
Towards Differentiation of Solution Mappings of
Non-smooth Optimization Problems

Peter Ochs
Mathematical Optimization Group

University of Tübingen

— 06.09.2021 —

© 2021 — Peter Ochs Mathematical Optimization Group 1 / 26

Inverse Problem:

forward model A

inverse problem

observed image fclean image h

I The degradation process is modeled as follows

f ≈ A(h) +N N : additive pixel-wise noise

I Goal: Reconstruct h

© 2021 — Peter Ochs Mathematical Optimization Group 2 / 26

Image Deblurring: of an image f (using Total Variation)

min
u

1

2
‖Au− f‖2 + λ‖Du‖2,1

I A convolution / blurr operator; D discrete derivative operator

clean image blurry image reconstruction

© 2021 — Peter Ochs Mathematical Optimization Group 3 / 26

Regularization weight has a huge impact on the result!

ground truth

noisy input

reconstruction; small λ

reconstruction; large λ

© 2021 — Peter Ochs Mathematical Optimization Group 4 / 26

Variational Problems with Regularization

min
u

Eλ(u) , Eλ(u) = D(u)︸ ︷︷ ︸
data term

+ λ R(u)︸ ︷︷ ︸
regularization

term

.

I λ > 0 is a regularization parameter.

How to find the best regularization weight λ?
I hand-tuning

I grid search

© 2021 — Peter Ochs Mathematical Optimization Group 5 / 26

What about learning the whole regularization term?

R(u, ν, ϑ) :=
∑
i,j

(
m∑
k=1

νkρ
(L∑
l=1

ϑkl(Klu)ij

))
I Kl are predefined basis filters (e.g. DCT filter)

I ρ is a potential function (convex)

(This regularizer reflects a 1-hidden-layer neural network.)

© 2021 — Peter Ochs Mathematical Optimization Group 6 / 26

Deep Neural Network with Inference Layer/Variational Model:

[Ranflt, Pock 14]

R(NR
θ (u))

D(ND
ϑ (u))

 Resurge of variational models as layers in deep learning.

© 2021 — Peter Ochs Mathematical Optimization Group 7 / 26

What about learning the whole regularization term?

R(u, ν, ϑ) :=
∑
i,j

(
m∑
k=1

νkρ
(L∑
l=1

ϑkl(Klu)ij

))
I Kl are predefined basis filters (e.g. DCT filter)

I ρ is a potential function (convex)

(This regularizer reflects a 1-hidden-layer neural network.)

How to find the best weights ν, ϑ?
I hand-tuning and grid search are not feasible

I sampling and regression of loss function using
Gaussian processes or Random Fields (up to ≈ 200 parameters)

I gradient based bi-level optimization (several 100 000 parameters)

© 2021 — Peter Ochs Mathematical Optimization Group 8 / 26

Bilevel optimization / parameter Learning

min
θ∈RP , x∗

L(x∗(θ), θ) (upper level)

s.t. x∗(θ) ∈ arg min
x∈RN

E(x, θ) (lower level)

I θ ∈ RP : optimization variable parameter (vector).

I L : RN × RP → R: smooth loss function.

I E : RN × RP → R: parametric (energy) minimization problem.
(convex for each θ ∈ RP)

I x∗ : RP → RN is a selection of the solution mapping of E.

Gradient based optimization requires ∇θL(x∗(θ(k)), θ(k)).

© 2021 — Peter Ochs Mathematical Optimization Group 9 / 26

Bilevel optimization / parameter Learning

min
θ∈RP , x∗

L(x∗(θ), θ) (upper level)

s.t. x∗(θ) ∈ arg min
x∈RN

E(x, θ) (lower level)

I θ ∈ RP : optimization variable parameter (vector).

I L : RN × RP → R: smooth loss function.

I E : RN × RP → R: parametric (energy) minimization problem.
(convex for each θ ∈ RP)

I x∗ : RP → RN is a selection of the solution mapping of E.

Gradient based optimization requires ∇θL(x∗(θ(k)), θ(k)).

© 2021 — Peter Ochs Mathematical Optimization Group 9 / 26

Computation of ∇θL(x∗(θ(k)), θ(k)).

I If loss function L and solution mapping x∗(θ) are differentiable:

∇θL(x∗(θ(k)), θ(k)) =

(
∂x∗

∂θ
(θ(k))

)>
∇xL(x∗, θ(k)) +∇θL(x∗, θ(k))

I Actually, we are interested in the directional derivative of x∗(θ) at
θ(k) in direction v(k) := ∇xL(x∗, θ(k)):(

∂x∗

∂θ
(θ(k))

)>
v(k)

 Study
∂x∗

∂θ
or, more generally,

sensitivity of the solution mapping .

© 2021 — Peter Ochs Mathematical Optimization Group 10 / 26

Computation of ∇θL(x∗(θ(k)), θ(k)).

I If loss function L and solution mapping x∗(θ) are differentiable:

∇θL(x∗(θ(k)), θ(k)) =

(
∂x∗

∂θ
(θ(k))

)>
∇xL(x∗, θ(k)) +∇θL(x∗, θ(k))

I Actually, we are interested in the directional derivative of x∗(θ) at
θ(k) in direction v(k) := ∇xL(x∗, θ(k)):(

∂x∗

∂θ
(θ(k))

)>
v(k)

 Study
∂x∗

∂θ
or, more generally,

sensitivity of the solution mapping .

© 2021 — Peter Ochs Mathematical Optimization Group 10 / 26

Strategies for differentiation:

In the following: x∗(θ) ∈ arg min
x∈RN

E(x, θ) (E smooth)

Goal: Compute
∂x∗

∂θ
(θ)

Strategies:
I Implicit differentiation. (requires E strictly convex)

I Unrolling an algorithm. (use automatic differentiation)

I Implicit differentiation or unrolling of a fixed point equation. [O. et al. ’16]

Warning:
I Even for smooth E, the solution mapping x∗(θ) is often non-smooth.

I Solution mapping multivalued, when arg min
x∈RN

E(x, θ) is not unique.

© 2021 — Peter Ochs Mathematical Optimization Group 11 / 26

Implicit Differentiation: (widely used approach; constraints via KKT)
I The optimality condition is ∇xE(x, θ) = 0.

I This implicitly defines x∗(θ) (implicit function theorem).

I Let (x∗, θ) be such that ∇xE(x∗, θ) = 0, then, if [...] we have

∂x∗

∂θ
(θ) = −

(
HE(x∗, θ)

)−1 ∂2E
∂θ∂x

(x∗, θ) .

Disadvantages: (reasons why we avoid this approach)
I Requires twice differentiability of E.

I Requires several approximations: x∗ and H−1E (solve linear system).

I Unstable for badly conditioned HE .

I Requires estimation (and storing) HE .

© 2021 — Peter Ochs Mathematical Optimization Group 12 / 26

Unrolling an algorithm: A(n+1)(x(0), θ)→ x∗(θ) for n→∞
I Approximate by a fixed n ∈ N: (where x(0) is some initialization.)

x∗(θ) ≈ A(n+1)(x(0), θ)

 derivative by reverse mode AD (backpropagation)

I Advantages:
I Output is unambiguous (unique), also if argminE is multi-valued.

I After the algorithm A is fixed, the approach is exact.

I All iterations depend on the same parameter truncate backprop.

I For E strongly convex, we have convergence rates for

∂A(n+1)

∂θ

n→∞−→ ∂x∗

∂θ
Accelerated convergence for
accelerated algorithms! [Mehmood, O. ’20]

I Disadvantages: Store all intermediate iterates (in reverse mode).
© 2021 — Peter Ochs Mathematical Optimization Group 13 / 26

Replace arg minE(x, θ) by a fixed point equation:

x∗(θ) = A(x∗(θ), θ)

I Implicit function theorem:

∂x∗

∂θ
=

(
I − ∂A

∂x∗

)−1
∂A
∂θ

I Using (
I − ∂A

∂x∗

)−1 ‖ ∂A
∂x∗ ‖<1

=

∞∑
n=0

(∂A
∂x∗

)n∂A
∂θ
≈

n0∑
n=0

(∂A
∂x∗

)n∂A
∂θ

we obtain AD with intermediate variables replaced by the
optimum. [O. et al. ’16]

 accelerates convergence rate [Mehmood, O. ’20].

I Requires to store only x∗.

© 2021 — Peter Ochs Mathematical Optimization Group 14 / 26

Strategies for differentiation if E is non-smooth:

In the following: x∗(θ) ∈ arg min
x∈RN

E(x, θ) (E non-smooth)

Goal: Compute
∂x∗

∂θ
(θ) !?

Strategies:
I Strategies above after smoothing E.

 often instable or requires significant smoothing
 no approximation bounds

I Weak differentiation of iterative algorithms. [Deledalle et al. ’14]

(using Rademacher Theorem; show update map is Lipschitz)

 yields only weak derivatives
 requires “Subgradient Descent” methods for bilevel problem
 convergence of derivative sequence unknown

© 2021 — Peter Ochs Mathematical Optimization Group 15 / 26

Strategies for differentiation if E is non-smooth: (continued)

I Unrolling a “smooth algorithm” that solves the non-smooth problem.
[O. et al. ’16] (see next slides)

 E is non-smooth,

 A(n+1)(x(0), θ)→ x∗(θ) for n→∞,

 update mapping A : RN × RP → RN is smooth.

I Implicit Differentiation of fixed point equations. [O. et al. ’16]

(“unrolling a smooth algorithm”-strategy but for fixed-point equation)

I Implicit Differentiation for partly smooth functions. [Vaiter et al. 16, Riis ’19]

I Unrolling in the partial smoothness framework. [Riis, PhD Thesis ’19]

© 2021 — Peter Ochs Mathematical Optimization Group 16 / 26

Unrolling a “smooth algorithm”:
I Key are Bregman distances Dψ.

I Update mapping Bψ of Bregman Proximal Gradient Method solves

Bψ(c(θ)) := argmin
x

g(x) + 〈c(θ), x〉+ ψ(x)

I c constant vector (depends on current iterate and θ);
g is possibly non-smooth (e.g. indicator function)

I Bregman Proximal Gradient or Bregman Primal Dual Algorithm.

I idea similar to barrier approach all iterates lie in interior

© 2021 — Peter Ochs Mathematical Optimization Group 17 / 26

Example 1: (non-negativity constraint)
I X = [x ≥ 0] and g = δX

I entropy function ψ(x) = x log(x)

I Bregman Proximal mapping:

Bψ(c(θ)) = exp(−c(θ)− 1)

Application: non-negative least squares problem.

© 2021 — Peter Ochs Mathematical Optimization Group 18 / 26

Example 2: (simplex constraint)
I Minimize f(x) over the unit simplex in RN

{
x ∈ RN |

N∑
i=1

xi = 1 and xi ≥ 0
}
.

I Use entropy ψ(x) =
∑N

i=1 xi log(xi) to drop the non-negativity
constraint.

I Bregman proximal update mapping:

(Bψ(c))i =
exp(−ci − 1)∑N
j=1 exp(−cj − 1)

for i = 1, . . . , N .

Application: Multi-label segmentation problem or Matrix games.

© 2021 — Peter Ochs Mathematical Optimization Group 19 / 26

Example 3: (box constraint)

I Use ψ(x) =
1

2
((x+ 1) log(x+ 1) + (1− x) log(1− x)) .

I Bregman proximal update mapping:

Bψ(c) =
exp(−2c)− 1

exp(−2c) + 1
.

These linear functions are important thanks to convex duality.
I For instance the TV-norm can be represented as

‖Dx‖1 = max
y
〈Dx, y〉+ δ[−1≤y≤1](y)︸ ︷︷ ︸

box constraint

,

which can be employed in Bregman Primal–Dual Algorithms.

© 2021 — Peter Ochs Mathematical Optimization Group 20 / 26

Differentiation Strategies for partly smooth functions [Lewis ’03]

(Definition here in convex setting taken from [Liang, Fadili, Peyré ’14])

J ∈ Γ0(RN) and ∂J(x) 6= ∅. We call J partly smooth at x relative to
M3 x, if the following conditions are satisfied:
I (Smoothness)M is a C2-Manifold around x and J |M ∈ C2

I (Sharpness) The tangent space TM is par(∂J(x))⊥.

I (Continuity) ∂J is continuous at x relative toM.

Examples: `1-norm, `2,1-norm,
`∞-norm, nuclear norm, TV-
norm, ...

from [G. Peyré, talk “Low Complexity Regularization of Inverse Problems”, 2014]

© 2021 — Peter Ochs Mathematical Optimization Group 21 / 26

Implicit differentiation under partial smoothness
(from [Vaiter et al. ’16])

E(x, θ) = F (x, θ) + J(x)

Assumptions:
I F block-wise C2

I θ̄ 6∈ H (certain transition space of measure 0; non-degeneracy ass.)

I J ∈ Γ0 is partly smooth at solution x∗(θ̄) relative toM

I restricted positive definiteness holds at x∗(θ̄).

Then:
I there exists open V 3 θ̄ and a mapping x̂ : V →M such that

1. For all θ ∈ V, x̂(θ) is a solution that coincides with x∗ at θ̄
2. x̂ ∈ C1(V) and for all θ ∈ V:

∂x̂

∂θ
(θ) = −

(
∇2
MF (x̂(θ), θ) +∇2

MJ(x̂(θ))
)†

PTx̂(θ)
∂(∇F)
∂θ (x̂(θ), θ)

© 2021 — Peter Ochs Mathematical Optimization Group 22 / 26

Unrolling algorithms under partial smoothness (idea):

I E is non-smooth (but partly smooth)

I Solution lies on a smooth manifoldM and is stable

I A(n+1)(x(0), θ)→ x∗(θ) for n→∞

I requires non-degeneracy assumption for x∗(θ)

I Many algorithms have the finite identification property (see
papers by [J. Liang]):

∃n0 ∈ N : x(n) ∈M for all n ≥ n0 ,

hence the update mapping A becomes smooth eventually.

© 2021 — Peter Ochs Mathematical Optimization Group 23 / 26

Differentiating the Value Function by using Convex Duality,
AISTATS 2021 (different situation) [Mehmood, O. ’21]

p(u) = min
x
f(x, u)

Compute the derivative of the value function:

∇p(u) (p can be smooth with f being smooth)

I Requires f to be convex in x and u.

I Derivative is given by (convex duality; f∗: convex conjugate of f)

∂p(u) = argmax
y
〈u, y〉 − f∗(0, y)

 derivative by solving an optimiation problem (dual problem).

 convergence rates of the derivative sequence in situations where
f is not strongly convex.

© 2021 — Peter Ochs Mathematical Optimization Group 24 / 26

Conclusion
I Bilevel optimization as framework for parameter learning.

I Solve bilevel problem by gradient based algorithms.

I Strategies for computing the derivative of the solution mapping in
smooth and non-smooth setup:

I Implicit differentiation.

I Weak differentiation of iterative algorithms.

I Unrolling a “smooth algorithm” for a non-smooth problem.

I Implicit Differentiation or unrolling of fixed point equations.

I Differentiation under partial smoothness assumption.

© 2021 — Peter Ochs Mathematical Optimization Group 25 / 26

Derivation:
∂θx
∗ ≈ ∂θx(n+1)

= ∂xx
(n+1)∂θx

(n) + ∂θx
(n+1)

= ∂xx
(n+1)(∂xx

(n)∂θx
(n−1) + ∂θx

(n)) + ∂θx
(n+1)

...

=

n+1∑
k=0

(n∏
j=k

∂xx
(j+1)

)
∂θx

(k)

=
n+1∑
k=0

(n∏
j=k

∂xA(x(j), θ)
)
∂θA(x(k−1), θ)

≈
n+1∑
k=0

(n∏
j=k

∂xA(x∗, θ)
)
∂θA(x∗, θ)

=

n+1∑
k=0

(
∂xA(x∗, θ)

)k
∂θA(x∗, θ) ≈

(
I − ∂xA(x∗, θ)

)−1
∂θA(x∗, θ)

© 2021 — Peter Ochs Mathematical Optimization Group 26 / 26

