
International BASP Frontiers workshop 2019

Lifting Layers: Analysis and Applications

Peter Ochs

Mathematical Optimization Group
Saarland University

— 03.02.2019 —

joint work: Tim Meinhardt, Laura Leal-Taixe, and Michael Moeller

c© 2019 — Peter Ochs Lifting Layers 1 / 17

Supervised Learning

Supervised Learning:
I Goal: learn (parametric) estimator N (·; θ) : X → Y satisfying

N (x; θ) ≈ y for P-a.e. pair (x, y) ∈ X × Y .

I Minimize the expected error of a loss function L:

min
θ∈RN

E(x,y) [L(N (x; θ), y)] = min
θ∈RN

∫
X×Y

L(N (x; θ), y) dP(x, y) .

I We optimize the empirical risk on a finite training set X × Y :

min
θ∈RN

∑
(x,y)∈X×Y

L(N (x; θ), y)

Supervised Learning
is an interpolation/regression problem.

c© 2019 — Peter Ochs Lifting Layers 2 / 17

Low Dimensional Interpolation

Low Dimensional Interpolation: (A simplified view)
I Consider 1D setting: X × Y = [−1, 1]× R and X = {x1, . . . , xM}.

I Interpolation using splines.

I Kernel Method: Minimization of regularized empirical risk (over RKHS Hk)

min
N∈Hk

∑
(x,y)∈X×Y

L(N (x), y) + ‖N‖

yields estimator of the form

N (x; θ) =

M∑
i=1

θik(x, xi)

with positive definite kernel k : X × X → R.

I Close relation to spline interpolation.

c© 2019 — Peter Ochs Lifting Layers 3 / 17

High Dimensional Interpolation

High Dimensional Interpolation:
I Parametric estimator is a Neural Network N (x; θ).

I N (x; θ) has special composite structure (architecture):

N (x; θ) = WL
(
. . . σ

(
W 1

(
σ
(
W 0x

)))
. . .
)
, θ := (W 0, . . . ,WL) .

I Common building blocks are:

I fully connected layer or convolution layer: affine mappings W i.

I ReLU activation function: σ(x) = max(x, 0) coordinate-wise.
(alternatives: leaky ReLUs, parameterized ReLUs, or maxout units, ...)

 usually, they discard some information.

c© 2019 — Peter Ochs Lifting Layers 4 / 17

Learn Activation Functions

Learn Activation Functions: [CP15]
I Decouple parameters for each layer l = 1, . . . , L (and node i):

σli(x; θ) =

m∑
j=1

θli,j ϕ
(|x− µj |

∆µ

)
︸ ︷︷ ︸

k(x,µj)

[CP15]
[CP15] [Y. Chen and T. Pock: Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration, TPAMI 2015.]

[SR14] [U. Schmidt and S. Roth: Shrinkage Fields for Effective Image Restoration, CVPR 2014.]

c© 2019 — Peter Ochs Lifting Layers 5 / 17

A Representer Theorem

A Representer Theorem: [Unser18]
I Goal: Optimize the shape of the activation function.

I Choice of regularization:
I favor simple solutions
I weakly differentiable (compatible with backpropagation)
I locally linear (work best in practice)

 Penalize second derivative (“sparse” second derivative) TV (2).

I Solution of regularized interpolation problem (in BV (2)) is a
piecewise-linear function with max. M − 2 adaptive knots.

I Classic interpolation (Sobolev regularization) requires M knots x1, . . . xM .

[Unser18] [M. Unser: A Representer Theorem for Deep Neural Networks, 2018.]

c© 2019 — Peter Ochs Lifting Layers 6 / 17

Learn Activation Function

Learn Activation Function:
I Learned activation in [CP15] with ϕ(x) = max(1− |x|, 0) is an approximation

where knots are fixed equidistantly.

σ(x; θ) =

m∑
j=1

θj ϕ
(|x− µj |

∆µ

)
︸ ︷︷ ︸

k(x,µj)

I Example: µ1 = −1, µ2 = 1 and ∆µ = 1:

σ(x; θ) = θ1 max(x, 0)− θ2 min(x, 0)

I We lift the information in different channels:

σ(x; θ) = `(x) =

(
max(x, 0)
min(x, 0)

)
[CP15] [Y. Chen and T. Pock: Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration, TPAMI 2015.]

c© 2019 — Peter Ochs Lifting Layers 7 / 17

Definition: Lifting Layer

Novel Lifting Layer:
I For equidistant centers µ1 < . . . < µm with distance ∆µ

`(x) =


ϕ
(
|x−µ1|

∆µ

)
...

ϕ
(
|x−µm|

∆µ

)
 ∈ Rm

I Example with hat-function ϕ.

µ1 µ4 µ5 µ6µ2 µ3

`(x) ∈ R6

0

0

0

0

0.7

0.3

x

I (Left-)inverse lifting `† : Rm → R: `†(z) =
∑m
i=1 ziµ

i.

c© 2019 — Peter Ochs Lifting Layers 8 / 17

Motivation and Contribution

Contribution:
Novel non-linear layer

with favorable properties
and good practical performance.

Motivation by Functional Lifting in Optimization:
I Make non-convex problems convex in higher dimensional ’lifted’ space.

Properties of our Lifting Layer:
I Naturally, yields linear splines.

I Does not discard information. It is lifted to different channels.

I “Tight” convex approximation of non-convex loss function.

I Good test accuracy in several experiments.

c© 2019 — Peter Ochs Lifting Layers 9 / 17

Properties of Lifting Layer

Properties of Lifting Layer in simple network architectures:
I Fully connected layer z 7→ 〈θ, z〉, θ ∈ Rm, composed with lifting layer

Nθ(x) := 〈θ, `(x)〉 =

m∑
i=1

θiϕ
(|x− µi|

∆µ

)
yields, for example, a linear spline (continuous piecewise linear function).

I Splines are known to have remarkable approximation properties.

I If L is convex, then finding the best linear spline fit is a convex problem:

min
θ

N∑
i=1

L(〈θ, `(xi)〉 ; yi)

I Example (not true for ReLUs): θ 7→ (max(θ, 0)− 1)2 is non-convex.

c© 2019 — Peter Ochs Lifting Layers 10 / 17

Properties of Lifting Layer

Experiment (1D regression):
I Fit values yi = sin(xi) from input data xi sampled uniformly in [0, 2π].

0 1 2 3 4 5 6

-0.5

0

0.5

1

Lift-Net approximation, 25 epochs

0 1 2 3 4 5 6

-1

-0.5

0

0.5

1
Lift-Net approximation, 75 epochs

0 1 2 3 4 5 6

-1

-0.5

0

0.5

1
Lift-Net approximation, 200 epochs

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1
Lift-Net approximation, 4000 epochs

0 1 2 3 4 5 6

-1

-0.5

0

0.5

1

Std-Net approximation, 25 epochs

0 1 2 3 4 5 6
-1

-0.5

0

0.5

Std-Net approximation, 75 epochs

0 1 2 3 4 5 6

-0.5

0

0.5

Std-Net approximation, 200 epochs

0 1 2 3 4 5 6

-1

-0.5

0

0.5

1

Std-Net approximation, 4000 epochs

increasing number of epochs

I Top row: lifting-based architecture Nθ(x) = 〈θ, `9(x)〉 (Lift-Net).
I Bottom row: standard design architecture fc1(max(0, fc9(x))) (Std-Net).

c© 2019 — Peter Ochs Lifting Layers 11 / 17

Experiment

Experiment (Image Classification): CIFAR-100
I “Deep MNIST for expert model” (ME-model) by TensorFlow
I ME-model+BN = ME-model + batch normalization
I We replace ReLUs by lifting layers with L = 3.

0 0.5 1 1.5 2
Iteration 104

50

60

70

80

90

T
es

t E
rr

or
 in

 %

ME-model
ME-model+BN
Large ME-model+BN
Proposed

0 0.5 1 1.5 2
Iteration 104

2

2.5

3

3.5

4

4.5

T
es

t L
os

s

ME-model
ME-model+BN
Large ME-model+BN
Proposed

(c) CIFAR-100 Test Error (d) CIFAR-100 Test Loss

c© 2019 — Peter Ochs Lifting Layers 12 / 17

Experiment

Experiment (Image Denoising): BSD68 dataset
I 16 blocks each with 46 convolution filters of size 3× 3, batch normalization,

lifting layer with L = 3.
I same training pipeline as for the DnCNN-S architecture.

Reconstruction PSNR in [dB]:

σ noisy BM3D WNNM EPLL MLP CSF TNRD DnCNN-S Our
15 24.80 31.07 31.37 31.21 - 31.24 31.42 31.72 31.72
25 20.48 28.57 28.83 28.68 28.96 28.74 28.92 29.21 29.21
50 14.91 25.62 25.87 25.67 26.03 - 25.97 26.21 26.23

[BM3D] [Dabov et al.: Image denoising by sparse 3-d transform-domain collaborative filtering, 2007.]

[WNNM] [Gu et al.: Weighted nuclear norm minimization with application to image denoising, 2014.]

[EPLL] [Zoran, Weiss: From learning models of natural image patches to whole image restoration, 2011.]

[MLP] [Burger et al.: Image denoising: Can plain neural networks compete with BM3D?, 2012]

[CSF] [Schmidt, Roth: Shrinkage fields for effective image restoration, 2014.]

[TNRD] [Chen, Pock: On learning optimized reaction diffusion processes for effective image restoration, 2015.]

[DnCNN-S] [Zhang et al.: Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising, 2017.]

c© 2019 — Peter Ochs Lifting Layers 13 / 17

Generalization

Generalization (Vector-valued Lifting):

Ω =
⋃13
l=1 T

l

V 1 V 2 V 3

V 4 V 5

V 6

V 7

V 8

V 9

V 10

V 11 V 12

T 1

T 2

T 3
T 4

T 5

T 6

T 7 T 8

T 9

T 10 T 11

T 12

T 13

`(x) ∈ R12

0

0

0

0

0

0

0

0

0

0.2

0.5

0.3

x

c© 2019 — Peter Ochs Lifting Layers 14 / 17

Lifting the Output

Lifting the Output:

xi (Nθ(xi), yi) R
Li

c© 2019 — Peter Ochs Lifting Layers 15 / 17

Lifting the Output

Lifting the Output (lift the loss function):

xi (Nθ(xi), yi) R
Li

im(`y)

⊂

conv im(`y)

⊂

RLy

z
7→
〈l
i,
z
〉

c© 2019 — Peter Ochs Lifting Layers 15 / 17

Lifting the Output

Lifting the Output (try to predict lifted point):

xi (Nθ(xi), yi) R
Li

im(`y)

⊂

conv im(`y)

⊂

RLy

z
7→
〈l
i,
z
〉

Ñθ

c© 2019 — Peter Ochs Lifting Layers 15 / 17

Lifting the Output

Lifting the Output (efficient approximation analytic solution for θ̃):

xi Ñθ(xi) R
Li

im(`y)

⊂

conv im(`y)

⊂

RLy

z
7→
〈l
i,
z
〉

im(`x)

⊂
RLx

` x

θ̃ ∈ RL
y×L

x

c© 2019 — Peter Ochs Lifting Layers 15 / 17

Experiment

Experiment (Lifting the Output): Robust fitting by truncated linear loss

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

(a) Cost matrix c (b) Optimal θ (c) Resulting fit (d) Best `1 fit

0 1 2 3 4 5 6

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6

-1

-0.5

0

0.5

1

(e) Non-convex fit 1 (f) Non-convex fit 2 (g) Non-convex fit 3 (h) Non-convex fit 4

(c) Our lifting yields a convex optimization problem.
(d) Convex `1-loss function.

(e)-(f) Direct optimization of truncated linear loss.

c© 2019 — Peter Ochs Lifting Layers 16 / 17

Summary

Summary:

Introduce novel type of non-linear layer
for neural networks: Lifting Layer

Favorable theoretical properties.

The lifting seems to act “convexifying”.

Vector-valued lifting.

Good performance for
Machine Learning and Computer Vision problems.

c© 2019 — Peter Ochs Lifting Layers 17 / 17

