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Overview

min f(z)
Classic setting:
f smooth, non-convex
C compact, convex
Oracle:
y(k) € argmin <Vf(az(k)),y>
yel

Update (line-search for +;):
2®t) = 3y 4 (1 — y3)z® |

Convergence condition:
Armijo line search
Descent Lemma (curv. cond.)
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Generalizing the Descent Lemma

Descent Lemma:
AL > 0: Vx,y:  [|[Vf(z) = Vi)l < Lz -yl

= |f(2) — f(z) = (Vf(2),2 —2)| < § |z - z|?

provides a measure for the linearization error

~» quadratic growth
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Generalizing the Descent Lemma

Generalization of the Descent Lemma:

3 continuous, ¢(0) = 0: Va,y: [V f(z) = Vi(y)| < ¢(llz —yl)

1
= [f(2) = f(@) = (Vf(@),z - D) [ Sw(z —2]), w() :/0 typ(st) ds

provides a measure for the linearization error

~+ growth given by w
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Generalizing the Descent Lemma

Impose Generalization of the Descent Lemma:

Model assumption:

|f(z) = fa(2)] < w(llz — z]])

provides a measure for the approximation error

~+ growth given by “growth function” w
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Model Assumption | f(z) — fz(z)] < w(||z — Z|)

1) (e —al)

1
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Generalized Conditional Gradient Setting

Setting: min f(z)
» C c RY non-empty, compact, convex
> f: RN — (—o0, 0] proper, Isc with dom f c C and bounded below

Growth Function:
» w: Ry — Ry continuous with w(0) = 0 and w/, (0) = 0.

Model Function: For each z:
» proper, Isc, convex function fz: RY — (—oo, oo] (model function)

» dom f = dom fz
> |f(@) - fa(@) Sw(lz—2]), VoeC
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Examples: Generalizing the Descent Lemma

Model Assumption: |f(z) — fz(z)| < w(||z — Z||)

» Example: Additive composite problem:

min f(z), f(x) = glx) + h(z)
zeC non-smooth 1-uniform
convex smooth

» model function:

fz(x) = g(z) + (@) + (VA(Z), 2 — )

» generalized Conditional Gradient oracle:

argmin g(y) + <Vh( k)Y, >

yeC
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Examples: Generalizing the Descent Lemma

Model Assumption: |f(z) — fz(z)| < w(||z — Z||)

» Example: Proximal Gradient Descent:
min f(z), f(z) = g(x) + h(z)

non-smooth  4-uniform
convex smooth

» model function:
1 _
fa(@) = g(z) + h(Z) + (VA(Z),2 = 2) + o3[l — z|?
» generalized Conditional Gradient oracle:

. 1
argmin g(y) + (VA(z®),y) + =lly — 2|
yeC
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Examples: Generalizing the Descent Lemma

Model Assumption: |f(z) — fz(z)| < w(||z — Z||)

» Example: Proximal Gradient Descent:
min f(z), f(z) = g(x) + h(z)

non-smooth  4-uniform
convex smooth

» model function:

fz(z) = g(x) + h(z) + (VA(T),2 — T) + %Ilﬂf - z|?

» generalized Conditional Gradient oracle:

1
argmin +{Vh(z®),y) + —|ly — 2*)|2
EEC 9v) < (=) y> 2)\”y |

» works also with Bregman proximal term

> setting without constraint set: [O., Fadili, Brox 18]
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Examples: Generalizing the Descent Lemma

Model Assumption: |f(z) — fz(z)| < w(||z — Z||)

» Example: Newton—Conditional Gradient:

min f(z), f(z) = g(&) + h(z)

zeC non-smooth  twice diff.
convex 1-uniform
smooth
» model function:
1 _
fa(@) = 9(2) + (@) + (VM(3), 2 = 7) + 5 (2 = T, [V*h(@)]4 (z - 7))

» generalized Conditional Gradient oracle:

. 1
argmin g(y) + (VA(®),y) + 5 (y = 2, [V2RE®)] (y — )
yeC
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Examples: Generalizing the Descent Lemma

Model Assumption: |f(z) — fz(z)| < w(||z — Z||)

» Example: Hybrid Proximal-Conditional Gradient:

min f(xl,.%'g), f(iUl,lL’Q) - 9(371) +h(.’L’1,LL’2)
%g% non-smooth w-uniform

convex smooth

» model function:
fz(@1,32) = h(Z)+(Vh(Z),z - 575>+9(501)+%\|x1—f1“2 , &= (z1,%2)
> generalized Conditional Gradient oracle:
argmin  g(y1) + gxlly1 — (21 + AVin((?, o))

y1€C1

argmin <V2h(xg ), é)),yz>
y2€C2
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Examples: Generalizing the Descent Lemma

Model Assumption: |f(z) — fz(z)| < w(||z — Z||)

» Example: Non-linear composite problems (Gauss—Newton):

rxréiél f(x)’ f(x) - non-s?nooth ( ¢fn(i;‘i2m )

convex
Lipschitz ST

» model function:
fz(z) = g(F(2) + DF(z)(z — 7))
» generalized Conditional Gradient oracle:

argming(F(a:(k)) + DF(z®™)(y — $(k)))
yeC
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Examples: Generalizing the Descent Lemma

Design model functions for your problem

such that the oracle is easy to evaluate !
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Algorithm and Convergence

Model Based Conditional Gradient Method with Line Search:
> Initialization: z(*) ¢ RN and set p € (0, 1).
» Update (k¥ > 0):
> Compute y® € argmin f,0:(y)
yel
) = z(6) 4y (xR — g (k)
with ~;. € [0, 1] determined by backtracking line search such that

F®*D) < £@®) — oy (fo @®) = fo0 (5®)) -

Vv
model improvement
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Algorithm and Convergence

Convergence results:
» Algorithm and line-search are well-defined.

» If w is a growth function and the model assumption holds,

then

> every limit point of (z(¥)),cy is a stationary point of

min f(z),

> there exists at least one limit point, and

> (f(=™)),en converges to the value of f at the limit point.
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Application: Robust Sparse Non-linear Regression

Assumptions:  Fj(a,b) := Y a; exp(—b;x;)
» y; = F;(a,b) + n; where n; are iid errors (Laplacian distribution)

> large percentage of coefficients a; are zero
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Application: Robust Sparse Non-linear Regression

M
i Fi(a,b) —y;||1 + nlla
(G{II})IQC;H i(a,b) — yill1 + pllal

» Our Generalized Conditional Gradient oracle: (FW—-CompLinLS)

KCiu — , Ki:=DF, (k)-
u](fzubr)leCZH u— 5 |l1+ pllally (u™™)

» ProxLinear oracle [Lewis and Wright 2016]:

o Ry
ugubr)leCZH U yz||1+/£||a||1+ ||U |

> ProxLinearLs: Armijo-like line search (as above).
> ProxLinearBT: Backtracking for 7.

Solve subproblems by PDHG [Pock and Chambolle 2011].
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Application: Robust Sparse Non-linear Regression

|—e— FW-CompLinLS ProxLinearLS —&— ProxLinearBT
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time [sec.] vs. objective error
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Structured Matrix Factorization

Applications:
» blind image deblurring, clustering and principal component analysis,
source separation, signal processing, dictionary learning, ...

Optimization Problem:
1 2
1)1(11%/15HA - XY|5r+9(X) st. XeX, Ye),
—_—
=h(X,Y)

Examples:
» constraints on: norm balls, non-negativity, stochasticity, rank, ...

» regularization: (block) sparsity, />-norm, low rank, ...

Model function: Linearization of h, proximal linearization,
block-proximal linearization of 4, ...
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Conclusion

» Model function in Conditional Gradient

[f(z) = fz(2)| <w(l|lz —z).

» Flexible design of subproblems

argmin f (k)( )
yeC

JF @) = w(llz — ™)
’

Design model functions
for your problem
such that the oracle is easy
to evaluate !

» Subsequences converge to stationary points.
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