Towards Differentiation of Solution Mappings of Non-smooth Optimization Problems

Peter Ochs

Mathematical Optimization Group University of Tübingen

- 06.09.2021 -

Inverse Problem:

clean image h
forward model \mathcal{A}

inverse problem

observed image f

- The degradation process is modeled as follows

$$
\boldsymbol{f} \approx \mathcal{A}(\boldsymbol{h})+\mathcal{N} \quad \mathcal{N}: \text { additive pixel-wise noise }
$$

- Goal: Reconstruct h

Image Deblurring: of an image f (using Total Variation)

$$
\min _{\boldsymbol{u}} \frac{1}{2}\|\mathcal{A} \boldsymbol{u}-\boldsymbol{f}\|^{2}+\lambda\|\mathcal{D} \boldsymbol{u}\|_{2,1}
$$

$-\mathcal{A}$ convolution / blurr operator; \mathcal{D} discrete derivative operator

clean image

blurry image

reconstruction

Regularization weight has a huge impact on the result!

Variational Problems with Regularization

$$
\min _{u} E_{\lambda}(u), \quad E_{\lambda}(u)=\underbrace{D(u)}_{\text {data term }}+\lambda \underbrace{R(u)}_{\substack{\text { regularization } \\ \text { term }}} .
$$

$\Rightarrow \lambda>0$ is a regularization parameter.

How to find the best regularization weight λ ?

- hand-tuning
- grid search

What about learning the whole regularization term?

$$
R(u, \nu, \vartheta):=\sum_{i, j}\left(\sum_{k=1}^{m} \nu_{k} \rho\left(\sum_{l=1}^{L} \vartheta_{k l}\left(K_{l} u\right)_{i j}\right)\right)
$$

- K_{l} are predefined basis filters (e.g. DCT filter)
- ρ is a potential function (convex)
(This regularizer reflects a 1-hidden-layer neural network.)

Deep Neural Network with Inference Layer/Variational Model:

\rightsquigarrow Resurge of variational models as layers in deep learning.

What about learning the whole regularization term?

$$
R(u, \nu, \vartheta):=\sum_{i, j}\left(\sum_{k=1}^{m} \nu_{k} \rho\left(\sum_{l=1}^{L} \vartheta_{k l}\left(K_{l} u\right)_{i j}\right)\right)
$$

- K_{l} are predefined basis filters (e.g. DCT filter)
- ρ is a potential function (convex)
(This regularizer reflects a 1-hidden-layer neural network.)
How to find the best weights ν, ϑ ?
- hand-tuning and grid search are not feasible
- sampling and regression of loss function using

Gaussian processes or Random Fields (up to ≈ 200 parameters)

- gradient based bi-level optimization (several 100000 parameters)

Bilevel optimization / parameter Learning

$$
\begin{array}{rll}
\min _{\theta \in \mathbb{R}^{P}, x^{*}} & \mathcal{L}\left(x^{*}(\theta), \theta\right) & \text { (upper level) } \\
\text { s.t. } & x^{*}(\theta) \in \arg \min _{x \in \mathbb{R}^{N}} E(x, \theta) & \text { (lower level) }
\end{array}
$$

- $\theta \in \mathbb{R}^{P}$: optimization variable parameter (vector).
$-\mathcal{L}: \mathbb{R}^{N} \times \mathbb{R}^{P} \rightarrow \mathbb{R}$: smooth loss function.
- $E: \mathbb{R}^{N} \times \mathbb{R}^{P} \rightarrow \overline{\mathbb{R}}$: parametric (energy) minimization problem. (convex for each $\theta \in \mathbb{R}^{P}$)
$x^{*}: \mathbb{R}^{P} \rightarrow \mathbb{R}^{N}$ is a selection of the solution mapping of E.

Bilevel optimization / parameter Learning

$$
\begin{array}{rll}
\min _{\theta \in \mathbb{R}^{P}, x^{*}} & \mathcal{L}\left(x^{*}(\theta), \theta\right) & \text { (upper level) } \\
\text { s.t. } & x^{*}(\theta) \in \arg \min _{x \in \mathbb{R}^{N}} E(x, \theta) & \text { (lower level) }
\end{array}
$$

- $\theta \in \mathbb{R}^{P}$: optimization variable parameter (vector).
- $\mathcal{L}: \mathbb{R}^{N} \times \mathbb{R}^{P} \rightarrow \mathbb{R}$: smooth loss function.
- $E: \mathbb{R}^{N} \times \mathbb{R}^{P} \rightarrow \overline{\mathbb{R}}$: parametric (energy) minimization problem. (convex for each $\theta \in \mathbb{R}^{P}$)
$\triangleright x^{*}: \mathbb{R}^{P} \rightarrow \mathbb{R}^{N}$ is a selection of the solution mapping of E.

$$
\text { Gradient based optimization requires } \nabla_{\theta} \mathcal{L}\left(x^{*}\left(\theta^{(k)}\right), \theta^{(k)}\right) \text {. }
$$

Computation of $\nabla_{\theta} \mathcal{L}\left(x^{*}\left(\theta^{(k)}\right), \theta^{(k)}\right)$.

- If loss function \mathcal{L} and solution mapping $x^{*}(\theta)$ are differentiable:

$$
\nabla_{\theta} \mathcal{L}\left(x^{*}\left(\theta^{(k)}\right), \theta^{(k)}\right)=\left(\frac{\partial x^{*}}{\partial \theta}\left(\theta^{(k)}\right)\right)^{\top} \nabla_{x} \mathcal{L}\left(x^{*}, \theta^{(k)}\right)+\nabla_{\theta} \mathcal{L}\left(x^{*}, \theta^{(k)}\right)
$$

- Actually, we are interested in the directional derivative of $x^{*}(\theta)$ at $\theta^{(k)}$ in direction $v^{(k)}:=\nabla_{x} \mathcal{L}\left(x^{*}, \theta^{(k)}\right)$:

$$
\left(\frac{\partial x^{*}}{\partial \theta}\left(\theta^{(k)}\right)\right)^{\top} v^{(k)}
$$

Computation of $\nabla_{\theta} \mathcal{L}\left(x^{*}\left(\theta^{(k)}\right), \theta^{(k)}\right)$.

- If loss function \mathcal{L} and solution mapping $x^{*}(\theta)$ are differentiable:

$$
\nabla_{\theta} \mathcal{L}\left(x^{*}\left(\theta^{(k)}\right), \theta^{(k)}\right)=\left(\frac{\partial x^{*}}{\partial \theta}\left(\theta^{(k)}\right)\right)^{\top} \nabla_{x} \mathcal{L}\left(x^{*}, \theta^{(k)}\right)+\nabla_{\theta} \mathcal{L}\left(x^{*}, \theta^{(k)}\right)
$$

- Actually, we are interested in the directional derivative of $x^{*}(\theta)$ at $\theta^{(k)}$ in direction $v^{(k)}:=\nabla_{x} \mathcal{L}\left(x^{*}, \theta^{(k)}\right)$:

$$
\left(\frac{\partial x^{*}}{\partial \theta}\left(\theta^{(k)}\right)\right)^{\top} v^{(k)}
$$

\rightsquigarrow Study $\frac{\partial x^{*}}{\partial \theta}$ or, more generally, sensitivity of the solution mapping .

Strategies for differentiation:

In the following:
$x^{*}(\theta) \in \arg \min _{x \in \mathbb{R}^{N}} E(x, \theta)$
(E smooth)

Goal: Compute

$$
\frac{\partial x^{*}}{\partial \theta}(\theta)
$$

Strategies:

- Implicit differentiation. (requires E strictly convex)
- Unrolling an algorithm. (use automatic differentiation)
- Implicit differentiation or unrolling of a fixed point equation. [0. et al. '16]

Warning:

- Even for smooth E, the solution mapping $x^{*}(\theta)$ is often non-smooth.
- Solution mapping multivalued, when $\arg \min _{x \in \mathbb{R}^{N}} E(x, \theta)$ is not unique.

Implicit Differentiation: (widely used approach; constraints via KKT)

- The optimality condition is $\nabla_{x} E(x, \theta)=0$.
- This implicitly defines $x^{*}(\theta)$ (implicit function theorem).
- Let $\left(x^{*}, \theta\right)$ be such that $\nabla_{x} E\left(x^{*}, \theta\right)=0$, then, if $[\ldots]$ we have

$$
\frac{\partial x^{*}}{\partial \theta}(\theta)=-\left(H_{E}\left(x^{*}, \theta\right)\right)^{-1} \frac{\partial^{2} E}{\partial \theta \partial x}\left(x^{*}, \theta\right) .
$$

Disadvantages: (reasons why we avoid this approach)

- Requires twice differentiability of E.
- Requires several approximations: x^{*} and H_{E}^{-1} (solve linear system).
- Unstable for badly conditioned H_{E}.
- Requires estimation (and storing) H_{E}.

Unrolling an algorithm: $\mathcal{A}^{(n+1)}\left(x^{(0)}, \theta\right) \rightarrow x^{*}(\theta)$ for $n \rightarrow \infty$

- Approximate by a fixed $n \in \mathbb{N}$: (where $x^{(0)}$ is some initialization.)

$$
x^{*}(\theta) \approx \mathcal{A}^{(n+1)}\left(x^{(0)}, \theta\right)
$$

\rightsquigarrow derivative by reverse mode AD (backpropagation)

- Advantages:
\rightarrow Output is unambiguous (unique), also if $\operatorname{argmin} E$ is multi-valued.
\Rightarrow After the algorithm \mathcal{A} is fixed, the approach is exact.
All iterations depend on the same parameter \rightsquigarrow truncate backprop.
- For E strongly convex, we have convergence rates for

$$
\frac{\partial \mathcal{A}^{(n+1)}}{\partial \theta} \xrightarrow{n \rightarrow \infty} \frac{\partial x^{*}}{\partial \theta} \quad \begin{aligned}
& \text { Accelerated convergence for } \\
& \text { accelerated algorithms! [Mehmood, o. '20] }
\end{aligned}
$$

- Disadvantages: Store all intermediate iterates (in reverse mode).

Replace $\arg \min E(x, \theta)$ by a fixed point equation:

$$
x^{*}(\theta)=\mathcal{A}\left(x^{*}(\theta), \theta\right)
$$

- Implicit function theorem:

$$
\frac{\partial x^{*}}{\partial \theta}=\left(I-\frac{\partial \mathcal{A}}{\partial x^{*}}\right)^{-1} \frac{\partial \mathcal{A}}{\partial \theta}
$$

- Using

$$
\left(I-\frac{\partial \mathcal{A}}{\partial x^{*}}\right)^{-1} \stackrel{\partial \mathcal{A}}{\partial x^{*} \|} \|<1 \sum_{n=0}^{\infty}\left(\frac{\partial \mathcal{A}}{\partial x^{*}}\right)^{n} \frac{\partial \mathcal{A}}{\partial \theta} \approx \sum_{n=0}^{n_{0}}\left(\frac{\partial \mathcal{A}}{\partial x^{*}}\right)^{n} \frac{\partial \mathcal{A}}{\partial \theta}
$$

we obtain AD with intermediate variables replaced by the optimum. [0. et al. '16]
\rightsquigarrow accelerates convergence rate [Mehmood, O . '20].

- Requires to store only x^{*}.

Strategies for differentiation if E is non-smooth:

In the following: $\quad x^{*}(\theta) \in \arg \min _{x \in \mathbb{R}^{N}} E(x, \theta) \quad$ (E non-smooth)
Goal: Compute

$$
\frac{\partial x^{*}}{\partial \theta}(\theta) \quad!?
$$

Strategies:

- Strategies above after smoothing E.
\rightsquigarrow often instable or requires significant smoothing
\rightsquigarrow no approximation bounds
- Weak differentiation of iterative algorithms. [Deledalle et al. '14] (using Rademacher Theorem; show update map is Lipschitz)
\rightsquigarrow yields only weak derivatives
\rightsquigarrow requires "Subgradient Descent" methods for bilevel problem
\rightsquigarrow convergence of derivative sequence unknown

Strategies for differentiation if E is non-smooth: (continued)

- Unrolling a "smooth algorithm" that solves the non-smooth problem. [0. et al. '16] (see next slides)
$\rightsquigarrow E$ is non-smooth,
$\rightsquigarrow \mathcal{A}^{(n+1)}\left(x^{(0)}, \theta\right) \rightarrow x^{*}(\theta)$ for $n \rightarrow \infty$,
\rightsquigarrow update mapping $\mathcal{A}: \mathbb{R}^{N} \times \mathbb{R}^{P} \rightarrow \mathbb{R}^{N}$ is smooth.
- Implicit Differentiation of fixed point equations. [0. et al. '16]
("unrolling a smooth algorithm"-strategy but for fixed-point equation)
- Implicit Differentiation for partly smooth functions. [Vaiter et al. 16, Riis '19]
- Unrolling in the partial smoothness framework. [Riis, PhD Thesis '19]

Unrolling a "smooth algorithm":

- Key are Bregman distances D_{ψ}.
- Update mapping \mathcal{B}_{ψ} of Bregman Proximal Gradient Method solves

$$
\mathcal{B}_{\psi}(c(\theta)):=\underset{x}{\operatorname{argmin}} g(x)+\langle c(\theta), x\rangle+\psi(x)
$$

- c constant vector (depends on current iterate and θ); g is possibly non-smooth (e.g. indicator function)
- Bregman Proximal Gradient or Bregman Primal Dual Algorithm.
- idea similar to barrier approach \rightsquigarrow all iterates lie in interior

Example 1: (non-negativity constraint)

- $X=[x \geq 0]$ and $g=\delta_{X}$
- entropy function $\psi(x)=x \log (x)$
- Bregman Proximal mapping:

$$
\mathcal{B}_{\psi}(c(\theta))=\exp (-c(\theta)-1)
$$

Application: non-negative least squares problem.

Example 2: (simplex constraint)

- Minimize $f(x)$ over the unit simplex in \mathbb{R}^{N}

$$
\left\{x \in \mathbb{R}^{N} \mid \sum_{i=1}^{N} x_{i}=1 \text { and } x_{i} \geq 0\right\} .
$$

- Use entropy $\psi(x)=\sum_{i=1}^{N} x_{i} \log \left(x_{i}\right)$ to drop the non-negativity constraint.
- Bregman proximal update mapping:

$$
\left(\mathcal{B}_{\psi}(c)\right)_{i}=\frac{\exp \left(-c_{i}-1\right)}{\sum_{j=1}^{N} \exp \left(-c_{j}-1\right)} \quad \text { for } i=1, \ldots, N .
$$

Application: Multi-label segmentation problem or Matrix games.

Example 3: (box constraint)

- Use

$$
\psi(x)=\frac{1}{2}((x+1) \log (x+1)+(1-x) \log (1-x)) .
$$

- Bregman proximal update mapping:

$$
\mathcal{B}_{\psi}(c)=\frac{\exp (-2 c)-1}{\exp (-2 c)+1} .
$$

These linear functions are important thanks to convex duality.

- For instance the TV-norm can be represented as

$$
\|\mathcal{D} x\|_{1}=\max _{y}\langle\mathcal{D} x, y\rangle+\underbrace{\delta_{[-1 \leq y \leq 1]}(y)}_{\text {box constraint }},
$$

which can be employed in Bregman Primal-Dual Algorithms.

Differentiation Strategies for partly smooth functions [Lewis '03]

(Definition here in convex setting taken from [Liang, Fadiil, Peyré '14])
$J \in \Gamma_{0}\left(\mathbb{R}^{N}\right)$ and $\partial J(x) \neq \emptyset$. We call J partly smooth at x relative to $\mathcal{M} \ni x$, if the following conditions are satisfied:

- (Smoothness) \mathcal{M} is a C^{2}-Manifold around x and $\left.J\right|_{\mathcal{M}} \in C^{2}$
- (Sharpness) The tangent space $\mathcal{T}_{\mathcal{M}}$ is $\operatorname{par}(\partial J(x))^{\perp}$.
- (Continuity) ∂J is continuous at x relative to \mathcal{M}.

Examples: ℓ_{1}-norm, $\ell_{2,1}$-norm, ℓ_{∞}-norm, nuclear norm, TVnorm, ...
from [G. Peyré, talk "Low Complexity Regularization of Inverse Problems", 2014]

Implicit differentiation under partial smoothness

(from [Vaiter et al. '16])

$$
E(x, \theta)=F(x, \theta)+J(x)
$$

Assumptions:

- F block-wise C^{2}
- $\bar{\theta} \notin \mathcal{H}$ (certain transition space of measure 0 ; non-degeneracy ass.)
- $J \in \Gamma_{0}$ is partly smooth at solution $x^{*}(\bar{\theta})$ relative to \mathcal{M}
restricted positive definiteness holds at $x^{*}(\bar{\theta})$.

Then:

$>$ there exists open $\mathcal{V} \ni \bar{\theta}$ and a mapping $\hat{x}: \mathcal{V} \rightarrow \mathcal{M}$ such that 1. For all $\theta \in \mathcal{V}, \hat{x}(\theta)$ is a solution that coincides with x^{*} at $\bar{\theta}$ 2. $\hat{x} \in C^{1}(\mathcal{V})$ and for all $\theta \in \mathcal{V}$:

$$
\frac{\partial \hat{x}}{\partial \theta}(\theta)=-\left(\nabla_{\mathcal{M}}^{2} F(\hat{x}(\theta), \theta)+\nabla_{\mathcal{M}}^{2} J(\hat{x}(\theta))\right)^{\dagger} \mathrm{P}_{T_{\hat{x}(\theta)}} \frac{\partial(\nabla F)}{\partial \theta}(\hat{x}(\theta), \theta)
$$

Unrolling algorithms under partial smoothness (idea):

$\quad E$ is non-smooth (but partly smooth)

- Solution lies on a smooth manifold \mathcal{M} and is stable
$\mathcal{A}^{(n+1)}\left(x^{(0)}, \theta\right) \rightarrow x^{*}(\theta)$ for $n \rightarrow \infty$
requires non-degeneracy assumption for $x^{*}(\theta)$
- Many algorithms have the finite identification property (see papers by [J. Liang]):

$$
\exists n_{0} \in \mathbb{N}: \quad x^{(n)} \in \mathcal{M} \text { for all } n \geq n_{0},
$$

hence the update mapping \mathcal{A} becomes smooth eventually.

Differentiating the Value Function by using Convex Duality, AISTATS 2021 (different situation) [Mehmood, O. '21]

$$
p(u)=\min _{x} f(x, u)
$$

Compute the derivative of the value function:

$$
\nabla p(u) \quad(p \text { can be smooth with } f \text { being smooth })
$$

- Requires f to be convex in x and u.
- Derivative is given by (convex duality; f^{*} : convex conjugate of f)

$$
\partial p(u)=\underset{\operatorname{argmax}}{\operatorname{ar}}\langle u, y\rangle-f^{*}(0, y)
$$

$$
y
$$

\rightsquigarrow derivative by solving an optimiation problem (dual problem).
\rightsquigarrow convergence rates of the derivative sequence in situations where f is not strongly convex.

Conclusion

- Bilevel optimization as framework for parameter learning.
- Solve bilevel problem by gradient based algorithms.
- Strategies for computing the derivative of the solution mapping in smooth and non-smooth setup:
- Implicit differentiation.
- Weak differentiation of iterative algorithms.
- Unrolling a "smooth algorithm" for a non-smooth problem.
- Implicit Differentiation or unrolling of fixed point equations.
- Differentiation under partial smoothness assumption.

Derivation:

$$
\partial_{\theta} x^{*} \approx \partial_{\theta} x^{(n+1)}
$$

$$
\begin{aligned}
& =\partial_{x} x^{(n+1)} \partial_{\theta} x^{(n)}+\partial_{\theta} x^{(n+1)} \\
& =\partial_{x} x^{(n+1)}\left(\partial_{x} x^{(n)} \partial_{\theta} x^{(n-1)}+\partial_{\theta} x^{(n)}\right)+\partial_{\theta} x^{(n+1)}
\end{aligned}
$$

$$
\vdots
$$

$$
=\sum_{k=0}^{n+1}\left(\prod_{j=k}^{n} \partial_{x} x^{(j+1)}\right) \partial_{\theta} x^{(k)}
$$

$$
=\sum_{k=0}^{n+1}\left(\prod_{j=k}^{n} \partial_{x} \mathcal{A}\left(x^{(j)}, \theta\right)\right) \partial_{\theta} \mathcal{A}\left(x^{(k-1)}, \theta\right)
$$

$$
\approx \sum_{k=0}^{n+1}\left(\prod_{j=k}^{n} \partial_{x} \mathcal{A}\left(x^{*}, \theta\right)\right) \partial_{\theta} \mathcal{A}\left(x^{*}, \theta\right)
$$

$$
=\sum_{k=0}^{n+1}\left(\partial_{x} \mathcal{A}\left(x^{*}, \theta\right)\right)^{k} \partial_{\theta} \mathcal{A}\left(x^{*}, \theta\right) \approx\left(I-\partial_{x} \mathcal{A}\left(x^{*}, \theta\right)\right)^{-1} \partial_{\theta} \mathcal{A}\left(x^{*}, \theta\right)
$$

