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Optimization in General

Optimization is not solvable!

» Efficiently finding solutions to the whole class of Lipschitz
continuous problems is a hopeless case [Nesterov '04].

» Can take several million years for small problems with only 10
unknowns.
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Optimization in General

Optimization is not solvable!

» Efficiently finding solutions to the whole class of Lipschitz
continuous problems is a hopeless case [Nesterov '04].

» Can take several million years for small problems with only 10
unknowns.

—> Exploit the structure of optimization problems!
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Classical Optimization

Classic Optimization:

min f(z), C:={zeRY|fi(x)<0,j=1,...,M}.

zeC

Linear Programming: f, fi,..., fi are linear functions.
Smooth non-linear programming: f is C*-smooth, C' = {.

Constrained non-linear programming: f, f; are C''-smooth.

Traditional view on optimization (before 1990):

Linear vs. non-linear.
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Non-smooth Optimization

Why Non-smooth Optimization?
Non-smoothness is not just a deficiency.
Constraints lead to non-smoothness.
Arises naturally in some applications, e.g. sparsity.

Lagrangian Relaxation, functions with envelope
representation, Penalty formulation, ...

Differentiability is replaced by “structure”.

A © 2021 — Peter Ochs Mathematical Optimization Group 4 / 28



First-order Optimization

Why First-order Optimization?

Problems in Data Science, Machine Learning, Computer
Vision, Image Processing, ...

Practical problems depend on data.
~ rapidly growing.

Problems are large / huge scale.
~ computing / inverting Hessian matrix is too expensive.

~+ second order information can be unstable.

Our goal is non-smooth optimization.
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Sparsity Induced by Non-smooth Minimization

Least Absolute Shrinkage and Selection Operator:
min S|4z — b + Al
Sparse linear regression: (A; ¢ R feature for b)
bNZA:EZ, = (Ay, .. AN) e RN = (2, an) "

|| )1 used as a convex approximation to #{i | z; # 0}.
Motivation: Interpretable model (many zero-coordinates)

N
=1

je{i]zi#0}
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Sparsity Induced by Non-smooth Minimization

1-norm constrained minimization yields sparse solutions:

~> solutions for the 1-norm constrained problem are likely to
lie on coordinate axis
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Non-smooth Problems arise naturally

Matrix Completion:

. 1
min —
XCRMxN 2

Ims (A = X)) + AllX].

s projects onto a subspace S.

| X || is the Nuclear norm = sum of singular values

|| X ||« used as convex relaxation of rank(X).

Solution has low rank, i.e., exploits linear dependency of data.
Application: e.g. Collaborative filtering

Dimensionality may be large / huge.
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Sparsity Induced by Non-smooth Minimization

Image Deblurring: of an image b ¢ RM*¥

1

UERM XN

» K convolution / blurr operator; D discrete derivative operator
~ dimensionality v = number of pixel (gray-value image)

clean image blurry image reconstruction
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Classical Methods for Non-smooth Optimization

Classical Methods for Non-smooth Optimization?
Constraint set C reformulated using penalty terms.

Generic non-linear solvers (black box solvers):
e.g. Steepest Descent, Conjugate Gradient, L-BFGS,
Newton’s Method, Interior Point Method, ...

Hard to generalize to constraints or non-smooth functions.
Line-search procedure can be time intensive.

Maybe slow or memory intensive for large scale problems.
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View on Optimization

Modern view (after 1990):

“Watershed in optimization is
between convexity and non-convexity
instead of linearity and nonlinearity”

[Rockafellar, SIAM Review, 35 (1993)]
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Subgradient Method

A Non-smooth Convex Optimization Problems:
Lipschitz continuous, convex problem'

RY - R ) \ RY - R

smooth, convex non-smooth,
V f Lipschitz convex

Lower complexity estimate: (=: desired accuracy)

req. number of iterations to achieve accuracy of e = O(1/£?).
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Proximal Gradient Method

Structured Optimization Problems: (Splitting)
» Additive Composite Setting:

mm f
RY —» R / RY — R
smooth, convex non-smooth,
V f Lipschitz convex

simple prox



Proximal Gradient Method

Structured Optimization Problems: (Splitting)
» Additive Composite Setting:

min /() + g(x)

zERN
RY 5 R RY 5 R
smooth, convex non-smooth,
V f Lipschitz convex

simple prox
Gradient Descent Step:

Proximal Step: prox_ (%), i.e.
7 — V(%) o)

o . 1 . =112
argmin 9(z) + 5|l — )
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Least Absolute Shrinkage and Selection Operator

1
Example: min —||Az — b||* + Az
Tz€RN 2 ——
~ () o

» Compute gradient:
Vf(z)=AT(Az —b)

» Compute proximal mapping: | prox.,

1
7) = argmin Afos + — |1z — 73
zeRN 2T ‘ T

pI‘OX’Tg (

]_ 1
= in \ i —(x; — T; 2) T\ A
(aigigﬁgn ]x\ + o (L, L,) LI/T T
= (max(|iL\ —7)\,0) - Sign(fi))

i=1,...,N
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Proximal Gradient Method

Algorithm: (Proximal Gradient Method)
Optimization problem: min, f(z)+ g(x)
f: RY — R convex with V f L-Lipschitz.
g: RY — Ik proper, Isc, convex with simple prox.

Iterations (k > 0): Update (z(© € RY)

g+ — prong(x(k) — 7V f(z®))

Complexity estimate: O(1/¢)
Method traces back to:

[P. L. Lions and B. Mercier: Splitting algorithms for the sum of two nonlinear operators, SIAM J.
Numer. Anal., 16 (1979), pp. 964-979.]
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“Acceleration” Strategies

Acceleration Strategies:
Higher order Optimization? (“non-smooth Newton method”)

Not tractable for large scale. (requires inverse Hessian)

“Accelerate” first order methods:

In convex optimization, we can accelerate by
extrapolation/momentum. (worst case O(1/+/2))
In non-convex optimization, this is an effective heuristic.

Alternative acceleration strategies:

Quasi-Newton schemes. (this talk)
Subspace Optimization.
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Quasi-Newton Methods

Quasi-Newton Methods:
Can be interpreted as variable metric method:

g* ) = &) I f ()
with (positive definite) Hessian approximation V;, ~ V2 f(z*)).

Quasi-Newton Methods successively improve V. by low-rank
modifications that approximate the “curvature” via secant
equations.

SR1: rank 1 updates; BFGS: rank 2 updates.
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Quasi-Newton Methods

Non-smooth Quasi-Newton Methods:
» Non-smooth setting:

2+ = proxs (z*) — TVk_1Vf(x(k)))

9

where

1
prox/*(z) := argmin g(z) + Z(r -z, Vi(x — 7))

~ Couples the coordinates ! (unless V, is diagonal)
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Solving the rank-1 Proximal Mapping

Solving the rank-1 Proximal Mapping: (g convex)

For general V', the main algorithmic step is hard to solve:

v.

X : 1 2
T = prox, = argmin g(z) + §||x — Z|ly

zCRN

Theorem: [Rank-1 Proximal Mapping]
V=D+uu" €S, foruec R and D diagonal. Then

proxg‘]/(i‘) =D %0 ProX ,p-1/2 © DY*(z ¥ "D )
where o* is the unique root of
() = (u,z — D20 ProX,,p-1/2 © D'z FaD™ ') + «,

which is strictly increasing and Lipschitz with 1 + . u?d.
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Solving the rank-1 Proximal Mapping

Corollary: separable case g(z) = S~ | gi(z;)
V=D+uu" €S, forue RN and D = diag(ds, ...,dy). Then

prOX;/(i’) - (proxgi/di (Z: F a*ui/di))z':l N

where «* is the unique root of

(o) = (u, T — (proxgi/di (T F aui/di)>i:1 N> +«,

which is strictly increasing and Lipschitz with 1 + 3", u?d;.
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Least Absolute Shrinkage and Selection Operator

Example: g(x) = > |+,|. For simplicity D = id.

l(a) = (u, T — (proxgi (7 F au,-)) ' )+,

‘proxgi (Z; — auy)

A © 2021 — Peter Ochs Mathematical Optimization Group 21 / 28



Least Absolute Shrinkage and Selection Operator

Example: g(x) = > |+,|. For simplicity D = id.

l(a) = (u, T — (proxgi (7 F au,-)) ' )+,

‘proxgi(@ — auy) ‘ l(a)
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Numerical Experiment Group Lasso

1 2
Experiment: min {lAz =" + Allz s
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Solving the rank-r Proximal Mapping

Theorem: [Rank-r Proximal Mapping]

V=P+QwithPeS, (N)and Q =>"_, wu] with

r =rank(Q) < N. Denote U := (uy,...,u,). Then
prox;/(f) =P %0 ProX ,p-1/2 0 P2z P'Ua)

where «o* is the unique root of the mapping £: R” — R”

La)=U" :l_c—P’l/Qoproxo po P2 (zF P 'UQ)) + «a,
goP

which is Lipschitz continuous and strongly monotone.
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Discussion about Solving the Proximal Mapping

Function g Algorithm

¢1-norm Separable: exact

Hinge Separable: exact

{so-ball Separable: exact

Box constraint Separable: exact

Positivity constraint Separable: exact

Linear constraint Nonseparable: exact

¢1-ball Nonseparable: Semi-smooth Newton
+ ProX ,p-1/2 exact

Loo-NOrm Nonseparable: Moreau identity

Simplex Nonseparable: Semi-smooth Newton

+ ProxX ,p-1/2 exact

From [Becker, Fadili '12].
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“Acceleration” Strategies

Acceleration Strategies:
Higher order Optimization? (“non-smooth Newton method”)

Not tractable for large scale. (requires inverse Hessian)

“Accelerate” first order methods:

In convex optimization, we can accelerate by
extrapolation/momentum. (worst case O(1/4/¢)) (now)
In non-convex optimization, this is an effective heuristic.

Alternative acceleration strategies:

Quasi-Newton schemes. (don’t forget this)
Subspace Optimization.
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Accelerated Proximal Gradient Method

Algorithm: (FISTA)
Optimization problem: min, f(z)+ g(x)
f:RY — R convex with V f L-Lipschitz.
g: RY — R proper, Isc, convex with simple prox.

Ilterations (% > 0): Update (¥ € RY) 6, = =5

y®) = gk 4 5k($<k) _ m(k—l))
2™ = prox,, (y = 7V f(y™))

Complexity estimate: O(1/+/¢) ~~ optimal method
Accelerated Gradient Method: [Y. Nesterov: A Method of Solving a Convex Programming
Problem with Convergence Rate O(1/K?). Soviet Mathematics Doklady 27:372-76, 1983.]

FISTA: [A. Beck and M. Teboulle: A Fast lterative Shrinkage-Thresholding Algorithm for Linear
Inverse Problems. SIAM Journal on Imaging Sciences 2(1):183-202, 2009.]
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Update Step of FISTA

Update Scheme: FISTA

y) = 2 4 gy (a® — 2 kD)

. 1
x“f“):arggnng( ) 1) + (VIS w = ) + o lle =y
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Update Step of FISTA

Update Scheme: FISTA

) =+ 8y (at®) — othD)

2D — argining( x) + f(yﬂk )+ <Vf(y5k )@

Equivalent to

1
ol

(k)
yﬁk>+27—

— g

1
(k+1) _ : R < (k) v ) 2
x = ar
zgggng(w) to-lle— (v —7 FE))|
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Update Step of FISTA

Update Scheme: Adaptive FISTA

yP = 2® 4 g (z® — 36D
(k)

2%+D = argmin r%in g(@) + flyy ) + <Vf(ygz)), T — yé’,i>> +
k

xT

L,
2T

k
=y I

A © 2021 — Peter Ochs

Mathematical Optimization Group

27 | 28



Update Step of FISTA

Update Scheme: Adaptive FISTA (f quadratic)

yéi) =28 4 B (z®) — =D

2" = argmin min g(z) + f W) + (VIS e — gy +

xT

1 k
ool =12

... Taylor expansion around z(*) and optimize for 8, = fi(z) ...

1
2 = argmin g(z) + Sl = @® - Q. 'V f(=W))3,
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Update Step of FISTA

Update Scheme: Adaptive FISTA (f quadratic)

y,(BIZ) =28 4 B (z®) — =D

1 k
T |

2 = axgminming(@) + F5) + (V@) e = o) + ool -y

... Taylor expansion around z(*) and optimize for 8, = fi(z) ...

1
2 = argmin g(z) + Sl = @® - Q. 'VM)3,

Q. is exactly the rank-1 modification in SR1 quasi-Newton method.

[O. and T. Pock: Adaptive Fista for Non-convex Optimization. SIAM Journal on Optimization,
29(4):2482-2503, 2019.]
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Summary

min f(z) + o
)
BV R EY 5 E
smooth, convex .. non-smooth
V' Lipschitz convex

simple prox

k) = ]n‘ux,,/(.’zr(“ — 7V f(x®))

Y = ) 4 g (o8 _ D)
2 = prox, (v — 7V f(y*))

Motivation non-smooth optimization

Structured Optimization and Applications

Proximal Gradient Method

Quasi-Newton Proximal Gradient Methods

Adaptive FISTA
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