathbb{P}_{\mathfrak{D}_N}\left\{\sup_{\lambda\in\Lambda}\log(c(\lambda))\leq\log(|\Lambda|/\varepsilon)\right\}\geq 1-\varepsilon\,.$$

12/21

## Learning with Guarantees - A Constructive Approach

Specify  $\eta$  and T accordingly to **construct** a PAC-Bayesian generalization bound:

 $\eta(\lambda) = (\eta_1(\lambda), \eta'(\lambda))$ 

and

$$T(\alpha, \mathfrak{D}_N) = (\mathcal{R}(\alpha) - \hat{\mathcal{R}}(\alpha, \mathfrak{D}_N), T'(\alpha, \mathfrak{D}_N)).$$

# Learning with Guarantees - A Constructive Approach

Specify  $\eta$  and T accordingly to **construct** a PAC-Bayesian generalization bound:

 $\eta(\lambda) = (\eta_1(\lambda), \eta'(\lambda))$ 

and

$$T(\alpha, \mathfrak{D}_N) = (\mathcal{R}(\alpha) - \hat{\mathcal{R}}(\alpha, \mathfrak{D}_N), T'(\alpha, \mathfrak{D}_N)).$$

#### This provides a bound of the following form:

**Theorem:** Under mild assumptions, it holds for  $\epsilon > 0$ :

 $\mathbb{P}_{\mathfrak{D}_N}\big\{\forall\lambda\in\Lambda,\;\forall\mathbb{Q}\ll\mathbb{P}_{\mathfrak{H}}\;:\;\mathbb{E}_{\mathbb{Q}}[\mathcal{R}]\leq\mathbb{E}_{\mathbb{Q}}[\hat{\mathcal{R}}]+G(N,\lambda,\mathbb{Q},\epsilon)\big\}\geq1-\epsilon\,.$ 

### Note:

- (i) By the definition of the risk and the algorithm, this bound gives a guarantee for the **function value of the algorithm's output**.
- (ii) This is a statement about **relative** values, **not absolute** ones.



# Learning with Guarantees - A Constructive Approach

Specify  $\eta$  and T accordingly to **construct** a PAC-Bayesian generalization bound:

 $\eta(\lambda) = (\eta_1(\lambda), \eta'(\lambda))$ 

and

$$T(\alpha, \mathfrak{D}_N) = (\mathcal{R}(\alpha) - \hat{\mathcal{R}}(\alpha, \mathfrak{D}_N), T'(\alpha, \mathfrak{D}_N)).$$

#### This provides a bound of the following form:

**Theorem:** Under mild assumptions, it holds for  $\epsilon > 0$ :

 $\mathbb{P}_{\mathfrak{D}_N}\left\{\forall \lambda \in \Lambda, \ \forall \mathbb{Q} \ll \mathbb{P}_{\mathfrak{H}} \ : \ \mathbb{E}_{\mathbb{Q}}[\mathcal{R}] \leq \mathbb{E}_{\mathbb{Q}}[\hat{\mathcal{R}}] + G(N, \lambda, \mathbb{Q}, \epsilon)\right\} \geq 1 - \epsilon \,.$ 

### Note:

- (i) By the definition of the risk and the algorithm, this bound gives a guarantee for the **function value of the algorithm's output**.
- (ii) This is a statement about **relative** values, **not absolute** ones.
- Since supremum is attained at  $\mathbb{Q}_{\lambda}$ , learning can be phrased as an **optimization in**  $\lambda$  (possibly very low-dimensional).



# Simple Case Study: Gradient Descent

### Issue: A bad performance on a single problem dominates the average.

- Sometimes, analytic worst-case bounds are sharp.
- Gradient Descent on quadratics diverges for  $\alpha > 2/L$ .
- Trying to learn the step size (without this bound) yields an extremely large loss for  $\alpha > 2/L$ , which dominates the cost of the "average performance" (the empirical risk). Therefore, learnable step sizes obey the deterministic step size rule  $\alpha \in (0, 2/L)$ .



In this case, the analytically best known step size is recoverd by learning.



We develop a variant that allows to Trade-Off Guarantees and Speed.



We develop a variant that allows to Trade-Off Guarantees and Speed.

The algorithm may diverge (for extreme cases), if this happens in rare cases and the Trade-Off can be controlled.

We develop a variant that allows to Trade-Off Guarantees and Speed.

The algorithm may diverge (for extreme cases), if this happens in rare cases and the Trade-Off can be controlled.

• Account for **likelihood** of e.g. the worst-case.



We develop a variant that allows to Trade-Off Guarantees and Speed.

The algorithm may diverge (for extreme cases), if this happens in rare cases and the Trade-Off can be controlled.

- Account for **likelihood** of e.g. the worst-case.
- **Encode** properties of the algorithm in the convergence set  $C \subset \mathcal{H} \times \Theta$ , e.g.,

$$C_{\alpha} := \{ \theta \in \Theta : \ell(\mathcal{A}(\alpha, \theta), \theta) \le \ell(x^{(0)}, \theta) \}.$$





We develop a variant that allows to Trade-Off Guarantees and Speed.

The algorithm may diverge (for extreme cases), if this happens in rare cases and the Trade-Off can be controlled.

• Account for **likelihood** of e.g. the worst-case.

• **Encode** properties of the algorithm in the convergence set  $C \subset \mathcal{H} \times \Theta$ , e.g.,

$$C_{\alpha} := \{ \theta \in \Theta : \ell(\mathcal{A}(\alpha, \theta), \theta) \le \ell(x^{(0)}, \theta) \}.$$

• **Condition** on it to get the convergence risk  $\mathcal{R}_c \colon \mathcal{H} \to \mathbb{R}_{\geq 0}$ :

$$\mathcal{R}_c(\alpha) := \mathbb{E}\left[\ell(\mathcal{A}(\alpha, \mathfrak{S}), \mathfrak{S}) \mid C_\alpha\right].$$

We develop a variant that allows to Trade-Off Guarantees and Speed.

The algorithm may diverge (for extreme cases), if this happens in rare cases and the Trade-Off can be controlled.

• Account for **likelihood** of e.g. the worst-case.

• **Encode** properties of the algorithm in the convergence set  $C \subset H \times \Theta$ , e.g.,

$$C_{\alpha} := \{ \theta \in \Theta : \ell(\mathcal{A}(\alpha, \theta), \theta) \le \ell(x^{(0)}, \theta) \}.$$

• **Condition** on it to get the convergence risk  $\mathcal{R}_c \colon \mathcal{H} \to \mathbb{R}_{\geq 0}$ :

$$\mathcal{R}_{c}(\alpha) := \mathbb{E}\big[\ell(\mathcal{A}(\alpha,\mathfrak{S}),\mathfrak{S}) \mid C_{\alpha}\big].$$

◆ Guarantees in form of the convergence probability P<sub>☉</sub>[C<sub>α</sub>] instead of convergence for every sample.



## **Trade-Off Guarantees and Speed**

Applying the same machinery again yields the following generalization:

**Theorem:** Under mild assumptions, it holds for  $\varepsilon > 0$ :

 $\mathbb{P}_{\mathfrak{D}_N}\left\{\forall \lambda \in \Lambda, \forall \mathbb{Q} \ll \mathbb{P}_{\mathfrak{H}} \; : \; \mathbb{E}_{\mathbb{Q}}[\mathcal{R}_c] \leq \mathbb{E}_{\mathbb{Q}}[\hat{\mathcal{R}}_c] + G(N, \lambda, \mathbb{Q}, \varepsilon)\right\} \geq 1 - \varepsilon \, .$ 



Applying the same machinery again yields the following generalization:

**Theorem:** Under mild assumptions, it holds for  $\varepsilon > 0$ :

 $\mathbb{P}_{\mathfrak{D}_N} \left\{ \forall \lambda \in \Lambda, \forall \mathbb{Q} \ll \mathbb{P}_{\mathfrak{H}} \ : \ \mathbb{E}_{\mathbb{Q}}[\mathcal{R}_c] \leq \mathbb{E}_{\mathbb{Q}}[\hat{\mathcal{R}}_c] + G(N, \lambda, \mathbb{Q}, \varepsilon) \right\} \geq 1 - \varepsilon \,.$ 

- Learning must achieve that A converges for "sufficiently many problems" (according to the convergence probability).
- Therefore, the algorithm can focus on quickly solving the remaining problems.

16/21

Applying the same machinery again yields the following generalization:

**Theorem:** Under mild assumptions, it holds for  $\varepsilon > 0$ :

 $\mathbb{P}_{\mathfrak{D}_N} \left\{ \forall \lambda \in \Lambda, \forall \mathbb{Q} \ll \mathbb{P}_{\mathfrak{H}} \ : \ \mathbb{E}_{\mathbb{Q}}[\mathcal{R}_c] \leq \mathbb{E}_{\mathbb{Q}}[\hat{\mathcal{R}}_c] + G(N, \lambda, \mathbb{Q}, \varepsilon) \right\} \geq 1 - \varepsilon \,.$ 

- Learning must achieve that A converges for "sufficiently many problems" (according to the convergence probability).
- Therefore, the algorithm can focus on quickly solving the remaining problems.
- **Example Statement:** With high probability, the algorithm that is trained to optimize 95% of all problems in  $\mathfrak{D}_N$  quickly, will optimize 95% of all problems quickly.



## **The Whole Training Process**



1) Find a "trainable" initialization by following another algorithm.



3) Run a specifically constrained sampling procedure.







4) Find  $\lambda^*$  and perform a reweighting based on closed-form of the posterior.

17/21



## Learn an Algorithm to Train 2-Layer Regression Networks

Training a 2-layer neural network with ReLUactivations ...

... to perform regression.

0.5 1.0

0.5

gt

1.0 1.5

obs.



### **Results**



Cumulative Time to Solve the Test Set





© 2023 — Peter Ochs Mathematical Optimization for Data Science

# Learning gets faster...





© 2023 - Peter Ochs

Mathematical Optimization for Data Science

# Conclusion



Breaking the barrier of worst-case estimates

$$\min_{\alpha \in \mathcal{H}} \mathcal{R}(\alpha), \quad \mathcal{R}(\alpha) := \mathbb{E}\big[\ell\big(\mathcal{A}(\alpha,\mathfrak{S}),\mathfrak{S}\big)\big].$$

by learning spezialized optimization algorithms

$$\min_{\alpha \in \mathcal{H}} \hat{\mathcal{R}}(\alpha, \mathfrak{D}_N), \quad \hat{\mathcal{R}}(\alpha, \mathfrak{D}_N) := \frac{1}{N} \sum_{i=1}^N \ell(\mathcal{A}(\alpha, \mathfrak{S}_i), \mathfrak{S}_i).$$

with theoretical guarantees via PAC-Bayes generalization bounds:

 $\mathbb{P}_{\mathfrak{D}_N} \big\{ \forall \lambda \in \Lambda, \; \forall \mathbb{Q} \ll \mathbb{P}_{\mathfrak{H}} \; : \; \mathbb{E}_{\mathbb{Q}}[\mathcal{R}] \leq \mathbb{E}_{\mathbb{Q}}[\hat{\mathcal{R}}] + G(N, \lambda, \mathbb{Q}, \epsilon) \big\} \geq 1 - \epsilon \, .$ 

