ICCOPT 2019 in Berlin

Model Function Based Conditional Gradient Method with Armijo-like Line Search

Peter Ochs

Mathematical Optimization Group Saarland University

-06.08.2019 -

joint work: Yura Malitsky

Overview

$\min_{x \in C} f(x)$

Classic setting:

f smooth, non-convex C compact, convex

$$y^{(k)} \in \underset{y \in C}{\operatorname{argmin}} \left\langle \nabla f(x^{(k)}), y \right\rangle$$

Update (line-search for γ_k):

Oracle:

 $x^{(k+1)} = \gamma_k y^{(k)} + (1 - \gamma_k) x^{(k)}$

Convergence condition:

Armijo line search

Descent Lemma (curv. cond.)

Overview

$\min_{x \in C} f(x)$

Classic setting:

Generalized setting:

f smooth, non-convex C compact, convex

C compact, convex

f non-smooth, non-convex

Oracle:

$$y^{(k)} \in \underset{y \in C}{\operatorname{argmin}} \left\langle \nabla f(x^{(k)}), y \right\rangle$$

 $y^{(k)} \in \underset{y \in C}{\operatorname{argmin}} f_{x^{(k)}}(y)$ Update (line-search for γ_k):

 $x^{(k+1)} = \gamma_k y^{(k)} + (1 - \gamma_k) x^{(k)}$ $x^{(k+1)} = \gamma_k y^{(k)} + (1 - \gamma_k) x^{(k)}$

Convergence condition:

Armijo line search

Descent Lemma (curv. cond.)

Armijo-like line search Generalized Descent Lemma

Generalizing the Descent Lemma

Descent Lemma:

$$\exists L > 0 \colon \forall x, y \colon \quad \|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$$
$$\Longrightarrow |f(x) - f(\bar{x}) - \langle \nabla f(\bar{x}), x - \bar{x} \rangle| \le \frac{L}{2} \|x - \bar{x}\|^2$$

Generalizing the Descent Lemma

Generalization of the Descent Lemma:

$$\exists \psi \text{ continuous}, \psi(0) = 0 \colon \forall x, y \colon \quad \|\nabla f(x) - \nabla f(y)\| \le \psi(\|x - y\|)$$

$$\Longrightarrow |f(x) - f(\bar{x}) - \langle \nabla f(\bar{x}), x - \bar{x} \rangle| \le \omega(\|x - \bar{x}\|), \quad \omega(t) = \int_0^1 t \psi(st) \, ds$$

provides a measure for the linearization error

 \leadsto growth given by ω

Generalizing the Descent Lemma

Impose Generalization of the Descent Lemma:

Model assumption:

$$|f(x) - f_{\bar{x}}(x)| \le \omega(||x - \bar{x}||)$$

provides a measure for the approximation error

 \leadsto growth given by "growth function" ω

Model Assumption $|f(x) - f_{\bar{x}}(x)| \le \omega(||x - \bar{x}||)$

Generalized Conditional Gradient Setting

Setting: $\min_{x \in C} f(x)$

- $ightharpoonup C\subset \mathbb{R}^N$ non-empty, compact, convex
- $lackbox{}{f}\colon\mathbb{R}^N o(-\infty,\infty]$ proper, lsc with $\mathrm{dom}\,f\subset C$ and bounded below

Growth Function:

lacksquare $\omega\colon\mathbb{R}_+\to\mathbb{R}_+$ continuous with $\omega(0)=0$ and $\omega'_+(0)=0$.

Model Function: For each \bar{x} :

- ▶ proper, lsc, convex function $f_{\bar{x}} \colon \mathbb{R}^N \to (-\infty, \infty]$ (model function)
- $ightharpoonup dom f = dom f_{\bar{x}}$
- $|f(x) f_{\bar{x}}(x)| \le \omega(||x \bar{x}||), \quad \forall x \in C$

Overview

$\min_{x \in C} f(x)$

Classic setting: f smooth, non-convex

Generalized setting:

C compact, convex

f non-smooth, non-convex

C compact, convex

Oracle:

$$y^{(k)} \in \underset{y \in C}{\operatorname{argmin}} \left\langle \nabla f(x^{(k)}), y \right\rangle$$

$$y^{(k)} \in \underset{y \in C}{\operatorname{argmin}} f_{x^{(k)}}(y)$$

Update (line-search for γ_k): $x^{(k+1)} = \gamma_k y^{(k)} + (1 - \gamma_k) x^{(k)}$ $x^{(k+1)} = \gamma_k y^{(k)} + (1 - \gamma_k) x^{(k)}$

Armijo line search
Descent Lemma (curv. cond.)

© 2019 — Peter Ochs

Convergence condition:

Armijo-like line search
cond.)

Generalized Descent Lemma

Model Assumption: $|f(x) - f_{\bar{x}}(x)| \le \omega(||x - \bar{x}||)$

Example: Additive composite problem:

$$\min_{x \in C} \, f(x) \,, \quad f(x) \, = \, \mathop{g(x)}_{\substack{\text{non-smooth} \\ \text{convex}}} \, + \, \mathop{h(x)}_{\substack{\psi\text{-uniform} \\ \text{smooth}}}$$

model function:

$$f_{\bar{x}}(x) = g(x) + h(\bar{x}) + \langle \nabla h(\bar{x}), x - \bar{x} \rangle$$

$$\underset{y \in C}{\operatorname{argmin}} g(y) + \left\langle \nabla h(x^{(k)}), y \right\rangle$$

Model Assumption: $|f(x) - f_{\bar{x}}(x)| \le \omega(||x - \bar{x}||)$

► Example: Proximal Gradient Descent:

$$\min_{x \in C} f(x) \,, \quad f(x) \, = \, g(x) \, + \, h(x) \\ \underset{\text{convex}}{\text{non-smooth}} \, \psi \text{-uniform} \\ \underset{\text{smooth}}{\text{smooth}}$$

model function:

$$f_{\bar{x}}(x) = g(x) + h(\bar{x}) + \langle \nabla h(\bar{x}), x - \bar{x} \rangle + \frac{1}{2\lambda} ||x - \bar{x}||^2$$

$$\operatorname*{argmin}_{y \in C} g(y) + \left\langle \nabla h(x^{(k)}), y \right\rangle + \frac{1}{2\lambda} \|y - x^{(k)}\|^2$$

Model Assumption: $|f(x) - f_{\bar{x}}(x)| \le \omega(||x - \bar{x}||)$

► Example: Proximal Gradient Descent:

$$\min_{x \in C} f(x) \,, \quad f(x) = g(x) + h(x) \\ \underset{\text{convex}}{\text{non-smooth}} \psi \text{-uniform} \\ \underset{\text{smooth}}{\text{smooth}}$$

model function:

$$f_{\bar{x}}(x) = g(x) + h(\bar{x}) + \langle \nabla h(\bar{x}), x - \bar{x} \rangle + \frac{1}{2\lambda} ||x - \bar{x}||^2$$

$$\operatorname*{argmin}_{y \in C} g(y) + \left\langle \nabla h(x^{(k)}), y \right\rangle + \frac{1}{2\lambda} \|y - x^{(k)}\|^2$$

- works also with Bregman proximal term
- setting without constraint set: [O., Fadili, Brox 18]

Model Assumption: $|f(x) - f_{\bar{x}}(x)| \le \omega(||x - \bar{x}||)$

► Example: Newton–Conditional Gradient:

$$\min_{x \in C} \, f(x) \,, \quad f(x) \, = \, \mathop{g(x)}_{\substack{\text{non-smooth} \\ \text{convex}}} + \, \mathop{h(x)}_{\substack{\text{twice diff.} \\ \psi\text{-uniform smooth}}}$$

model function:

$$f_{\bar{x}}(x) = g(x) + h(\bar{x}) + \langle \nabla h(\bar{x}), x - \bar{x} \rangle + \frac{1}{2} \langle x - \bar{x}, [\nabla^2 h(\bar{x})]_+ (x - \bar{x}) \rangle$$

$$\operatorname*{argmin}_{y \in C} g(y) + \left\langle \nabla h(x^{(k)}), y \right\rangle + \frac{1}{2} \left\langle y - x^{(k)}, [\nabla^2 h(x^{(k)})]_+ (y - x^{(k)}) \right\rangle$$

Model Assumption: $|f(x) - f_{\bar{x}}(x)| \le \omega(||x - \bar{x}||)$

► Example: Hybrid Proximal—Conditional Gradient:

$$\min_{\substack{x_1 \in C_1 \\ x_2 \in C_2}} f(x_1, x_2) \,, \quad f(x_1, x_2) = \underbrace{g(x_1)}_{\substack{\text{non-smooth} \\ \text{convex}}} + \underbrace{h(x_1, x_2)}_{\substack{\psi\text{-uniform} \\ \text{smooth}}}$$

model function:

$$f_{\bar{x}}(x_1, x_2) = h(\bar{x}) + \langle \nabla h(\bar{x}), x - \bar{x} \rangle + g(x_1) + \frac{1}{2\lambda} \|x_1 - \bar{x}_1\|^2, \quad x = (x_1, x_2)$$

$$\begin{cases} \underset{y_1 \in C_1}{\operatorname{argmin}} & g(y_1) + \frac{1}{2\lambda} \|y_1 - (x_1^{(k)} + \lambda \nabla_1 h(x_1^{(k)}, x_2^{(k)}))\|^2 \\ \underset{y_2 \in C_2}{\operatorname{argmin}} & \left\langle \nabla_2 h(x_1^{(k)}, x_2^{(k)}), y_2 \right\rangle \end{cases}$$

Model Assumption: $|f(x) - f_{\bar{x}}(x)| \le \omega(||x - \bar{x}||)$

► Example: Non-linear composite problems (Gauss–Newton):

$$\min_{x \in C} f(x) \,, \quad f(x) \, = \, \underset{\substack{\text{non-smooth} \\ \text{Convex} \\ \text{Lipschitz}}}{g} \left(\begin{array}{c} F(x) \\ \psi\text{-uniform} \\ \text{smooth} \end{array} \right)$$

model function:

$$f_{\bar{x}}(x) = g(F(\bar{x}) + DF(\bar{x})(x - \bar{x}))$$

$$\underset{y \in C}{\operatorname{argmin}} g(F(x^{(k)}) + DF(x^{(k)})(y - x^{(k)}))$$

Design model functions for your problem

such that the oracle is easy to evaluate !

Overview

$\min_{x \in C} f(x)$

Classic setting: f smooth, non-convex

Generalized setting:

C compact, convex

f non-smooth, non-convex

C compact, convex

Oracle:

$$y^{(k)} \in \underset{y \in C}{\operatorname{argmin}} \left\langle \nabla f(x^{(k)}), y \right\rangle$$

 $y^{(k)} \in \underset{y \in C}{\operatorname{argmin}} f_{x^{(k)}}(y)$ Update (line-search for γ_k):

 $x^{(k+1)} = \gamma_k y^{(k)} + (1 - \gamma_k) x^{(k)}$ $x^{(k+1)} = \gamma_k y^{(k)} + (1 - \gamma_k) x^{(k)}$

Convergence condition:

Armijo line search

Descent Lemma (curv. cond.)

Armijo-like line search Generalized Descent Lemma

Algorithm and Convergence

Model Based Conditional Gradient Method with Line Search:

- ▶ Initialization: $x^{(0)} \in \mathbb{R}^N$ and set $\rho \in (0,1)$.
- ▶ Update $(k \ge 0)$:
 - Compute

$$y^{(k)} \in \underset{y \in C}{\operatorname{argmin}} f_{x^{(k)}}(y)$$
$$x^{(k+1)} = x^{(k)} + \gamma_k (y^{(k)} - x^{(k)})$$

with $\gamma_k \in [0,1]$ determined by backtracking line search such that

$$f(x^{(k+1)}) \leq f(x^{(k)}) - \rho \gamma_k \underbrace{\left(f_{x^{(k)}}(x^{(k)}) - f_{x^{(k)}}(y^{(k)})\right)}_{\text{model improvement}}.$$

Algorithm and Convergence

Convergence results:

- Algorithm and line-search are well-defined.
- If ω is a growth function and the model assumption holds, then
 - lacktriangle every limit point of $(x^{(k)})_{k\in\mathbb{N}}$ is a stationary point of

$$\min_{x \in C} f(x) \,,$$

- there exists at least one limit point, and
- $(f(x^{(k)}))_{k\in\mathbb{N}}$ converges to the value of f at the limit point.

Application: Robust Sparse Non-linear Regression

Assumptions: $F_i(a,b) := \sum_{j=1}^P a_j \exp(-b_j x_i)$

- $ightharpoonup y_i = F_i(a,b) + n_i$ where n_i are iid errors (Laplacian distribution)
- large percentage of coefficients a_j are zero

Application: Robust Sparse Non-linear Regression

$$\min_{(a,b)\in C} \sum_{i=1}^{M} ||F_i(a,b) - y_i||_1 + \mu ||a||_1$$

► Our Generalized Conditional Gradient oracle: (FW-CompLinLS)

$$\min_{u=(a,b)\in C} \sum_{i=1}^{M} \|\mathcal{K}_i u - y_i^{\diamond}\|_1 + \mu \|a\|_1, \quad \mathcal{K}_i := DF_i(u^{(k)}).$$

ProxLinear oracle [Lewis and Wright 2016]:

$$\min_{u=(a,b)\in C} \sum_{i=1}^{M} \|\mathcal{K}_i u - y_i^{\diamond}\|_1 + \mu \|a\|_1 + \frac{1}{2\tau} \|u - u^{(k)}\|^2.$$

- ▶ ProxLinearLS: Armijo-like line search (as above).
- ightharpoonup ProxLinearBT: Backtracking for τ .

Solve subproblems by PDHG [Pock and Chambolle 2011].

Application: Robust Sparse Non-linear Regression

Structured Matrix Factorization

Applications:

▶ blind image deblurring, clustering and principal component analysis, source separation, signal processing, dictionary learning, ...

Optimization Problem:

$$\min_{X,Y} \underbrace{\frac{1}{2} ||A - XY||_F^2}_{=:h(X,Y)} + g(X) \quad s.t. \ X \in \mathcal{X}, \ Y \in \mathcal{Y},$$

Examples:

- **constraints on**: norm balls, non-negativity, stochasticity, rank, ...
- **regularization**: (block) sparsity, ℓ_2 -norm, low rank, ...

Model function: Linearization of h, proximal linearization, block-proximal linearization of h, ...

Conclusion

Model function in Conditional Gradient

$$|f(x) - f_{\bar{x}}(x)| \le \omega(||x - \bar{x}||).$$

Flexible design of subproblems

$$\underset{y \in C}{\operatorname{argmin}} f_{x^{(k)}}(y).$$

Design model functions for your problem such that the oracle is easy to evaluate!

Subsequences converge to stationary points.