Towards Differentiation of Solution Mappings of Non-smooth Optimization Problems

Peter Ochs

Mathematical Optimization Group University of Tübingen

— 06.09.2021 —

Inverse Problem:

clean image h

observed image f

The degradation process is modeled as follows

 $\boldsymbol{f} \approx \mathcal{A}(\boldsymbol{h}) + \mathcal{N}$ \mathcal{N} : additive pixel-wise noise

Goal: Reconstruct *h*

Image Deblurring: of an image f (using Total Variation)

$$\min_{\boldsymbol{u}} \ rac{1}{2} \| \mathcal{A} \boldsymbol{u} - \boldsymbol{f} \|^2 + \lambda \| \mathcal{D} \boldsymbol{u} \|_{2,1}$$

\mathcal{A} convolution / blurr operator; \mathcal{D} discrete derivative operator

clean image

blurry image

reconstruction

Regularization weight has a huge impact on the result!

Â

© 2021 — Peter Ochs

Mathematical Optimization Group

Variational Problems with Regularization

$$\min_{u} E_{\lambda}(u), \quad E_{\lambda}(u) = \underbrace{D(u)}_{\text{data term}} + \lambda \underbrace{R(u)}_{\text{regularization term}}$$

> $\lambda > 0$ is a regularization parameter.

How to find the best regularization weight λ ?

- hand-tuning
- grid search

.

What about learning the whole regularization term?

$$R(u, \boldsymbol{\nu}, \boldsymbol{\vartheta}) := \sum_{i,j} \left(\sum_{k=1}^{m} \boldsymbol{\nu}_k \rho \Big(\sum_{l=1}^{L} \boldsymbol{\vartheta}_{kl}(K_l u)_{ij} \Big) \right)$$

 \triangleright K_l are predefined basis filters (e.g. DCT filter)

 $\triangleright \rho$ is a potential function (convex)

(This regularizer reflects a 1-hidden-layer neural network.)

Deep Neural Network with Inference Layer/Variational Model:

---- Resurge of variational models as layers in deep learning.

What about learning the whole regularization term?

$$R(u, \boldsymbol{\nu}, \boldsymbol{\vartheta}) := \sum_{i,j} \left(\sum_{k=1}^{m} \boldsymbol{\nu}_k \rho \Big(\sum_{l=1}^{L} \boldsymbol{\vartheta}_{kl}(K_l u)_{ij} \Big) \right)$$

- \triangleright K_l are predefined basis filters (e.g. DCT filter)
- ρ is a potential function (convex)

(This regularizer reflects a 1-hidden-layer neural network.)

How to find the best weights ν , ϑ ?

- hand-tuning and grid search are not feasible
- sampling and regression of loss function using Gaussian processes or Random Fields (up to ≈ 200 parameters)
- gradient based bi-level optimization (several 100 000 parameters)

Bilevel optimization / parameter Learning

$$\begin{array}{ll} \min_{\theta \in \mathbb{R}^{P}, x^{*}} & \mathcal{L}(x^{*}(\theta), \theta) & (\text{upper level}) \\ s.t. & x^{*}(\theta) \in \arg\min_{x \in \mathbb{R}^{N}} E(x, \theta) & (\text{lower level}) \end{array}$$

- $\theta \in \mathbb{R}^{P}$: optimization variable parameter (vector).
- ▶ $\mathcal{L}: \mathbb{R}^N \times \mathbb{R}^P \to \mathbb{R}$: smooth **loss function**.
- E: ℝ^N × ℝ^P → ℝ: parametric (energy) minimization problem. (convex for each θ ∈ ℝ^P)
- ► $x^* : \mathbb{R}^P \to \mathbb{R}^N$ is a selection of the **solution mapping** of *E*.

Bilevel optimization / parameter Learning

$$\begin{array}{ll} \min_{\theta \in \mathbb{R}^{P}, x^{*}} & \mathcal{L}(x^{*}(\theta), \theta) & (\text{upper level}) \\ s.t. & x^{*}(\theta) \in \arg\min_{x \in \mathbb{R}^{N}} E(x, \theta) & (\text{lower level}) \end{array}$$

- $\theta \in \mathbb{R}^{P}$: optimization variable parameter (vector).
- $\mathcal{L}: \mathbb{R}^N \times \mathbb{R}^P \to \mathbb{R}$: smooth **loss function**.
- ► $E: \mathbb{R}^N \times \mathbb{R}^P \to \overline{\mathbb{R}}$: parametric (energy) **minimization** problem. (convex for each $\theta \in \mathbb{R}^P$)
- ► $x^* : \mathbb{R}^P \to \mathbb{R}^N$ is a selection of the **solution mapping** of *E*.

Gradient based optimization requires $\nabla_{\theta} \mathcal{L}(x^*(\theta^{(k)}), \theta^{(k)})$.

Computation of $\nabla_{\theta} \mathcal{L}(x^*(\theta^{(k)}), \theta^{(k)})$.

If loss function \mathcal{L} and solution mapping $x^*(\theta)$ are differentiable:

$$\boldsymbol{\nabla}_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{x}^*(\boldsymbol{\theta}^{(k)}), \boldsymbol{\theta}^{(k)}) = \left(\frac{\partial \boldsymbol{x}^*}{\partial \boldsymbol{\theta}}(\boldsymbol{\theta}^{(k)})\right)^\top \nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}^*, \boldsymbol{\theta}^{(k)}) + \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{x}^*, \boldsymbol{\theta}^{(k)})$$

Actually, we are interested in the directional derivative of $x^*(\theta)$ at $\theta^{(k)}$ in direction $v^{(k)} := \nabla_x \mathcal{L}(x^*, \theta^{(k)})$:

$$\left(\frac{\partial x^*}{\partial \theta}(\theta^{(k)})\right)^\top v^{(k)}$$

Computation of $\nabla_{\theta} \mathcal{L}(x^*(\theta^{(k)}), \theta^{(k)})$.

If loss function \mathcal{L} and solution mapping $x^*(\theta)$ are differentiable:

$$\boldsymbol{\nabla}_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{x}^*(\boldsymbol{\theta}^{(k)}), \boldsymbol{\theta}^{(k)}) = \left(\frac{\partial \boldsymbol{x}^*}{\partial \boldsymbol{\theta}}(\boldsymbol{\theta}^{(k)})\right)^\top \nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}^*, \boldsymbol{\theta}^{(k)}) + \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{x}^*, \boldsymbol{\theta}^{(k)})$$

Actually, we are interested in the directional derivative of $x^*(\theta)$ at $\theta^{(k)}$ in direction $v^{(k)} := \nabla_x \mathcal{L}(x^*, \theta^{(k)})$:

$$\left(\frac{\partial x^*}{\partial \theta}(\theta^{(k)})\right)^\top v^{(k)}$$

$$\rightarrow$$
 Study $\frac{\partial x^*}{\partial \theta}$ or, more generally, sensitivity of the solution mapping.

Strategies for differentiation:

In the following:

Goal: Compute

$$x^*(\theta) \in \arg\min_{x \in \mathbb{R}^N} E(x, \theta)$$
 (*E* smooth)
 $\frac{\partial x^*}{\partial \theta}(\theta)$

Strategies:

- Implicit differentiation. (requires E strictly convex)
- Unrolling an algorithm. (use automatic differentiation)
- Implicit differentiation or unrolling of a fixed point equation. [O. et al. '16]

Warning:

- Even for smooth *E*, the solution mapping $x^*(\theta)$ is often non-smooth.
- Solution mapping multivalued, when $\arg \min_{x \in \mathbb{R}^N} E(x, \theta)$ is not unique.

Implicit Differentiation: (widely used approach; constraints via KKT) The optimality condition is $\nabla_x E(x, \theta) = 0$.

- This implicitly defines $x^*(\theta)$ (**implicit function theorem**).
- ▶ Let (x^*, θ) be such that $\nabla_x E(x^*, \theta) = 0$, then, if [...] we have

$$\frac{\partial x^*}{\partial \theta}(\theta) = -\left(H_E(x^*,\theta)\right)^{-1} \frac{\partial^2 E}{\partial \theta \partial x}(x^*,\theta) \,.$$

Disadvantages: (reasons why we avoid this approach)

- Requires twice differentiability of E.
- Requires several approximations: x^* and H_E^{-1} (solve linear system).
- Unstable for badly conditioned H_E .
- Requires estimation (and storing) H_E .

Unrolling an algorithm: $\mathcal{A}^{(n+1)}(x^{(0)},\theta) \to x^*(\theta)$ for $n \to \infty$

Approximate by a fixed $n \in \mathbb{N}$: (where $x^{(0)}$ is some initialization.)

 $x^*(\theta) \approx \mathcal{A}^{(n+1)}(x^{(0)}, \theta)$

→ derivative by reverse mode AD (backpropagation)

Advantages:

- Output is **unambiguous** (unique), also if $\operatorname{argmin} E$ is multi-valued.
- After the algorithm A is fixed, the approach is exact.
- ► All iterations depend on the same parameter ~→ truncate backprop.
- ► For *E* strongly convex, we have convergence rates for

 $\frac{\partial \mathcal{A}^{(n+1)}}{\partial \theta} \xrightarrow{n \to \infty} \frac{\partial x^*}{\partial \theta} \qquad \begin{array}{l} \text{Accelerated convergence for} \\ \text{accelerated algorithms! [Mehmood, O. '20]} \end{array}$

Disadvantages: Store all intermediate iterates (in reverse mode).

Replace $\arg \min E(x, \theta)$ by a fixed point equation:

$$x^*(\theta) = \mathcal{A}(x^*(\theta), \theta)$$

Implicit function theorem:

$$\frac{\partial x^*}{\partial \theta} = \left(I - \frac{\partial \mathcal{A}}{\partial x^*}\right)^{-1} \frac{\partial \mathcal{A}}{\partial \theta}$$

Using

$$\left(I - \frac{\partial \mathcal{A}}{\partial x^*}\right)^{-1} \stackrel{\|\frac{\partial \mathcal{A}}{\partial x^*}\| < 1}{=} \sum_{n=0}^{\infty} \left(\frac{\partial \mathcal{A}}{\partial x^*}\right)^n \frac{\partial \mathcal{A}}{\partial \theta} \approx \sum_{n=0}^{n_0} \left(\frac{\partial \mathcal{A}}{\partial x^*}\right)^n \frac{\partial \mathcal{A}}{\partial \theta}$$

we obtain **AD with intermediate variables replaced by the optimum.** [O. et al. '16]

→ accelerates convergence rate [Mehmood, O. '20].

Requires to store only x^* .

Strategies for differentiation if *E* is non-smooth:

In the following:

$$x^*(\theta) \in \arg\min_{x \in \mathbb{R}^N} E(x, \theta)$$
 (*E* non-smooth)
 $\frac{\partial x^*}{\partial \theta}(\theta)$!?

Goal: Compute

Strategies:

Strategies above after smoothing E.

→ often instable or requires significant smoothing
 → no approximation bounds

Weak differentiation of iterative algorithms. [Deledalle et al. '14] (using Rademacher Theorem; show update map is Lipschitz)

→ yields only weak derivatives

→ requires "Subgradient Descent" methods for bilevel problem

→ convergence of derivative sequence unknown

Strategies for differentiation if *E* is non-smooth: (continued)

- Unrolling a "smooth algorithm" that solves the non-smooth problem. [O. et al. '16] (see next slides)
 - $\rightsquigarrow E$ is non-smooth,

 $\rightsquigarrow \mathcal{A}^{(n+1)}(x^{(0)},\theta) \to x^*(\theta) \text{ for } n \to \infty,$

- \rightsquigarrow update mapping $\mathcal{A} \colon \mathbb{R}^N \times \mathbb{R}^P \to \mathbb{R}^N$ is smooth.
- Implicit Differentiation of fixed point equations. [O. et al. '16] ("unrolling a smooth algorithm"-strategy but for fixed-point equation)
- Implicit Differentiation for partly smooth functions. [Vaiter et al. 16, Riis '19]
- Unrolling in the partial smoothness framework. [Riis, PhD Thesis '19]

Unrolling a "smooth algorithm":

- Key are Bregman distances D_{ψ} .
- Update mapping \mathcal{B}_{ψ} of **Bregman Proximal Gradient Method** solves

$$\mathcal{B}_{\psi}(c(\theta)) := \underset{x}{\operatorname{argmin}} g(x) + \langle c(\theta), x \rangle + \psi(x)$$

c constant vector (depends on current iterate and θ);
 g is possibly non-smooth (e.g. indicator function)

Bregman Proximal Gradient or Bregman Primal Dual Algorithm.

idea similar to barrier approach ~ all iterates lie in interior

Example 1: (non-negativity constraint)

- $X = [x \ge 0]$ and $g = \delta_X$
- entropy function $\psi(x) = x \log(x)$
- Bregman Proximal mapping:

$$\mathcal{B}_{\psi}(c(\theta)) = \exp(-c(\theta) - 1)$$

Application: non-negative least squares problem.

Example 2: (simplex constraint)

• Minimize f(x) over the unit simplex in \mathbb{R}^N

$$\left\{ x \in \mathbb{R}^N | \sum_{i=1}^N x_i = 1 \text{ and } x_i \ge 0 \right\}.$$

- ► Use entropy $\psi(x) = \sum_{i=1}^{N} x_i \log(x_i)$ to drop the non-negativity constraint.
- Bregman proximal update mapping:

$$(\mathcal{B}_{\psi}(c))_i = \frac{\exp(-c_i - 1)}{\sum_{j=1}^N \exp(-c_j - 1)}$$
 for $i = 1, \dots, N$.

Application: Multi-label segmentation problem or Matrix games.

Example 3: (box constraint)

- Use $\psi(x) = \frac{1}{2}((x+1)\log(x+1) + (1-x)\log(1-x)).$
- Bregman proximal update mapping:

$$\mathcal{B}_{\psi}(c) = \frac{\exp(-2c) - 1}{\exp(-2c) + 1} \,.$$

These linear functions are important thanks to convex duality.
For instance the TV-norm can be represented as

$$\|\mathcal{D}x\|_{1} = \max_{y} \langle \mathcal{D}x, y \rangle + \underbrace{\delta_{[-1 \le y \le 1]}(y)}_{\text{box constraint}},$$

which can be employed in Bregman Primal-Dual Algorithms.

Differentiation Strategies for partly smooth functions [Lewis '03] (**Definition** here in convex setting taken from [Liang, Fadili, Peyré '14])

 $J \in \Gamma_0(\mathbb{R}^N)$ and $\partial J(x) \neq \emptyset$. We call J partly smooth at x relative to $\mathcal{M} \ni x$, if the following conditions are satisfied:

- ▶ (Smoothness) M is a C^2 -Manifold around x and $J|_M \in C^2$
- ► (Sharpness) The tangent space $\mathcal{T}_{\mathcal{M}}$ is $par(\partial J(x))^{\perp}$.
- (Continuity) ∂J is continuous at x relative to \mathcal{M} .

Examples: ℓ_1 -norm, $\ell_{2,1}$ -norm, ℓ_{∞} -norm, nuclear norm, TV-norm, ...

from [G. Peyré, talk "Low Complexity Regularization of Inverse Problems", 2014]

Implicit differentiation under partial smoothness (from [Vaiter et al. '16])

$$E(x,\theta) = F(x,\theta) + J(x)$$

Assumptions:

- \blacktriangleright F block-wise C^2
- ▶ $\bar{\theta} \notin \mathcal{H}$ (certain transition space of measure 0; non-degeneracy ass.)
- ► $J \in \Gamma_0$ is partly smooth at solution $x^*(\bar{\theta})$ relative to \mathcal{M}
- > restricted positive definiteness holds at $x^*(\bar{\theta})$.

Then:

there exists open V ∋ θ and a mapping x̂: V → M such that
1. For all θ ∈ V, x̂(θ) is a solution that coincides with x* at θ
2. x̂ ∈ C¹(V) and for all θ ∈ V:

$$\frac{\partial \hat{x}}{\partial \theta}(\theta) = -\left(\nabla_{\mathcal{M}}^2 F(\hat{x}(\theta), \theta) + \nabla_{\mathcal{M}}^2 J(\hat{x}(\theta))\right)^{\dagger} \mathcal{P}_{T_{\hat{x}(\theta)}} \frac{\partial (\nabla F)}{\partial \theta}(\hat{x}(\theta), \theta)$$

Unrolling algorithms under partial smoothness (idea):

- E is non-smooth (but partly smooth)
- Solution lies on a smooth manifold \mathcal{M} and is stable
- $\blacktriangleright \ \mathcal{A}^{(n+1)}(x^{(0)},\theta) \to x^*(\theta) \text{ for } n \to \infty$
- ▶ requires non-degeneracy assumption for $x^*(\theta)$
- Many algorithms have the finite identification property (see papers by [J. Liang]):

$$\exists n_0 \in \mathbb{N} \colon \quad x^{(n)} \in \mathcal{M} ext{ for all } n \geq n_0$$
 ,

hence the update mapping $\ensuremath{\mathcal{A}}$ becomes smooth eventually.

Differentiating the Value Function by using Convex Duality, AISTATS 2021 (different situation) [Mehmood, O. '21]

$$p(u) = \min_{x} f(x, u)$$

Compute the derivative of the value function:

 $\nabla p(u)$ (p can be smooth with f being smooth)

- Requires f to be convex in x and u.
- Derivative is given by (convex duality; f*: convex conjugate of f)

$$\partial p(u) = \underset{y}{\operatorname{argmax}} \langle u, y \rangle - f^*(0, y)$$

→ derivative by solving an optimiation problem (dual problem).

 → convergence rates of the derivative sequence in situations where *f* is not strongly convex.

Conclusion

- Bilevel optimization as framework for parameter learning.
- Solve bilevel problem by gradient based algorithms.
- Strategies for computing the derivative of the solution mapping in smooth and non-smooth setup:
 - Implicit differentiation.
 - Weak differentiation of iterative algorithms.
 - Unrolling a "smooth algorithm" for a non-smooth problem.
 - Implicit Differentiation or unrolling of fixed point equations.
 - Differentiation under partial smoothness assumption.

Derivation:

$$\begin{aligned} \partial_{\theta} x^* &\approx \partial_{\theta} x^{(n+1)} \\ &= \partial_x x^{(n+1)} \partial_{\theta} x^{(n)} + \partial_{\theta} x^{(n+1)} \\ &= \partial_x x^{(n+1)} (\partial_x x^{(n)} \partial_{\theta} x^{(n-1)} + \partial_{\theta} x^{(n)}) + \partial_{\theta} x^{(n+1)} \\ &\vdots \\ &= \sum_{k=0}^{n+1} \left(\prod_{j=k}^n \partial_x x^{(j+1)} \right) \partial_{\theta} x^{(k)} \\ &= \sum_{k=0}^{n+1} \left(\prod_{j=k}^n \partial_x \mathcal{A}(x^{(j)}, \theta) \right) \partial_{\theta} \mathcal{A}(x^{(k-1)}, \theta) \\ &\approx \sum_{k=0}^{n+1} \left(\prod_{j=k}^n \partial_x \mathcal{A}(x^*, \theta) \right) \partial_{\theta} \mathcal{A}(x^*, \theta) \\ &= \sum_{k=0}^{n+1} \left(\partial_x \mathcal{A}(x^*, \theta) \right)^k \partial_{\theta} \mathcal{A}(x^*, \theta) \approx \left(I - \partial_x \mathcal{A}(x^*, \theta) \right)^{-1} \partial_{\theta} \mathcal{A}(x^*, \theta) \end{aligned}$$

