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Inverse Problem:

forward model A
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inverse problem

clean image h observed image f

» The degradation process is modeled as follows

f~A(h)+N  N:additive pixel-wise noise

» Goal: Reconstruct h
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Image Deblurring: of an image f (using Total Variation)
o1
min o || Au — FI? + MDu 2,1

> A convolution / blurr operator; D discrete derivative operator

clean image blurry image reconstruction
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Regularization weight has a huge impact on the result!

reconstruction; small A

|
noisy input reconstruction; large A
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Variational Problems with Regularization

min Ex(u), Ex(u)= D(u) +X R(u)

SN—~— S~~~
data term regularization
term

A > 0 is a regularization parameter.

How to find the best regularization weight \?
hand-tuning

grid search
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What about learning the whole regularization term?

R(u,v,0) ==Y (Z%P(Zﬁkl K m))

7]

K; are predefined basis filters (e.g. DCT filter)
p is a potential function (convex)

(This regularizer reflects a 1-hidden-layer neural network.)
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Deep Neural Network with Inference Layer/Variational Model:

Pairwise CNN "\ ((inference Layer

Input Image

| s e EL [Ranflt, Pock 14]

~ Resurge of variational models as layers in deep learning.
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What about learning the whole regularization term?

R(u,v,0) ==Y (Z%P(Zﬁkl K m))

7]

K; are predefined basis filters (e.g. DCT filter)
p is a potential function (convex)

(This regularizer reflects a 1-hidden-layer neural network.)

How to find the best weights v, ¥?
hand-tuning and grid search are not feasible

sampling and regression of loss function using
Gaussian processes or Random Fields (up to &~ 200 parameters)

gradient based bi-level optimization (several 100 000 parameters)

A © 2021 — Peter Ochs Mathematical Optimization Group 8 / 26



Bilevel optimization / parameter Learning
i L(x*(0),60 upper level
p o0 (z*(6),0) (upp )

s.t. 2*(0) € arg min E(x,0)  (lower level)
zeRN

6 € R optimization variable parameter (vector).
L: RN x RP — R: smooth loss function.

E: RN x RP — R: parametric (energy) minimization problem.
(convex for each 6 € RP)

z*: RP — RV is a selection of the solution mapping of £.
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Bilevel optimization / parameter Learning
i L(x*(0),60 upper level
p o0 (z*(6),0) (upp )

s.t. 2*(0) € arg min E(x,0)  (lower level)
zeRN

6 € R optimization variable parameter (vector).
L£: RY x RP — R: smooth loss function.

E: RN x RP — R: parametric (energy) minimization problem.
(convex for each 6 € RP)

z*: RP — RV is a selection of the solution mapping of £.

Gradient based optimization requires V,£(z*(0%)), §(¥),
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Computation of V£ (z*(6%), 9()),

If loss function £ and solution mapping =*(6) are differentiable:

ox*

VoL(z*(0™)),00) = <80

.
<9<k‘>)> Vo L(x*,0%)) + VoL (z*, 00)

Actually, we are interested in the directional derivative of +*(¢) at
0%) in direction v(¥) := Vv, L(z*,0()):

.
9" Ly k)
W (9 ) v
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Computation of V,L(z*(0*)),0(*),

If loss function £ and solution mapping =*(6) are differentiable:

ox*

VoL(z*(0™)),00) = (80

.
(9<k>)) Vo L(x*,0%)) + VoL (z*, 00)

Actually, we are interested in the directional derivative of +*(¢) at
0%) in direction v(¥) := Vv, L(z*,0()):

.
027 gy ) b
a0

PAPSE

~+  Study %19 or, more generally,

¢

sensitivity of the solution mapping .
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Strategies for differentiation:

In the following: x*(0) € arg min F(z,6) (E smooth)
z€RN
Goal: Compute o (9)
- omp a0
Strategies:

Implicit differentiation. (requires E strictly convex)

Unrolling an algorithm. (use automatic differentiation)

Implicit differentiation or unrolling of a fixed point equation. [0. et al. '16]
Warning:

Even for smooth E, the solution mapping z*(6) is often non-smooth.

Solution mapping multivalued, when arg mir}v E(x,0) is not unique.
zeR
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Implicit Differentiation: (widely used approach; constraints via KKT)
The optimality condition is V,E(x,6) = 0.

This implicitly defines x*(6) (implicit function theorem).
Let (z*,0) be such that V,E(z*,0) = 0, then, if [...] we have

ox* . -1 9°E , ,
g ) = _<HE(x ’9>) 3602 0)

Disadvantages: (reasons why we avoid this approach)
Requires twice differentiability of E.

Requires several approximations: z* and H' (solve linear system).
Unstable for badly conditioned H.

Requires estimation (and storing) Hg.
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Unrolling an algorithm: A+ (20 9) — 2*(9) for n — oo
Approximate by a fixed n € N:  (where z(°) is some initialization.)

.%'*(«9) ~ A(n+1)(l‘(0), 9)
derivative by reverse mode AD (backpropagation)

Advantages:
Output is unambiguous (unique), also if argmin E' is multi-valued.

After the algorithm A is fixed, the approach is exact.
All iterations depend on the same parameter ~- truncate backprop.

For E strongly convex, we have convergence rates for

9An+1) n-q dz*  Accelerated convergence for

00 00 accelerated algorithms! [Mehmood, 0. 20]

Disadvantages: Store all intermediate iterates (in reverse mode).
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Replace arg min F(x, 0) by a fixed point equation:
z*(0) = A(z*(0), 0)

Implicit function theorem:

o[04\ 04
o0 \' o) o0

Using

A n 0 n
(5) S ) S~ ()

n=0 n—

we obtain AD with intermediate variables replaced by the
optimum. [O. et al. '16]

~ accelerates convergence rate [Mehmood, O. 20].

Requires to store only z*.
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Strategies for differentiation if £ is non-smooth:

In the following: x*(0) € arg min E(z,6) (F non-smooth)
z€eR
oxr*
Goal: Compute 50 0) 1?

Strategies:
Strategies above after smoothing E.

often instable or requires significant smoothing
no approximation bounds

Weak differentiation of iterative algorithms. [Deledalle et al. '14]
(using Rademacher Theorem,; show update map is Lipschitz)

yields only weak derivatives
requires “Subgradient Descent” methods for bilevel problem
convergence of derivative sequence unknown
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Strategies for differentiation if £ is non-smooth: (continued)

Unrolling a “smooth algorithm” that solves the non-smooth problem.
[O. et al. '16] (See next slides)

E is non-smooth,
AT (200 6) — 2*(6) for n — oo,

update mapping A: RY x R” — R is smooth.

Implicit Differentiation of fixed point equations. [O. et al. '16]
(“unrolling a smooth algorithm”-strategy but for fixed-point equation)

Implicit Differentiation for partly smooth functions. [vaiter et al. 16, Riis '19]

Unrolling in the partial smoothness framework. [Riis, PhD Thesis '19]
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Unrolling a “smooth algorithm™:
Key are Bregman distances D,.

Update mapping B,, of Bregman Proximal Gradient Method solves

By(c(0)) := argmin g(x) + (c(0), z) + ¢ (x)

T

¢ constant vector (depends on current iterate and 6);
g is possibly non-smooth (e.g. indicator function)

Bregman Proximal Gradient or Bregman Primal Dual Algorithm.

idea similar to barrier approach ~- all iterates lie in interior
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Example 1: (non-negativity constraint)
X =[z>0]and g =dx

entropy function ¢ (z) = xlog(x)
Bregman Proximal mapping:
By (c(6)) = exp(—c(9) — 1)

Application: non-negative least squares problem.

A © 2021 — Peter Ochs Mathematical Optimization Group

18/ 26



Example 2: (simplex constraint)
Minimize f(z) over the unit simplex in RY

N
N o A ‘
{xeR |iz_;ar:Z 1andx,20}

Use entropy ¢ (z) = Zﬁil x; log(x;) to drop the non-negativity
constraint.

Bregman proximal update mapping:

By(e)): — exp(—¢; — 1)
(By(e)) SN exp(—c; — 1)

fori=1,...,N.

Application: Multi-label segmentation problem or Matrix games.
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Example 3: (box constraint)
1
Use P(z) = 5((33 + 1)log(z+1)+ (1 —x)log(l —x)).
Bregman proximal update mapping:

exp(—2¢c) —1

Bul€) = p(C20 71

These linear functions are important thanks to convex duality.
For instance the TV-norm can be represented as
[Dz|l1 = max (Dz,y) + d—1<y<1)(¥) ,
Y ———
box constraint

which can be employed in Bregman Primal-Dual Algorithms.
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Differentiation Strategies for partly smooth functions [Lewis 03]
(Definition here in convex setting taken from [Liang, Fadili, Peyré '14])

J € To(RY) and 9.J(z) # 0. We call J partly smooth at » relative to
M > z, if the following conditions are satisfied:

(Smoothness) M is a C?-Manifold around z and J|, € C?
(Sharpness) The tangent space T is par(d.J(z))*.

(Continuity) 0.J is continuous at x relative to M.

Examples: /;-norm, /3 1-norm,
f~-norm, nuclear norm, TV-
norm, ...

from [G. Peyré, talk “Low Complexity Regularization of Inverse Problems”, 2014]
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Implicit differentiation under partial smoothness
(from [vaiter et al. 16])
E(z,0) = F(z,0) + J(z)
Assumptions:
F block-wise C?

0 ¢ H (certain transition space of measure 0; non-degeneracy ass.)

J € T’y is partly smooth at solution z*(0) relative to M

restricted positive definiteness holds at z*(0).

Then:
there exists open V > 6 and a mapping #: V — M such that
For all § € v, #(0) is a solution that coincides with z* at §
&€ CY(V)andforall  c V:

Z:;(Q) =~ (VAF(0),0) + V?w«f(i(@)))TPTE(G) 2N (3(9), 0)
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Unrolling algorithms under partial smoothness (idea):
E is non-smooth (but partly smooth)
Solution lies on a smooth manifold M and is stable
ACHED (20) ) — 2*(9) for n — oo
requires non-degeneracy assumption for z*(0)

Many algorithms have the finite identification property (see
papers by [J. Liang]):

Ing e N: 2™ e Mforalln > ng,

hence the update mapping A becomes smooth eventually.
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Differentiating the Value Function by using Convex Duality,
AISTATS 2021 (different situation) [Mehmood, O. 21]

p(u) = min f(z, u)
x
Compute the derivative of the value function:

Vp(u) (p can be smooth with f being smooth)

» Requires f to be convex in z and .
> Derivative is given by (convex duality; f*: convex conjugate of f)

Op(u) = arg;naxw, y) — f*(0,y)

~- derivative by solving an optimiation problem (dual problem).

~ convergence rates of the derivative sequence in situations where
f is not strongly convex.
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Conclusion
Bilevel optimization as framework for parameter learning.

Solve bilevel problem by gradient based algorithms.

Strategies for computing the derivative of the solution mapping in
smooth and non-smooth setup:

Implicit differentiation.

Weak differentiation of iterative algorithms.

Unrolling a “smooth algorithm” for a non-smooth problem.
Implicit Differentiation or unrolling of fixed point equations.

Differentiation under partial smoothness assumption.
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Derivation:
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