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Matrix Factorization

A class of matrix factorization problems
I Decompose matrix A into product UZ with matrices U and Z:

A ≈ UZ
I Applications require certain properties of U and Z, e.g. sparsity,

non-negativity, uni row/column sum, low-rank, . . .

I Non-smooth non-convex Optimization problem:

min
U,Z

1

2
‖A− UZ‖2F +R1(U) +R2(Z)

I R1 and R2 can be non-convex regularization terms or constraints.

Outlook: Deep Linear Neural Networks / Deep Matrix Factorization

min
W1,...,WN

1

2
‖Y −W1W2 · · ·WNX‖2F +

N∑
i=1

Ri(Wi)
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Matrix Factorization: Alternating Minimization

How to solve the problem?

min
U,Z

Q(U,Z) +R1(U) +R2(Z) , Q(U,Z) :=
1

2
‖A− UZ‖2F

I Alternating Minimization:

U (k+1) ∈ argmin
U

Q(U,Z(k)) +R1(U)

Z(k+1) ∈ argmin
Z

Q(U (k+1), Z) +R2(Z)

I Often biased towards one of the variables.

I Can be slow.

I Almost no convergence guarantees in non-smooth setting.

I Variant: HALS [Cichocki, Phan 09]:
AM on columns of U and Z (closed form updates for NMF).
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Matrix Factorization: PALM

min
U,Z

Q(U,Z) +R1(U) +R2(Z) , Q(U,Z) :=
1

2
‖A− UZ‖2F

I Proximal Alternating Linearized Min. (PALM) [Bolte, Sabach, Teboulle 14]

U (k+1) ∈ proxτkR1

(
U (k) − τk∇UQ(U (k), Z(k))

)
Z(k+1) ∈ proxσkR2

(
Z(k) − σk∇ZQ(U (k+1), Z(k))

)
with step sizes 0 < τk < 1/L1(Z

(k)) and 0 < σk < 1/L2(U
(k+1)).

I Computing L1 and L2 can be costly or require severe overestimation.

I Often biased towards one of the variables.

I Guarantees convergence to stationary point.

I Variants: PALM, iPALM, BCD, BC-VMFB, . . .
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Matrix Factorization: Proximal Gradient Method

min
U,Z

Q(U,Z) +R1(U) +R2(Z) , Q(U,Z) :=
1

2
‖A− UZ‖2F

I Proximal Gradient Descent

(U (k+1), Z(k+1)) ∈ proxτkR1⊕R2

(
(U (k), Z(k))− τk∇Q(U (k), Z(k))

)
with step sizes τk computed by (backtracking) line search.

I ∇Q is not Lipschitz continuous.

I Procedure can be arbitrarily slow.

I Line search requires extra loop and function evaluations.

I Guarantees convergence to stationary point.
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Lack of Lipschitz Continuity

Relative Smoothness:
I Concept proposed by [Birnbaum, Devanur, Xiao 2011].

I Popularized by [Bauschke, Bolte, Teboulle 2017] and [Bolte et al. 2018].

I Idea: Key for convergence analysis is
the Descent Lemma.

 Quadratic upper and lower bounds.

∇f is L-Lipschitz

=⇒ |f(x)−f(x̄)−〈∇f(x̄), x−x̄〉| ≤ L

2
‖x−x̄‖2

x̄
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Lack of Lipschitz Continuity

Relative Smoothness (cont.):
I Simple functions like x4 do not allow for quadratic bounds:

I Same situation in Matrix Factorization, e.g., for Z = U>:

Q(U,U>) =
1

2
‖A− UU>‖2F polynomial of degree 4 in U

© 2021 — Peter Ochs MOP Group University of Tuebingen 7 / 15



Lack of Lipschitz Continuity

Relative Smoothness (cont.):
I Remedy: Generalized Descent Lemma w.r.t. Bregman distances:

−LDh(x, x̄) ≤ f(x)− f(x̄)− 〈∇f(x̄), x− x̄〉 ≤ LDh(x, x̄)

 Define: f is L-relatively smooth w.r.t. h. (Also called L-smad).

I Bregman distance: (generalized distance measure)

Dh(x, x̄) := h(x)− h(x̄)− 〈∇h(x̄), x− x̄〉 .

I h is assumed to have good properties (Legendre function).

 upper and lower bounds are adapted to the objective.
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Bregman Proximal Gradient Algorithm

Bregman Proximal Gradient Algorithm [Bolte, Sabach, Teboulle, Vaisbourd 18]

I BGP for Matrix Factorization Problem: [Mukkamala, O. 19]

min
U,Z

Q(U,Z) +R1(U) +R2(Z)

Q is L-relatively smooth w.r.t. some h (see next slide).

I Update step:

C(k) := ∇Q(U (k), Z(k))− 1

τ
∇h(U (k), Z(k))

(U (k+1), Z(k+1)) ∈ argmin
U,Z

R1(U) +R2(Z) + 〈C(k), (U,Z)〉+
1

τ
h(U,Z)

with step size τ < 1/L.

I Guarantees convergence to a stationary point.
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New Bregman Distance for Matrix Factorization

New Bregman Distance for Matrix Factorization [Mukkamala, O. 19]

I Q(U,Z) = 1
2‖A− UZ‖2F is relatively smooth w.r.t.

h(U,Z) = 3

(
‖U‖2F + ‖Z‖2F

2

)2

+ ‖A‖F
(
‖U‖2F + ‖Z‖2F

2

)
.

I The update step can be computed efficiently (in closed form) for
‖ · ‖2F , ‖ · ‖1, ‖ · ‖∗, `0-sparsity constraints, non-negativity constraints.

I Usually reduces to a nesting of the Euclidean proximal mapping with
a one dimensional root finding problem of a cubic polynomial.

I Symmetric MF setting developed in [Dragomir, Bolte, d’Aspremont 19].
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New Bregman Distance for Matrix Factorization

Modifications:
I Matrix completion

I All Bregman based algorithms can be used !

I BPG for MF can be extended to inertial algorithms such as CoCaIn
[Mukkamala, Ochs, Pock, Sabach 20].

I There are stochastic variants of BPG.
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Numerical Experiment on MovieLens

Matrix Completion on MovieLens Datasets:
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Deep Linear Neural Networks

Deep Linear Neural Networks or Deep Matrix Factorization:

min
W1,...,WN

1

2
‖Y −W1W2 · · ·WNX‖2F +

N∑
i=1

Ri(Wi)

I Write: W := (W1, . . . ,WN ) and ‖W ‖2F :=
∑N

i=1 ‖Wi‖2F .

I [Mukkamala et al. 2021] shows relative smoothness w.r.t.

h(W ) =


‖X‖2F
NN−2 ‖W ‖2NF + ‖Y ‖F ‖X‖F

(N−2)
N−2

2

‖W ‖NF , if N is even

‖X‖2F
NN−2 ‖W ‖2NF + ‖Y ‖F ‖X‖F

(N−1)
N−1

2

(
‖W ‖2F + 1

)N+1
2
, if N is odd .

 optimization / training with constant step size rule using BPG.
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Matrix Completion on MovieLens Datasets

Matrix Completion on MovieLens Datasets:

L2-Regularization (N = 4)
MovieLens-100K

L1-Regularization (N = 4)
MovieLens-100K
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Summary

Summary:
I Matrix factorization problems are usually solved by alternating

minimization or a line search based Proximal Gradient Algorithm.

I Remedy by Bregman Proximal Gradient Algorithm and the concept
of relative smoothness.

 Adapts algorithm to geometry of given problem.

I Objective in Matrix Factorization and Deep Linear Networks are
relatively smooth.

I Allows variants of BPG to be applied.

© 2021 — Peter Ochs MOP Group University of Tuebingen 15 / 15


