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Supervised Learning

Supervised Learning:
» Goal: learn (parametric) estimator N'(-;6): X — ) satisfying

N(z;0) ~y forP-a.e. pair (z,y) € ¥ x V.
» Minimize the expected error of a loss function L:

min g (L (2;6),4)] = min /X O (w:0),) dB(a).

0eRN 0eRN

» We optimize the empirical risk on a finite training set X x Y:

i > LWN(x;0),y)
(z,y)eX XY

Supervised Learning
is an interpolation/regression problem.
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Low Dimensional Interpolation

Low Dimensional Interpolation: (A simplified view)
» Consider 1D setting: X x Y = [-1,1] x Rand X = {xy,...,zap}.

» Interpolation using splines.

» Kernel Method: Minimization of regularized empirical risk (over RKHS ;)

ain > LW@.)+ IV
(z,y) EX XY

yields estimator of the form
M
N(z;0) = Z k(@)
i=1

with positive definite kernel k: X x X — R.

» Close relation to spline interpolation.
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High Dimensional Interpolation

High Dimensional Interpolation:
» Parametric estimator is a Neural Network N (z; 6).

> N (z;0) has special composite structure (architecture):
N(z;0) =Wt (.o (W (o (Wo2)))...), 6:=W°... . Wh).
» Common building blocks are:
» fully connected layer or convolution layer: affine mappings W*.

» RelU activation function: o(x) = max(x, 0) coordinate-wise.
(alternatives: leaky ReLUs, parameterized ReLUs, or maxout units, ...)

~ usually, they discard some information.
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Learn Activation Functions

Learn Activation Functions: [CP15]
» Decouple parameters for each layer [ =1, ..., L (and node 7):

ol(z;0) = Zeé,j @(—lx;:]b
—————

k(““v/"j)

[CP15] [Y. Chen and T. Pock: Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration, TPAMI 2015.]
[SR14] [U. Schmidt and S. Roth: Shrinkage Fields for Effective Image Restoration, CVPR 2014.]
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A Representer Theorem

A Representer Theorem: [Unser18]
» Goal: Optimize the shape of the activation function.

» Choice of regularization:

> favor simple solutions
> weakly differentiable (compatible with backpropagation)
> locally linear (work best in practice)

~ Penalize second derivative (“sparse” second derivative) 7V ().

» Solution of regularized interpolation problem (in BV (?)) is a
piecewise-linear function with max. // — 2 adaptive knots.

» Classic interpolation (Sobolev regularization) requires M knots x4, ... xp;.

[Unser18] [M. Unser: A Representer Theorem for Deep Neural Networks, 2018.]
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Learn Activation Function

Learn Activation Function:
» Learned activation in [CP15] with ¢(z) = max(1 — |z|,0) is an approximation
where knots are fixed equidistantly.

or(x;ﬂ) ioj@(.%A;ﬂ)

JI=l ———
k()

» Example: y1 = —1,u2 =1and Ay = 1:
o(x;0) = 0; max(x,0) — 63 min(z, 0)
» We lift the information in different channels:

e, 0))

min(z, 0)

o(x;0) = U(z) = (

[CP15] [Y. Chen and T. Pock: Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration, TPAMI 2015.]

A © 2019 — Peter Ochs Lifting Layers 7/17



Definition: Lifting Layer

Novel Lifting Layer:
» For equidistant centers 1 < ... < u,, with distance Ap

o(a)

Ux) = eR™

|z —pm |
o)

» Example with hat-function .

> (Left-)inverse lifting ¢7: R™ — R: £1(2) = 300, 2.
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Motivation and Contribution

Contribution:
Novel non-linear layer

with favorable properties
and good practical performance.

Motivation by Functional Lifting in Optimization:
» Make non-convex problems convex in higher dimensional ’lifted’ space.

Properties of our Lifting Layer:
» Naturally, yields linear splines.
» Does not discard information. It is lifted to different channels.

» “Tight” convex approximation of non-convex loss function.

» Good test accuracy in several experiments.
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Properties of Lifting Layer

Properties of Lifting Layer in simple network architectures:
» Fully connected layer z — (0, z), 6 € R™, composed with lifting layer

No(x) := (8, 6()) = Zw('”@f"")
i=1

yields, for example, a linear spline (continuous piecewise linear function).
» Splines are known to have remarkable approximation properties.

> If £ is convex, then finding the best linear spline fit is a convex problem:
N
min } | £((6, £(z1)) 19:)
=1

» Example (not true for ReLUs): ¢ — (max(6,0) — 1)? is non-convex.
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Properties of Lifting Layer

Experiment (1D regression):
» Fit values y; = sin(z;) from input data =; sampled uniformly in [0, 27].

Lift-Net 25 epochs Lift-Net approximation, 75 epochs Lift-Net 200 epochs Lift-Net approximation, 4000 epochs.
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increasing number of epochs

» Top row: lifting-based architecture NVy(x) = (6,49 (z)) (Lift-Net).
> Bottom row: standard design architecture fc; (max(0, fco(z))) (Std-Net).
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Experiment

Experiment (Image Classification): CIFAR-100

> “Deep MNIST for expert model” (ME-model) by TensorFlow
» ME-model+BN = ME-model + batch normalization

» We replace RelUs by lifting layers with L = 3.

4.
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(c) CIFAR-100 Test Error (d) CIFAR-100 Test Loss
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Experiment

Experiment (Image Denoising): BSD68 dataset

> 16 blocks each with 46 convolution filters of size 3 x 3, batch normalization,
lifting layer with L = 3.

» same training pipeline as for the DNCNN-S architecture.

Reconstruction PSNR in [dB]:

| o H noisy [ BM3D [ WNNM [ EPLL [ MLP [ CSF [ TNRD [ DnCNN-S [ Our |
15 || 24.80 | 31.07 | 31.37 | 31.21 = 31.24 | 31.42 31.72 31.72
25 || 20.48 | 28.57 | 28.83 | 28.68 | 28.96 | 28.74 | 28.92 29.21 29.21
50 || 1491 | 25.62 | 25.87 | 25.67 | 26.03 = 25.97 26.21 26.23
[BM3D] [Dabov et al.: Image denoising by sparse 3-d transform-domain collaborative filtering, 2007.]
[WNNM] [Gu et al.: Weighted nuclear norm minimization with application to image denoising, 2014.]
[EPLL] [Zoran, Weiss: From learning models of natural image patches to whole image restoration, 2011.]
[MLP] [Burger et al.: Image denoising: Can plain neural networks compete with BM3D?, 2012]
[CSF] [Schmidt, Roth: Shrinkage fields for effective image restoration, 2014.]
[TNRD] [Chen, Pock: On learning optimized reaction diffusion processes for effective image restoration, 2015.]
[DNCNN-S]

[Zhang et al.: Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising, 2017.]
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Generalization

Generalization (Vector-valued Lifting):
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Lifting the Output

Lifting the Output:

X

(Ne(xi)7yi)

R
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Lifting the Output

Lifting the Output (lift the loss function):

=

(Na(xi)ayi)

i

z = (l;,2)

im(¢,)
N
conv im(¢,)
N

REv
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Lifting the Output

Lifting the Output (try to predict lifted point):

L;
Ti (No (), yi) R
El
Ny T
N
im(¢,)
N

conv im(¢,)
N
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Lifting the Output

Lifting the Output (efficient approximation ~ analytic solution for 6):

)

< T

N

im(l,) o im(¢,)
N N n

REL= conv im(¢,)

N

RIwv
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Experiment

Experiment (Lifting the Output): Robust fitting by truncated linear loss

Normalized cost matrix

(a) Cost matrix ¢

Nonconvex optimization lifted to scalar, 10% outliers

(b) Optimal 6

Nonconvex optimization lfted to scalar, 10% outliers
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(e) Non-convex fit 1
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(f) Non-convex fit 2

ontput lifting fit, 40% outliers
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(c) Resulting fit

Nonconex optimization lifted to scalar, 40% outliers
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(g) Non-convex fit 3

c) Our lifting yields a convex optimization problem.
d) Convex ¢'-loss function.
)

(e)-(f) Direct optimization of truncated linear loss.

£-6it lifted to scalar, 40% ontliers

S0 1 3 4 5 6

(d) Best ¢* fit

Nonconvex optimization lifted o scalar, 40% outliers
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(h) Non-convex fit 4
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Summary

Summary:

o
b.

; ff Introduce novel type of non-linear layer
for neural networks: Lifting Layer

PR
: e

(2) €R®

/\/ Favorable theoretical properties.
E ﬂ The lifting seems to act “convexifying”.

Vector-valued lifting.

Good performance for
Machine Learning and Computer Vision problems.
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