
Mathematisches Kolloqium, University of Tübingen

Non-smooth First-order Optimization
Algorithms for Machine Learning

Peter Ochs
Mathematical

Optimization Group

— 08.02.2021 —

© 2021 — Peter Ochs Mathematical Optimization Group 1 / 28

Optimization in General

Optimization is not solvable!
I Efficiently finding solutions to the whole class of Lipschitz

continuous problems is a hopeless case [Nesterov ’04].

I Can take several million years for small problems with only 10
unknowns.

⇒ Exploit the structure of optimization problems!

© 2021 — Peter Ochs Mathematical Optimization Group 2 / 28

Optimization in General

Optimization is not solvable!
I Efficiently finding solutions to the whole class of Lipschitz

continuous problems is a hopeless case [Nesterov ’04].

I Can take several million years for small problems with only 10
unknowns.

⇒ Exploit the structure of optimization problems!

© 2021 — Peter Ochs Mathematical Optimization Group 2 / 28

Classical Optimization

Classic Optimization:

min
x∈C

f(x) , C := {x ∈ RN | fj(x) ≤ 0 , j = 1, . . . ,M} .

I Linear Programming: f , f1, . . . , fM are linear functions.

I Smooth non-linear programming: f is C1-smooth, C = ∅.

I Constrained non-linear programming: f , fj are C1-smooth.

Traditional view on optimization (before 1990):

Linear vs. non-linear.

© 2021 — Peter Ochs Mathematical Optimization Group 3 / 28

Non-smooth Optimization

Why Non-smooth Optimization?

I Non-smoothness is not just a deficiency.

I Constraints lead to non-smoothness.

I Arises naturally in some applications, e.g. sparsity.

I Lagrangian Relaxation, functions with envelope
representation, Penalty formulation, ...

 Differentiability is replaced by “structure”.

© 2021 — Peter Ochs Mathematical Optimization Group 4 / 28

First-order Optimization

Why First-order Optimization?

I Problems in Data Science, Machine Learning, Computer
Vision, Image Processing, ...

I Practical problems depend on data.

 rapidly growing.

I Problems are large / huge scale.

 computing / inverting Hessian matrix is too expensive.

 second order information can be unstable.

I Our goal is non-smooth optimization.

© 2021 — Peter Ochs Mathematical Optimization Group 5 / 28

Sparsity Induced by Non-smooth Minimization

Least Absolute Shrinkage and Selection Operator:

min
x∈RN

1

2
‖Ax− b‖2 + λ‖x‖1

I Sparse linear regression: (Ai ∈ RM feature for b)

b ≈
N∑
i=1

Aixi , A = (A1, . . . , AN) ∈ RM×N , x = (x1, . . . , xN)> .

I ‖x‖1 used as a convex approximation to #{i |xi 6= 0}.

I Motivation: Interpretable model (many zero-coordinates)

b ≈
N∑
i=1

Aixi =
∑

j∈{i |xi 6=0}

Ajxj .

© 2021 — Peter Ochs Mathematical Optimization Group 6 / 28

Sparsity Induced by Non-smooth Minimization

1-norm constrained minimization yields sparse solutions:

b

‖Ax− b‖2

‖x‖1 ≤ α

b

‖Ax− b‖2

‖x‖22 ≤ β

 solutions for the 1-norm constrained problem are likely to
lie on coordinate axis

© 2021 — Peter Ochs Mathematical Optimization Group 7 / 28

Non-smooth Problems arise naturally

Matrix Completion:

min
X∈RM×N

1

2
‖πS(A−X)‖2F + λ‖X‖∗

I πS projects onto a subspace S.

I ‖X‖∗ is the Nuclear norm = sum of singular values

I ‖X‖∗ used as convex relaxation of rank(X).

I Solution has low rank, i.e., exploits linear dependency of data.

I Application: e.g. Collaborative filtering

 Dimensionality may be large / huge.

© 2021 — Peter Ochs Mathematical Optimization Group 8 / 28

Sparsity Induced by Non-smooth Minimization

Image Deblurring: of an image b ∈ RM×N

min
u∈RM×N

1

2
‖Ku− b‖2 + λ‖Du‖2,1

I K convolution / blurr operator; D discrete derivative operator
 dimensionality u = number of pixel (gray-value image)

clean image blurry image reconstruction

© 2021 — Peter Ochs Mathematical Optimization Group 9 / 28

Classical Methods for Non-smooth Optimization

Classical Methods for Non-smooth Optimization?

I Constraint set C reformulated using penalty terms.

I Generic non-linear solvers (black box solvers):
e.g. Steepest Descent, Conjugate Gradient, L-BFGS,
Newton’s Method, Interior Point Method, ...

I Hard to generalize to constraints or non-smooth functions.

I Line-search procedure can be time intensive.

I Maybe slow or memory intensive for large scale problems.

© 2021 — Peter Ochs Mathematical Optimization Group 10 / 28

View on Optimization

Modern view (after 1990):

“Watershed in optimization is
between convexity and non-convexity

instead of linearity and nonlinearity”
[Rockafellar, SIAM Review, 35 (1993)]

© 2021 — Peter Ochs Mathematical Optimization Group 11 / 28

Subgradient Method

A Non-smooth Convex Optimization Problems:
I Lipschitz continuous, convex problem:

min
x∈RN

f(x) + g(x)

RN → R
smooth, convex
∇f Lipschitz

RN → R
non-smooth,

convex

I Lower complexity estimate: (ε: desired accuracy)

req. number of iterations to achieve accuracy of ε = O(1/ε2) .

© 2021 — Peter Ochs Mathematical Optimization Group 12 / 28

Proximal Gradient Method

Structured Optimization Problems: (Splitting)
I Additive Composite Setting:

min
x∈RN

f(x) + g(x)

RN → R
smooth, convex
∇f Lipschitz

RN → R
non-smooth,

convex
simple prox

Gradient Descent Step:

x̄− τ∇f(x̄)
Proximal Step: proxτg(x̄), i.e.

argmin
x∈RN

g(x) +
1

2τ
‖x− x̄‖2

© 2021 — Peter Ochs Mathematical Optimization Group 13 / 28

Proximal Gradient Method

Structured Optimization Problems: (Splitting)
I Additive Composite Setting:

min
x∈RN

f(x) + g(x)

RN → R
smooth, convex
∇f Lipschitz

RN → R
non-smooth,

convex
simple prox

Gradient Descent Step:

x̄− τ∇f(x̄)
Proximal Step: proxτg(x̄), i.e.

argmin
x∈RN

g(x) +
1

2τ
‖x− x̄‖2

© 2021 — Peter Ochs Mathematical Optimization Group 13 / 28

Least Absolute Shrinkage and Selection Operator

Example: min
x∈RN

1

2
‖Ax− b‖2︸ ︷︷ ︸

=f(x)

+ λ‖x‖1︸ ︷︷ ︸
=g(x)

I Compute gradient:
∇f(x) = A>(Ax− b)

I Compute proximal mapping:

proxτg(x̄) = argmin
x∈RN

λ‖x‖1 +
1

2τ
‖x− x̄‖22

=
(

argmin
xi∈R

λ|xi|+
1

2τ
(xi − x̄i)2

)
i=1,...,N

=
(

max(|x̄i| − τλ, 0) · sign(x̄i)
)
i=1,...,N

−τλ τλ

x̄

proxτg

© 2021 — Peter Ochs Mathematical Optimization Group 14 / 28

Proximal Gradient Method

Algorithm: (Proximal Gradient Method)
I Optimization problem: minx f(x) + g(x)
I f : RN → R convex with ∇f L-Lipschitz.
I g : RN → R proper, lsc, convex with simple prox.

I Iterations (k ≥ 0): Update (x(0) ∈ RN)

x(k+1) = proxτg(x
(k) − τ∇f(x(k)))

Complexity estimate: O(1/ε)

Method traces back to:
[P. L. Lions and B. Mercier: Splitting algorithms for the sum of two nonlinear operators, SIAM J.

Numer. Anal., 16 (1979), pp. 964–979.]

© 2021 — Peter Ochs Mathematical Optimization Group 15 / 28

“Acceleration” Strategies

Acceleration Strategies:
I Higher order Optimization? (“non-smooth Newton method”)

I Not tractable for large scale. (requires inverse Hessian)

I “Accelerate” first order methods:

I In convex optimization, we can accelerate by
extrapolation/momentum. (worst case O(1/

√
ε))

I In non-convex optimization, this is an effective heuristic.

I Alternative acceleration strategies:

I Quasi-Newton schemes. (this talk)
I Subspace Optimization.

© 2021 — Peter Ochs Mathematical Optimization Group 16 / 28

Quasi-Newton Methods

Quasi-Newton Methods:
I Can be interpreted as variable metric method:

x(k+1) = x(k) − τV −1k ∇f(x(k)) .

with (positive definite) Hessian approximation Vk ≈ ∇2f(x(k)).

I Quasi-Newton Methods successively improve Vk by low-rank
modifications that approximate the “curvature” via secant
equations.

I SR1: rank 1 updates; BFGS: rank 2 updates.

© 2021 — Peter Ochs Mathematical Optimization Group 17 / 28

Quasi-Newton Methods

Non-smooth Quasi-Newton Methods:
I Non-smooth setting:

x(k+1) = proxVkτg
(
x(k) − τV −1k ∇f(x(k))

)
where

proxVkτg(x̄) := argmin
x

g(x) +
1

2τ
〈x− x̄, Vk(x− x̄)〉

 Couples the coordinates ! (unless Vk is diagonal)

© 2021 — Peter Ochs Mathematical Optimization Group 18 / 28

Solving the rank-1 Proximal Mapping

Solving the rank-1 Proximal Mapping: (g convex)

I For general V , the main algorithmic step is hard to solve:

x̂ = proxV
g := argmin

x∈RN

g(x) +
1

2
‖x− x̄‖2V

I Theorem: [Rank-1 Proximal Mapping]
V = D ± uu> ∈ S++ for u ∈ RN and D diagonal. Then

proxV
g (x̄) = D−1/2 ◦ proxg◦D−1/2 ◦D1/2(x̄∓ α?D−1u)

where α? is the unique root of

l(α) = 〈u, x̄−D−1/2 ◦ proxg◦D−1/2 ◦D1/2(x̄∓ αD−1u)〉+ α ,

which is strictly increasing and Lipschitz with 1 +
∑

i u
2
i di.

© 2021 — Peter Ochs Mathematical Optimization Group 19 / 28

Solving the rank-1 Proximal Mapping

Corollary: separable case g(x) =
∑N

i=1 gi(xi)

V = D ± uu> ∈ S++ for u ∈ RN and D = diag(d1, . . . , dN). Then

proxV
g (x̄) =

(
proxgi/di(x̄i ∓ α

?ui/di)
)
i=1,...,N

where α? is the unique root of

l(α) = 〈u, x̄−
(

proxgi/di(x̄i ∓ αui/di)
)
i=1,...,N

〉+ α ,

which is strictly increasing and Lipschitz with 1 +
∑

i u
2
i di.

© 2021 — Peter Ochs Mathematical Optimization Group 20 / 28

Least Absolute Shrinkage and Selection Operator

Example: g(x) =
∑N

i=1 |xi|. For simplicity D = id.

l(α) = 〈u, x̄−
(

proxgi(x̄i ∓ αui)
)
i=1,...,N

〉+ α ,

x̄i/ui

α

proxgi(x̄i − αui)

© 2021 — Peter Ochs Mathematical Optimization Group 21 / 28

Least Absolute Shrinkage and Selection Operator

Example: g(x) =
∑N

i=1 |xi|. For simplicity D = id.

l(α) = 〈u, x̄−
(

proxgi(x̄i ∓ αui)
)
i=1,...,N

〉+ α ,

x̄i/ui

α

proxgi(x̄i − αui)

α

l(α)

© 2021 — Peter Ochs Mathematical Optimization Group 21 / 28

Numerical Experiment Group Lasso

Experiment: min
x∈RN

1

2
‖Ax− b‖2 + λ‖x‖B,1

0 500 1,000 1,500
10−3

10−2

10−1

100

101

102

iteration

ob
je

ct
iv

e
va

lu
e

er
ro

r

FISTA SPG/SpaRSA 0-mem SR1

0 20 40
10−3

10−2

10−1

100

101

102

time in seconds

© 2021 — Peter Ochs Mathematical Optimization Group 22 / 28

Solving the rank-r Proximal Mapping

Theorem: [Rank-r Proximal Mapping]
V = P ±Q with P ∈ S++(N) and Q =

∑r
i=1 uiu

>
i with

r = rank(Q) ≤ N . Denote U := (u1, . . . , ur). Then

proxV
g (x̄) = P−1/2 ◦ proxg◦P−1/2 ◦ P 1/2(x̄∓ P−1Uα?)

where α? is the unique root of the mapping L : Rr → Rr

L(α) = U>
(
x̄− P−1/2 ◦ proxg◦P−1/2 ◦ P 1/2(x̄∓ P−1Uα)

)
+ α ,

which is Lipschitz continuous and strongly monotone.

© 2021 — Peter Ochs Mathematical Optimization Group 23 / 28

Discussion about Solving the Proximal Mapping

Function g Algorithm
`1-norm Separable: exact
Hinge Separable: exact
`∞-ball Separable: exact
Box constraint Separable: exact
Positivity constraint Separable: exact
Linear constraint Nonseparable: exact
`1-ball Nonseparable: Semi-smooth Newton

+ prox
g◦D−1/2 exact

`∞-norm Nonseparable: Moreau identity
Simplex Nonseparable: Semi-smooth Newton

+ prox
g◦D−1/2 exact

From [Becker, Fadili ’12].

© 2021 — Peter Ochs Mathematical Optimization Group 24 / 28

“Acceleration” Strategies

Acceleration Strategies:
I Higher order Optimization? (“non-smooth Newton method”)

I Not tractable for large scale. (requires inverse Hessian)

I “Accelerate” first order methods:

I In convex optimization, we can accelerate by
extrapolation/momentum. (worst case O(1/

√
ε)) (now)

I In non-convex optimization, this is an effective heuristic.

I Alternative acceleration strategies:

I Quasi-Newton schemes. (don’t forget this)
I Subspace Optimization.

© 2021 — Peter Ochs Mathematical Optimization Group 25 / 28

Accelerated Proximal Gradient Method

Algorithm: (FISTA)
I Optimization problem: minx f(x) + g(x)
I f : RN → R convex with ∇f L-Lipschitz.
I g : RN → R proper, lsc, convex with simple prox.

I Iterations (k ≥ 0): Update (x(0) ∈ RN) βk = k−1
k+2

y(k) = x(k) + βk(x
(k) − x(k−1))

x(k+1) = proxτg(y
(k) − τ∇f(y(k)))

Complexity estimate: O(1/
√
ε) optimal method

Accelerated Gradient Method: [Y. Nesterov: A Method of Solving a Convex Programming
Problem with Convergence Rate O(1/K2). Soviet Mathematics Doklady 27:372–76, 1983.]
FISTA: [A. Beck and M. Teboulle: A Fast Iterative Shrinkage-Thresholding Algorithm for Linear
Inverse Problems. SIAM Journal on Imaging Sciences 2(1):183–202, 2009.]

© 2021 — Peter Ochs Mathematical Optimization Group 26 / 28

Update Step of FISTA

Update Scheme: FISTA

y
(k)
βk

= x(k) + βk(x
(k) − x(k−1))

x(k+1) = argmin
x

g(x) + f(y
(k)
βk

) + 〈∇f(y
(k)
βk

), x− y(k)βk
〉+

1

2τ
‖x− y(k)βk

‖2

© 2021 — Peter Ochs Mathematical Optimization Group 27 / 28

Update Step of FISTA

Update Scheme: FISTA

y
(k)
βk

= x(k) + βk(x
(k) − x(k−1))

x(k+1) = argmin
x

g(x) + f(y
(k)
βk

) + 〈∇f(y
(k)
βk

), x− y(k)βk
〉+

1

2τ
‖x− y(k)βk

‖2

Equivalent to

x(k+1) = argmin
x∈RN

g(x) +
1

2τ
‖x−

(
y
(k)
βk
− τ∇f(y

(k)
βk

)
)
‖2

© 2021 — Peter Ochs Mathematical Optimization Group 27 / 28

Update Step of FISTA

Update Scheme: Adaptive FISTA

y
(k)
βk

= x(k) + βk(x
(k) − x(k−1))

x(k+1) = argmin
x

min
βk

g(x) + f(y
(k)
βk

) + 〈∇f(y
(k)
βk

), x− y(k)βk
〉+

1

2τ
‖x− y(k)βk

‖2

© 2021 — Peter Ochs Mathematical Optimization Group 27 / 28

Update Step of FISTA

Update Scheme: Adaptive FISTA (f quadratic)

y
(k)
βk

= x(k) + βk(x
(k) − x(k−1))

x(k+1) = argmin
x

min
βk

g(x) + f(y
(k)
βk

) + 〈∇f(y
(k)
βk

), x− y(k)βk
〉+

1

2τ
‖x− y(k)βk

‖2

... Taylor expansion around x(k) and optimize for βk = βk(x) ...

x(k+1) = argmin
x

g(x) +
1

2
‖x− (x(k) −Q−1k ∇f(x(k)))‖2Qk

© 2021 — Peter Ochs Mathematical Optimization Group 27 / 28

Update Step of FISTA

Update Scheme: Adaptive FISTA (f quadratic)

y
(k)
βk

= x(k) + βk(x
(k) − x(k−1))

x(k+1) = argmin
x

min
βk

g(x) + f(y
(k)
βk

) + 〈∇f(y
(k)
βk

), x− y(k)βk
〉+

1

2τ
‖x− y(k)βk

‖2

... Taylor expansion around x(k) and optimize for βk = βk(x) ...

x(k+1) = argmin
x

g(x) +
1

2
‖x− (x(k) −Q−1k ∇f(x(k)))‖2Qk

Qk is exactly the rank-1 modification in SR1 quasi-Newton method.

[O. and T. Pock: Adaptive Fista for Non-convex Optimization. SIAM Journal on Optimization,

29(4):2482-2503, 2019.]

© 2021 — Peter Ochs Mathematical Optimization Group 27 / 28

Summary

Motivation non-smooth optimization

Structured Optimization and Applications

Proximal Gradient Method

Quasi-Newton Proximal Gradient Methods

Adaptive FISTA

© 2021 — Peter Ochs Mathematical Optimization Group 28 / 28

