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Matrix Factorization

A class of matrix factorization problems
Decompose matrix A into product U~Z with matrices U and Z:

A=UZ

Applications require certain properties of U and Z, e.g. sparsity,
non-negativity, uni row/column sum, low-rank, . ..

Non-smooth non-convex Optimization problem:
1
. - A o 2
min o ||A = UZ|[r + Ra(U) + Ra(2)
R1 and Rs can be non-convex regularization terms or constraints.

Outlook: Deep Linear Neural Networks / Deep Matrix Factorization
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Matrix Factorization: Alternating Minimization

How to solve the problem?

win QU 2) + Ra(U) + Ral2), Q(U.2) i= 414~ UZ|}
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Matrix Factorization: Alternating Minimization

How to solve the problem?

. 1
Alternating Minimization:

U+l ¢ argénin QU, ZWY + Ry (U)
Z0+D ¢ arg;nin QU 7Y + Ry(2)
Often biased towards one of the variables.
Can be slow.
Almost no convergence guarantees in non-smooth setting.

Variant: HALS [Cichocki, Phan 09]:
AM on columns of U and Z (closed form updates for NMF).
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Matrix Factorization: PALM

min QUU.2) + Ra(U) + Ra(Z),  QUU.Z) =44~ UZ|}:
Proximal Alternating Linearized Min. (PALM) [Bolte, Sabach, Teboulle 14]
U+l ¢ prox,, », (U(k) — TV QU®, Z(k))>
2% € prox, x, (Z(k) — V2 QUEHD), Z(k>))
with step sizes 0 < 7, < 1/L1(Z®) and 0 < o}, < 1/Ly(U*+D).
Computing L, and L, can be costly or require severe overestimation.
Often biased towards one of the variables.

Guarantees convergence to stationary point.

Variants: PALM, iPALM, BCD, BC-VMFB, ...
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Matrix Factorization: Proximal Gradient Method

mip Q(U,2) + Ra(U) + Ra(Z),  Q(UZ) = 5|l A~ U2

Proximal Gradient Descent
U, 20D € prox, » om. ((U(k), 2" — 1 vQU®, Z<k>))
with step sizes 7, computed by (backtracking) line search.
V@ is not Lipschitz continuous.
Procedure can be arbitrarily slow.
Line search requires extra loop and function evaluations.

Guarantees convergence to stationary point.
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Lack of Lipschitz Continuity

Relative Smoothness:
> Concept proposed by [Birnbaum, Devanur, Xiao 2011].

» Popularized by [Bauschke, Bolte, Teboulle 2017] @and [Bolte et al. 2018].

» Idea: Key for convergence analysis is
the Descent Lemma.

~ Quadratic upper and lower bounds.

V fis L-Lipschitz

= |f (@)= f(2)=(Vf(2), 2—7)| < g!lx—f!F
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Lack of Lipschitz Continuity

Relative Smoothness (cont.):
» Simple functions like 2* do not allow for quadratic bounds:

A

» Same situation in Matrix Factorization, e.g., for Z = U ':

QU,UT) = %HA _UUT|%  polynomial of degree 4 in U
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Lack of Lipschitz Continuity

Relative Smoothness (cont.):
» Remedy: Generalized Descent Lemma w.r.t. Bregman distances:

—LDy(x,7) < f(z) = f(2) = (Vf(2),2 — 3) < LDy(z,)

~ Define: f is L-relatively smooth w.r.t. h. (Also called L-smad).

» Bregman distance: (generalized distance measure)
Dy(x,z) :== h(x) — h(Z) — (Vh(Z),z — T) .

» his assumed to have good properties (Legendre function).

~ upper and lower bounds are adapted to the objective.
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Bregman Proximal Gradient Algorithm

Bregman Proximal Gradient Algorithm [Bolte, Sabach, Teboulle, Vaisbourd 18]
BGP for Matrix Factorization Problem: [Mukkamala, 0. 19]

IgiZHQ(Ua Z) + Ri(U) + R2(Z2)
Q) is L-relatively smooth w.r.t. some / (see next slide).
Update step:
W .= vo®, 0y — Lgpw®, zk)
T

1
(U*HD 20Dy € argmin Ry (U) 4+ Ra(Z) + (CW) (U, Z)) + ;h(U’ Z)
U,z

with step size 7 < 1/L.

Guarantees convergence to a stationary point.
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New Bregman Distance for Matrix Factorization

New Bregman Distance for Matrix Factorization [Mukkamala, O. 19]

QU Z) = 3|A—UZ|3% is relatively smooth w.r..

2
1U11% + || Z||3 UlZ + | Z]|?
h(U’Z):?’(’HFQHHF +[[Allr H”FZHHF ‘

The update step can be computed efficiently (in closed form) for
|- N1%, I - [I1, || - |l«, £o-sparsity constraints, non-negativity constraints.

Usually reduces to a nesting of the Euclidean proximal mapping with
a one dimensional root finding problem of a cubic polynomial.

Symmetric MF setting developed in [Dragomir, Bolte, d'Aspremont 19].
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New Bregman Distance for Matrix Factorization

Modifications:
» Matrix completion

» All Bregman based algorithms can be used !

» BPG for MF can be extended to inertial algorithms such as CoCaln
[Mukkamala, Ochs, Pock, Sabach 20].

> There are stochastic variants of BPG.
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Numerical Experiment on MovieLens

Matrix Completion on MovielLens Datasets:
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Deep Linear Neural Networks

Deep Linear Neural Networks or Deep Matrix Factorization:

N
—Y WiWsy - Wy X2 R (W,
Wlf,nij | W Wy ”F+; (W3)
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Deep Linear Neural Networks

Deep Linear Neural Networks or Deep Matrix Factorization:

N
—Y WiWsy - Wy X2 R (W,
er,H,WN | W Wy ”F+; (W3)

> Write: W := (Wy,...,Wy) and [W]% := SN, |Wi[2.

P [Mukkamala et al. 2021] Shows relative smoothness w.r.t.

NN 2HWH2N + MIIWHN if N is even
h(W) = (V=2)"2" N+1
ash 2||W||2N+M(||W||2 +1) > ifNisodd.
(N—1

-~ optimization / training with constant step size rule using BPG.
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Matrix Completion on MovieLens Datasets

Matrix Completion on MovielLens Datasets:
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Summary

Summary:

Matrix factorization problems are usually solved by alternating
minimization or a line search based Proximal Gradient Algorithm.

Remedy by Bregman Proximal Gradient Algorithm and the concept
of relative smoothness.

Adapts algorithm to geometry of given problem.

Objective in Matrix Factorization and Deep Linear Networks are
relatively smooth.

Allows variants of BPG to be applied.
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