GAMM2020@21, University of Kassel

Bregman Proximal Gradient Framework for Deep Linear Neural Networks

Peter Ochs
Mathematical Optimization Group
— 16.03.2021 —

EBERHARD KARLS
UNIVERSITAT TUBINGEN

Matrix Factorization

A class of matrix factorization problems

- Decompose matrix A into product $U Z$ with matrices U and Z :

$$
A \approx U Z
$$

- Applications require certain properties of U and Z, e.g. sparsity, non-negativity, uni row/column sum, low-rank, ...
- Non-smooth non-convex Optimization problem:

$$
\min _{U, Z} \frac{1}{2}\|A-U Z\|_{F}^{2}+\mathcal{R}_{1}(U)+\mathcal{R}_{2}(Z)
$$

- \mathcal{R}_{1} and \mathcal{R}_{2} can be non-convex regularization terms or constraints.

Outlook: Deep Linear Neural Networks / Deep Matrix Factorization

$$
\min _{W_{1}, \ldots, W_{N}} \frac{1}{2}\left\|Y-W_{1} W_{2} \cdots W_{N} X\right\|_{F}^{2}+\sum_{i=1}^{N} \mathcal{R}_{i}\left(W_{i}\right)
$$

Matrix Factorization: Alternating Minimization

How to solve the problem?

$$
\min _{U, Z} Q(U, Z)+\mathcal{R}_{1}(U)+\mathcal{R}_{2}(Z), \quad Q(U, Z):=\frac{1}{2}\|A-U Z\|_{F}^{2}
$$

Matrix Factorization: Alternating Minimization

How to solve the problem?

$$
\min _{U, Z} Q(U, Z)+\mathcal{R}_{1}(U)+\mathcal{R}_{2}(Z), \quad Q(U, Z):=\frac{1}{2}\|A-U Z\|_{F}^{2}
$$

- Alternating Minimization:

$$
\begin{aligned}
& U^{(k+1)} \in \underset{U}{\operatorname{argmin}} Q\left(U, Z^{(k)}\right)+\mathcal{R}_{1}(U) \\
& Z^{(k+1)} \in \underset{Z}{\operatorname{argmin}} Q\left(U^{(k+1)}, Z\right)+\mathcal{R}_{2}(Z)
\end{aligned}
$$

- Often biased towards one of the variables.
- Can be slow.

Almost no convergence guarantees in non-smooth setting.

- Variant: HALS [Cichocki, Phan 09]: AM on columns of U and Z (closed form updates for NMF).
(c) 2021 - Peter Ochs

MOP Group University of Tuebingen

Matrix Factorization: PALM

$$
\min _{U, Z} Q(U, Z)+\mathcal{R}_{1}(U)+\mathcal{R}_{2}(Z), \quad Q(U, Z):=\frac{1}{2}\|A-U Z\|_{F}^{2}
$$

- Proximal Alternating Linearized Min. (PALM) [Bolte, Sabach, Teboulle 14]

$$
\begin{aligned}
& U^{(k+1)} \in \operatorname{prox}_{\tau_{k} \mathcal{R}_{1}}\left(U^{(k)}-\tau_{k} \nabla_{U} Q\left(U^{(k)}, Z^{(k)}\right)\right) \\
& Z^{(k+1)} \in \operatorname{prox}_{\sigma_{k} \mathcal{R}_{2}}\left(Z^{(k)}-\sigma_{k} \nabla_{Z} Q\left(U^{(k+1)}, Z^{(k)}\right)\right)
\end{aligned}
$$

with step sizes $0<\tau_{k}<1 / L_{1}\left(Z^{(k)}\right)$ and $0<\sigma_{k}<1 / L_{2}\left(U^{(k+1)}\right)$.

- Computing L_{1} and L_{2} can be costly or require severe overestimation.
- Often biased towards one of the variables.
- Guarantees convergence to stationary point.
- Variants: PALM, iPALM, BCD, BC-VMFB, ...

Matrix Factorization: Proximal Gradient Method

$$
\min _{U, Z} Q(U, Z)+\mathcal{R}_{1}(U)+\mathcal{R}_{2}(Z), \quad Q(U, Z):=\frac{1}{2}\|A-U Z\|_{F}^{2}
$$

- Proximal Gradient Descent

$$
\left(U^{(k+1)}, Z^{(k+1)}\right) \in \operatorname{prox}_{\tau_{k} \mathcal{R}_{1} \oplus \mathcal{R}_{2}}\left(\left(U^{(k)}, Z^{(k)}\right)-\tau_{k} \nabla Q\left(U^{(k)}, Z^{(k)}\right)\right)
$$

with step sizes τ_{k} computed by (backtracking) line search.

- ∇Q is not Lipschitz continuous.
- Procedure can be arbitrarily slow.
- Line search requires extra loop and function evaluations.
- Guarantees convergence to stationary point.

Lack of Lipschitz Continuity

Relative Smoothness:

- Concept proposed by [Birnbaum, Devanur, Xiao 2011].
- Popularized by [Bauschke, Bolte, Teboulle 2017] and [Bolte et al. 2018].
- Idea: Key for convergence analysis is the Descent Lemma.
\rightsquigarrow Quadratic upper and lower bounds.
∇f is L-Lipschitz
$\Longrightarrow|f(x)-f(\bar{x})-\langle\nabla f(\bar{x}), x-\bar{x}\rangle| \leq \frac{L}{2}\|x-\bar{x}\|^{2}$

Lack of Lipschitz Continuity

Relative Smoothness (cont.):

- Simple functions like x^{4} do not allow for quadratic bounds:

- Same situation in Matrix Factorization, e.g., for $Z=U^{\top}$:

$$
Q\left(U, U^{\top}\right)=\frac{1}{2}\left\|A-U U^{\top}\right\|_{F}^{2} \quad \text { polynomial of degree } 4 \text { in } U
$$

Lack of Lipschitz Continuity

Relative Smoothness (cont.):

- Remedy: Generalized Descent Lemma w.r.t. Bregman distances:

$$
-\underline{L} D_{h}(x, \bar{x}) \leq f(x)-f(\bar{x})-\langle\nabla f(\bar{x}), x-\bar{x}\rangle \leq \bar{L} D_{h}(x, \bar{x})
$$

Define: f is L-relatively smooth w.r.t. h. (Also called L-smad).

- Bregman distance: (generalized distance measure)

$$
D_{h}(x, \bar{x}):=h(x)-h(\bar{x})-\langle\nabla h(\bar{x}), x-\bar{x}\rangle .
$$

- h is assumed to have good properties (Legendre function).
\rightsquigarrow upper and lower bounds are adapted to the objective.

Bregman Proximal Gradient Algorithm

Bregman Proximal Gradient Algorithm [Bolte, Sabach, Teboulle, Vaisbourd 18]

- BGP for Matrix Factorization Problem: [Mukkamala, O. 19]

$$
\min _{U, Z} Q(U, Z)+\mathcal{R}_{1}(U)+\mathcal{R}_{2}(Z)
$$

Q is L-relatively smooth w.r.t. some h (see next slide).

Update step:

$$
C^{(k)}:=\nabla Q\left(U^{(k)}, Z^{(k)}\right)-\frac{1}{\tau} \nabla h\left(U^{(k)}, Z^{(k)}\right)
$$

$\left(U^{(k+1)}, Z^{(k+1)}\right) \in \underset{U, Z}{\operatorname{argmin}} \mathcal{R}_{1}(U)+\mathcal{R}_{2}(Z)+\left\langle C^{(k)},(U, Z)\right\rangle+\frac{1}{\tau} h(U, Z)$
with step size $\tau<1 / L$.

- Guarantees convergence to a stationary point.

New Bregman Distance for Matrix Factorization

New Bregman Distance for Matrix Factorization [Mukkamala, o. 19]

- $Q(U, Z)=\frac{1}{2}\|A-U Z\|_{F}^{2}$ is relatively smooth w.r.t.

$$
h(U, Z)=3\left(\frac{\|U\|_{F}^{2}+\|Z\|_{F}^{2}}{2}\right)^{2}+\|A\|_{F}\left(\frac{\|U\|_{F}^{2}+\|Z\|_{F}^{2}}{2}\right) .
$$

- The update step can be computed efficiently (in closed form) for $\|\cdot\|_{F}^{2},\|\cdot\|_{1},\|\cdot\|_{*}, \ell_{0}$-sparsity constraints, non-negativity constraints.
- Usually reduces to a nesting of the Euclidean proximal mapping with a one dimensional root finding problem of a cubic polynomial.
- Symmetric MF setting developed in [Dragomir, Bolte, d'Aspremont 19].

New Bregman Distance for Matrix Factorization

Modifications:

- Matrix completion
- All Bregman based algorithms can be used!
- BPG for MF can be extended to inertial algorithms such as CoCaln [Mukkamala, Ochs, Pock, Sabach 20].
- There are stochastic variants of BPG.

Numerical Experiment on MovieLens

Matrix Completion on MovieLens Datasets:

MovieLens-100K

MovieLens-1M

Deep Linear Neural Networks

Deep Linear Neural Networks or Deep Matrix Factorization:

$$
\min _{W_{1}, \ldots, W_{N}} \frac{1}{2}\left\|Y-W_{1} W_{2} \cdots W_{N} X\right\|_{F}^{2}+\sum_{i=1}^{N} \mathcal{R}_{i}\left(W_{i}\right)
$$

Deep Linear Neural Networks

Deep Linear Neural Networks or Deep Matrix Factorization:

$$
\min _{W_{1}, \ldots, W_{N}} \frac{1}{2}\left\|Y-W_{1} W_{2} \cdots W_{N} X\right\|_{F}^{2}+\sum_{i=1}^{N} \mathcal{R}_{i}\left(W_{i}\right)
$$

- Write: $\boldsymbol{W}:=\left(W_{1}, \ldots, W_{N}\right)$ and $\|\boldsymbol{W}\|_{F}^{2}:=\sum_{i=1}^{N}\left\|W_{i}\right\|_{F}^{2}$.
- [Mukkamala et al. 2021] shows relative smoothness w.r.t.
$h(\boldsymbol{W})= \begin{cases}\frac{\|X\|_{F}^{2}}{N^{N-2}}\|\boldsymbol{W}\|_{F}^{2 N}+\frac{\|Y\|_{F}\|X\|_{F}}{(N-2)^{\frac{N-2}{2}}}\|\boldsymbol{W}\|_{F}^{N}, & \text { if } N \text { is even } \\ \frac{\|X\|_{F}^{2}}{N^{N-2}}\|\boldsymbol{W}\|_{F}^{2 N}+\frac{\|Y\|_{F}\|X\|_{F}}{(N-1)^{\frac{N-1}{2}}}\left(\|\boldsymbol{W}\|_{F}^{2}+1\right)^{\frac{N+1}{2}}, & \text { if } N \text { is odd } .\end{cases}$
optimization / training with constant step size rule using BPG.

Matrix Completion on MovieLens Datasets

Matrix Completion on MovieLens Datasets:

L2-Regularization ($N=4$) MovieLens-100K

L1-Regularization ($N=4$) MovieLens-100K

Summary

Summary:

- Matrix factorization problems are usually solved by alternating minimization or a line search based Proximal Gradient Algorithm.
- Remedy by Bregman Proximal Gradient Algorithm and the concept of relative smoothness.
\rightsquigarrow Adapts algorithm to geometry of given problem.
- Objective in Matrix Factorization and Deep Linear Networks are relatively smooth.
- Allows variants of BPG to be applied.

