Mathematisches Kolloqium, University of Tübingen

Non-smooth First-order Optimization Algorithms for Machine Learning

Peter Ochs
Mathematical
Optimization Group
- 08.02.2021

Optimization in General

Optimization is not solvable!

Efficiently finding solutions to the whole class of Lipschitz continuous problems is a hopeless case [Nesterov ' 04].

- Can take several million years for small problems with only 10 unknowns.

Optimization in General

Optimization is not solvable!

- Efficiently finding solutions to the whole class of Lipschitz continuous problems is a hopeless case [Nesterov '04].
- Can take several million years for small problems with only 10 unknowns.

\Rightarrow Exploit the structure of optimization problems!

Classical Optimization

Classic Optimization:

$$
\min _{x \in C} f(x), \quad C:=\left\{x \in \mathbb{R}^{N} \mid f_{j}(x) \leq 0, j=1, \ldots, M\right\} .
$$

- Linear Programming: f, f_{1}, \ldots, f_{M} are linear functions.

Smooth non-linear programming: f is C^{1}-smooth, $C=\emptyset$.
Constrained non-linear programming: f, f_{j} are C^{1}-smooth.

Traditional view on optimization (before 1990):
Linear vs. non-linear.

Non-smooth Optimization

Why Non-smooth Optimization?

- Non-smoothness is not just a deficiency.

Constraints lead to non-smoothness.

- Arises naturally in some applications, e.g. sparsity.

Lagrangian Relaxation, functions with envelope representation, Penalty formulation, ...
\rightsquigarrow Differentiability is replaced by "structure".

First-order Optimization

Why First-order Optimization?

Problems in Data Science, Machine Learning, Computer Vision, Image Processing, ...

- Practical problems depend on data.
\rightsquigarrow rapidly growing.
- Problems are large / huge scale.
\rightsquigarrow computing / inverting Hessian matrix is too expensive.
\rightsquigarrow second order information can be unstable.
- Our goal is non-smooth optimization.

Sparsity Induced by Non-smooth Minimization

Least Absolute Shrinkage and Selection Operator:

$$
\min _{x \in \mathbb{R}^{N}} \frac{1}{2}\|A x-b\|^{2}+\lambda\|x\|_{1}
$$

- Sparse linear regression: $\left(A_{i} \in \mathbb{R}^{M}\right.$ feature for $\left.b\right)$
$b \approx \sum_{i=1}^{N} A_{i} x_{i}, \quad A=\left(A_{1}, \ldots, A_{N}\right) \in \mathbb{R}^{M \times N}, x=\left(x_{1}, \ldots, x_{N}\right)^{\top}$.
- $\|x\|_{1}$ used as a convex approximation to $\#\left\{i \mid x_{i} \neq 0\right\}$.
- Motivation: Interpretable model (many zero-coordinates)

$$
b \approx \sum_{i=1}^{N} A_{i} x_{i}=\sum_{j \in\left\{i \mid x_{i} \neq 0\right\}} A_{j} x_{j}
$$

Sparsity Induced by Non-smooth Minimization

1-norm constrained minimization yields sparse solutions:

\rightsquigarrow solutions for the 1 -norm constrained problem are likely to lie on coordinate axis

Non-smooth Problems arise naturally

Matrix Completion:

$$
\min _{X \in \mathbb{R}^{M \times N}} \frac{1}{2}\left\|\pi_{S}(A-X)\right\|_{F}^{2}+\lambda\|X\|_{*}
$$

$\downarrow \pi_{S}$ projects onto a subspace S.

- $\|X\|_{*}$ is the Nuclear norm $=$ sum of singular values
- $\|X\|_{*}$ used as convex relaxation of $\operatorname{rank}(X)$.

Solution has low rank, i.e., exploits linear dependency of data.
Application: e.g. Collaborative filtering
\rightsquigarrow Dimensionality may be large / huge.

Sparsity Induced by Non-smooth Minimization

Image Deblurring: of an image $b \in \mathbb{R}^{M \times N}$

$$
\min _{u \in \mathbb{R}^{M \times N}} \frac{1}{2}\|K u-b\|^{2}+\lambda\|D u\|_{2,1}
$$

- K convolution / blurr operator; D discrete derivative operator \rightsquigarrow dimensionality $u=$ number of pixel (gray-value image)

clean image

blurry image

reconstruction

Classical Methods for Non-smooth Optimization

Classical Methods for Non-smooth Optimization?

Constraint set C reformulated using penalty terms.
Generic non-linear solvers (black box solvers): e.g. Steepest Descent, Conjugate Gradient, L-BFGS, Newton's Method, Interior Point Method, ...

- Hard to generalize to constraints or non-smooth functions.
- Line-search procedure can be time intensive.
- Maybe slow or memory intensive for large scale problems.

View on Optimization

Modern view (after 1990):
"Watershed in optimization is between convexity and non-convexity instead of linearity and nonlinearity"

[Rockafellar, SIAM Review, 35 (1993)]

Subgradient Method

A Non-smooth Convex Optimization Problems:

- Lipschitz continuous, convex problem:

Lower complexity estimate: (ε : desired accuracy)
req. number of iterations to achieve accuracy of $\varepsilon=O\left(1 / \varepsilon^{2}\right)$.

Proximal Gradient Method

Structured Optimization Problems: (Splitting)

- Additive Composite Setting:

Proximal Gradient Method

Structured Optimization Problems: (Splitting)

- Additive Composite Setting:

Gradient Descent Step:

$$
\bar{x}-\tau \nabla f(\bar{x})
$$

Proximal Step: $\operatorname{prox}_{\tau g}(\bar{x})$, i.e.

$$
\underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} g(x)+\frac{1}{2 \tau}\|x-\bar{x}\|^{2}
$$

Least Absolute Shrinkage and Selection Operator

Example:

$$
\min _{x \in \mathbb{R}^{N}} \underbrace{\frac{1}{2}\|A x-b\|^{2}}_{=f(x)}+\underbrace{\lambda\|x\|_{1}}_{=g(x)}
$$

Compute gradient:

$$
\nabla f(x)=A^{\top}(A x-b)
$$

- Compute proximal mapping:

$$
\begin{aligned}
& \text { Compute proximal mapping: } \\
& \begin{aligned}
\operatorname{prox}_{\tau g}(\bar{x}) & =\underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} \lambda\|x\|_{1}+\frac{1}{2 \tau}\|x-\bar{x}\|_{2}^{2} \\
& =\left(\underset{x_{i} \in \mathbb{R}}{\operatorname{argmin}} \lambda\left|x_{i}\right|+\frac{1}{2 \tau}\left(x_{i}-\bar{x}_{i}\right)^{2}\right)_{i=1, \ldots, N} \xrightarrow[-\tau \lambda]{\sim} \\
& =\left(\max \left(\left|\bar{x}_{i}\right|-\tau \lambda, 0\right) \cdot \operatorname{sign}\left(\bar{x}_{i}\right)\right)_{i=1, \ldots, N}
\end{aligned}
\end{aligned}
$$

Proximal Gradient Method

Algorithm: (Proximal Gradient Method)

Optimization problem: $\min _{x} f(x)+g(x)$

$\downarrow f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ convex with ∇f L-Lipschitz.
$\checkmark g: \mathbb{R}^{N} \rightarrow \overline{\mathbb{R}}$ proper, Isc, convex with simple prox.
Iterations $(k \geq 0)$: Update $\left(x^{(0)} \in \mathbb{R}^{N}\right)$

$$
x^{(k+1)}=\operatorname{prox}_{\tau g}\left(x^{(k)}-\tau \nabla f\left(x^{(k)}\right)\right)
$$

Complexity estimate: $O(1 / \varepsilon)$
Method traces back to:
[P. L. Lions and B. Mercier: Splitting algorithms for the sum of two nonlinear operators, SIAM J.
Numer. Anal., 16 (1979), pp. 964-979.]
(c) 2021 - Peter Ochs

"Acceleration" Strategies

Acceleration Strategies:

- Higher order Optimization? ("non-smooth Newton method")
- Not tractable for large scale. (requires inverse Hessian)
"Accelerate" first order methods:
- In convex optimization, we can accelerate by extrapolation/momentum. (worst case $O(1 / \sqrt{\varepsilon})$)
- In non-convex optimization, this is an effective heuristic.
- Alternative acceleration strategies:
- Quasi-Newton schemes. (this talk)
- Subspace Optimization.

Quasi-Newton Methods

Quasi-Newton Methods:

Can be interpreted as variable metric method:

$$
x^{(k+1)}=x^{(k)}-\tau V_{k}^{-1} \nabla f\left(x^{(k)}\right)
$$

with (positive definite) Hessian approximation $V_{k} \approx \nabla^{2} f\left(x^{(k)}\right)$.

- Quasi-Newton Methods successively improve V_{k} by low-rank modifications that approximate the "curvature" via secant equations.

SR1: rank 1 updates; BFGS: rank 2 updates.

Quasi-Newton Methods

Non-smooth Quasi-Newton Methods:

Non-smooth setting:

$$
x^{(k+1)}=\operatorname{prox}_{\tau g}^{V_{k}}\left(x^{(k)}-\tau V_{k}^{-1} \nabla f\left(x^{(k)}\right)\right)
$$

where

$$
\operatorname{prox}_{\tau g}^{V_{k}}(\bar{x}):=\underset{x}{\operatorname{argmin}} g(x)+\frac{1}{2 \tau}\left\langle x-\bar{x}, V_{k}(x-\bar{x})\right\rangle
$$

\rightsquigarrow Couples the coordinates!(unless V_{k} is diagonal)

Solving the rank-1 Proximal Mapping

Solving the rank-1 Proximal Mapping: (g convex)

For general \boldsymbol{V}, the main algorithmic step is hard to solve:

$$
\hat{x}=\operatorname{prox}_{g}^{V}:=\underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} g(x)+\frac{1}{2}\|x-\bar{x}\|_{V}^{2}
$$

Theorem: [Rank-1 Proximal Mapping]
$\boldsymbol{V}=\boldsymbol{D} \pm u u^{\top} \in \mathbb{S}_{++}$for $u \in \mathbb{R}^{N}$ and \boldsymbol{D} diagonal. Then

$$
\operatorname{prox}_{g}^{\boldsymbol{V}}(\bar{x})=\boldsymbol{D}^{-1 / 2} \circ \operatorname{prox}_{g \circ \boldsymbol{D}^{-1 / 2}} \circ \boldsymbol{D}^{1 / 2}\left(\bar{x} \mp \alpha^{\star} \boldsymbol{D}^{-1} u\right)
$$

where α^{\star} is the unique root of

$$
l(\alpha)=\left\langle u, \bar{x}-\boldsymbol{D}^{-1 / 2} \circ \operatorname{prox}_{g \circ \boldsymbol{D}^{-1 / 2}} \circ \boldsymbol{D}^{1 / 2}\left(\bar{x} \mp \alpha \boldsymbol{D}^{-1} u\right)\right\rangle+\alpha,
$$

which is strictly increasing and Lipschitz with $1+\sum_{i} u_{i}^{2} d_{i}$.

Solving the rank-1 Proximal Mapping

Corollary: separable case $g(x)=\sum_{i=1}^{N} g_{i}\left(x_{i}\right)$
$\boldsymbol{V}=\boldsymbol{D} \pm u u^{\top} \in \mathbb{S}_{++}$for $u \in \mathbb{R}^{N}$ and $\boldsymbol{D}=\operatorname{diag}\left(d_{1}, \ldots, d_{N}\right)$. Then

$$
\operatorname{prox}_{g}^{V}(\bar{x})=\left(\operatorname{prox}_{g_{i} / d_{i}}\left(\bar{x}_{i} \mp \alpha^{\star} u_{i} / d_{i}\right)\right)_{i=1, \ldots, N}
$$

where α^{\star} is the unique root of

$$
l(\alpha)=\left\langle u, \bar{x}-\left(\operatorname{prox}_{g_{i} / d_{i}}\left(\bar{x}_{i} \mp \alpha u_{i} / d_{i}\right)\right)_{i=1, \ldots, N}\right\rangle+\alpha
$$

which is strictly increasing and Lipschitz with $1+\sum_{i} u_{i}^{2} d_{i}$.

Least Absolute Shrinkage and Selection Operator

Example: $g(x)=\sum_{i=1}^{N}\left|x_{i}\right|$. For simplicity $D=$ id.

$$
l(\alpha)=\left\langle u, \bar{x}-\left(\operatorname{prox}_{g_{i}}\left(\bar{x}_{i} \mp \alpha u_{i}\right)\right)_{i=1, \ldots, N}\right\rangle+\alpha,
$$

Least Absolute Shrinkage and Selection Operator

Example: $g(x)=\sum_{i=1}^{N}\left|x_{i}\right|$. For simplicity $D=$ id.

$$
l(\alpha)=\left\langle u, \bar{x}-\left(\operatorname{prox}_{g_{i}}\left(\bar{x}_{i} \mp \alpha u_{i}\right)\right)_{i=1, \ldots, N}\right\rangle+\alpha
$$

Numerical Experiment Group Lasso

Experiment: $\quad \min _{x \in \mathbb{R}^{N}} \frac{1}{2}\|A x-b\|^{2}+\lambda\|x\|_{\mathfrak{B}, 1}$

Solving the rank-r Proximal Mapping

Theorem: [Rank- r Proximal Mapping]
$\boldsymbol{V}=\boldsymbol{P} \pm \boldsymbol{Q}$ with $\boldsymbol{P} \in \mathbb{S}_{++}(N)$ and $\boldsymbol{Q}=\sum_{i=1}^{r} u_{i} u_{i}^{\top}$ with
$r=\operatorname{rank}(Q) \leq N$. Denote $\boldsymbol{U}:=\left(u_{1}, \ldots, u_{r}\right)$. Then

$$
\operatorname{prox}_{g}^{\boldsymbol{V}}(\bar{x})=\boldsymbol{P}^{-1 / 2} \circ \operatorname{prox}_{g \circ \boldsymbol{P}^{-1 / 2}} \circ \boldsymbol{P}^{1 / 2}\left(\bar{x} \mp \boldsymbol{P}^{-1} \boldsymbol{U} \alpha^{\star}\right)
$$

where α^{\star} is the unique root of the mapping $\mathcal{L}: \mathbb{R}^{r} \rightarrow \mathbb{R}^{r}$

$$
\mathcal{L}(\alpha)=\boldsymbol{U}^{\top}\left(\bar{x}-\boldsymbol{P}^{-1 / 2} \circ \operatorname{prox}_{g \circ \boldsymbol{P}^{-1 / 2}} \circ \boldsymbol{P}^{1 / 2}\left(\bar{x} \mp \boldsymbol{P}^{-1} \boldsymbol{U} \alpha\right)\right)+\alpha,
$$

which is Lipschitz continuous and strongly monotone.

Discussion about Solving the Proximal Mapping

Function g	Algorithm
ℓ_{1}-norm	Separable: exact
Hinge	Separable: exact
ℓ_{∞}-ball	Separable: exact
Box constraint	Separable: exact
Positivity constraint	Separable: exact
Linear constraint	Nonseparable: exact
ℓ_{1}-ball	Nonseparable: Semi-smooth Newton
	+ prox $_{g \circ D^{-1 / 2}}$ exact
ℓ_{∞}-norm	Nonseparable: Moreau identity
Simplex	Nonseparable: Semi-smooth Newton
	+ prox $_{g^{\circ} \circ \boldsymbol{D}^{-1 / 2}}$ exact

From [Becker, Fadili '12].

"Acceleration" Strategies

Acceleration Strategies:

- Higher order Optimization? ("non-smooth Newton method")
- Not tractable for large scale. (requires inverse Hessian)
"Accelerate" first order methods:
- In convex optimization, we can accelerate by extrapolation/momentum. (worst case $O(1 / \sqrt{\varepsilon})$) (now)
- In non-convex optimization, this is an effective heuristic.
- Alternative acceleration strategies:
- Quasi-Newton schemes. (don't forget this)
- Subspace Optimization.

Accelerated Proximal Gradient Method

Algorithm: (FISTA)

Optimization problem: $\min _{x} f(x)+g(x)$

$\downarrow f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ convex with ∇f L-Lipschitz.
$\checkmark g: \mathbb{R}^{N} \rightarrow \overline{\mathbb{R}}$ proper, Isc, convex with simple prox.
Iterations $(k \geq 0)$: Update $\left(x^{(0)} \in \mathbb{R}^{N}\right) \beta_{k}=\frac{k-1}{k+2}$

$$
\begin{aligned}
y^{(k)} & =x^{(k)}+\beta_{k}\left(x^{(k)}-x^{(k-1)}\right) \\
x^{(k+1)} & =\operatorname{prox}_{\tau g}\left(y^{(k)}-\tau \nabla f\left(y^{(k)}\right)\right)
\end{aligned}
$$

Complexity estimate: $O(1 / \sqrt{\varepsilon}) \rightsquigarrow$ optimal method Accelerated Gradient Method: [Y. Nesterov: A Method of Solving a Convex Programming Problem with Convergence Rate $O\left(1 / K^{2}\right)$. Soviet Mathematics Doklady 27:372-76, 1983.] FISTA: [A. Beck and M. Teboulle: A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM Journal on Imaging Sciences 2(1):183-202, 2009.]

Update Step of FISTA

Update Scheme: FISTA

$$
\begin{aligned}
y_{\beta_{k}}^{(k)} & =x^{(k)}+\beta_{k}\left(x^{(k)}-x^{(k-1)}\right) \\
x^{(k+1)} & =\underset{x}{\operatorname{argmin}} g(x)+f\left(y_{\beta_{k}}^{(k)}\right)+\left\langle\nabla f\left(y_{\beta_{k}}^{(k)}\right), x-y_{\beta_{k}}^{(k)}\right\rangle+\frac{1}{2 \tau}\left\|x-y_{\beta_{k}}^{(k)}\right\|^{2}
\end{aligned}
$$

Update Step of FISTA

Update Scheme: FISTA

$$
\begin{aligned}
y_{\beta_{k}}^{(k)} & =x^{(k)}+\beta_{k}\left(x^{(k)}-x^{(k-1)}\right) \\
x^{(k+1)} & =\underset{x}{\operatorname{argmin}} g(x)+f\left(y_{\beta_{k}}^{(k)}\right)+\left\langle\nabla f\left(y_{\beta_{k}}^{(k)}\right), x-y_{\beta_{k}}^{(k)}\right\rangle+\frac{1}{2 \tau}\left\|x-y_{\beta_{k}}^{(k)}\right\|^{2}
\end{aligned}
$$

Equivalent to

$$
x^{(k+1)}=\underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} g(x)+\frac{1}{2 \tau}\left\|x-\left(y_{\beta_{k}}^{(k)}-\tau \nabla f\left(y_{\beta_{k}}^{(k)}\right)\right)\right\|^{2}
$$

Update Step of FISTA

Update Scheme: Adaptive FISTA

$$
\begin{aligned}
y_{\beta_{k}}^{(k)} & =x^{(k)}+\beta_{k}\left(x^{(k)}-x^{(k-1)}\right) \\
x^{(k+1)} & =\underset{x}{\operatorname{argmin}} \min _{\beta_{k}} g(x)+f\left(y_{\beta_{k}}^{(k)}\right)+\left\langle\nabla f\left(y_{\beta_{k}}^{(k)}\right), x-y_{\beta_{k}}^{(k)}\right\rangle+\frac{1}{2 \tau}\left\|x-y_{\beta_{k}}^{(k)}\right\|^{2}
\end{aligned}
$$

Update Step of FISTA

Update Scheme: Adaptive FISTA (f quadratic)

$$
\begin{aligned}
y_{\beta_{k}}^{(k)} & =x^{(k)}+\beta_{k}\left(x^{(k)}-x^{(k-1)}\right) \\
x^{(k+1)} & =\underset{x}{\operatorname{argmin}} \min _{\beta_{k}} g(x)+f\left(y_{\beta_{k}}^{(k)}\right)+\left\langle\nabla f\left(y_{\beta_{k}}^{(k)}\right), x-y_{\beta_{k}}^{(k)}\right\rangle+\frac{1}{2 \tau}\left\|x-y_{\beta_{k}}^{(k)}\right\|^{2}
\end{aligned}
$$

... Taylor expansion around $x^{(k)}$ and optimize for $\beta_{k}=\beta_{k}(x) \ldots$

$$
x^{(k+1)}=\underset{x}{\operatorname{argmin}} g(x)+\frac{1}{2}\left\|x-\left(x^{(k)}-Q_{k}^{-1} \nabla f\left(x^{(k)}\right)\right)\right\|_{\boldsymbol{Q}_{k}}^{2}
$$

Update Step of FISTA

Update Scheme: Adaptive FISTA (f quadratic)

$$
\begin{aligned}
y_{\beta_{k}}^{(k)} & =x^{(k)}+\beta_{k}\left(x^{(k)}-x^{(k-1)}\right) \\
x^{(k+1)} & =\underset{x}{\operatorname{argmin}} \min _{\beta_{k}} g(x)+f\left(y_{\beta_{k}}^{(k)}\right)+\left\langle\nabla f\left(y_{\beta_{k}}^{(k)}\right), x-y_{\beta_{k}}^{(k)}\right\rangle+\frac{1}{2 \tau}\left\|x-y_{\beta_{k}}^{(k)}\right\|^{2}
\end{aligned}
$$

... Taylor expansion around $x^{(k)}$ and optimize for $\beta_{k}=\beta_{k}(x) \ldots$

$$
x^{(k+1)}=\underset{x}{\operatorname{argmin}} g(x)+\frac{1}{2}\left\|x-\left(x^{(k)}-Q_{k}^{-1} \nabla f\left(x^{(k)}\right)\right)\right\|_{Q_{k}}^{2}
$$

Q_{k} is exactly the rank-1 modification in SR1 quasi-Newton method.
[O. and T. Pock: Adaptive Fista for Non-convex Optimization. SIAM Journal on Optimization, 29(4):2482-2503, 2019.]

Summary

Motivation non-smooth optimization

Structured Optimization and Applications

$$
x^{(k+1)}=\operatorname{prox}_{r g}\left(x^{(k)}-\tau \nabla f\left(x^{(k)}\right)\right)
$$

Proximal Gradient Method

Quasi-Newton Proximal Gradient Methods

$$
\begin{aligned}
y^{(k)} & =x^{(k)}+\beta_{k}\left(x^{(k)}-x^{(k-1)}\right) \\
x^{(k+1)} & =\operatorname{prox}_{\tau g}\left(y^{(k)}-\tau \nabla f\left(y^{(k)}\right)\right)
\end{aligned}
$$

