
AN ABSTRACT CONVERGENCE FRAMEWORK WITH APPLICATION TO
INERTIAL INEXACT FORWARD–BACKWARD METHODS

SILVIA BONETTINI∗, PETER OCHS† , MARCO PRATO† , AND SIMONE REBEGOLDI‡

Abstract. In this paper we introduce a novel abstract descent scheme suited for the minimization of proper
and lower semicontinuous functions. The proposed abstract scheme generalizes a set of properties that are crucial
for the convergence of several first-order methods designed for nonsmooth nonconvex optimization problems. Such
properties guarantee the convergence of the full sequence of iterates to a stationary point, if the objective function
satisfies the Kurdyka– Lojasiewicz property. The abstract framework allows for the design of new algorithms. We
propose two inertial-type algorithms with (implementable) inexactness criteria for the main iteration update step.
The first algorithm, i2Piano, exploits large steps by adjusting a local Lipschitz constant. The second algorithm,
iPila, overcomes the main drawback of line-search based methods by enforcing a descent only on a merit function
instead of the objective function, which even allows for the escape of local minimizers. Both algorithms are proved
to enjoy the full convergence guarantees of the abstract descent scheme. The efficiency of the proposed algorithms
is demonstrated on an exemplary image deblurring problem in presence of data corrupted by impulse noise, where
we can appreciate the benefits of performing a linesearch along the descent direction inside an inertial scheme.
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1. Introduction. The design of efficient first-order descent methods is vital for tackling
composite optimization problems of the form

(1.1) min
x∈Rn

f(x), f(x) = f0(x) + f1(x),

where f1 is convex and f0 is continuously differentiable on an open set containing the domain of f1.
Such problems are frequently encountered in image processing and machine learning applications
[4, 18, 19], where one of the two terms is usually a data fidelity term and the other one encodes
some apriori information on the ground truth [4]. Popular and effective first-order methods aimed
at solving (1.1) include forward–backward (FB) methods [25, 24, 31, 12], whose structure consists
in the alternation of a gradient step on f0 followed by a proximal minimization step on f1, block
coordinate methods [9, 14, 23, 26], Douglas-Rachford methods [25, 28] and several others.

In recent years, the convergence of first-order descent methods in nonconvex settings has been
carefully addressed by relying on the so-called Kurdyka– Lojasiewicz (KL) inequality [2, 8, 27].
This analytical property is satisfied by a large number of objective functions arising in signal
processing and machine learning, such as real analytic or semialgebraic functions (see e.g. [8, 6]),
thus making quite natural to consider the KL inequality as a standard blanket assumption whenever
the objective function is nonconvex. Combining the KL inequality with some crucial properties
of descent methods allows to prove the convergence of the iterates to a stationary point of the
objective function, provided that the sequence is bounded. The convergence of descent methods
under the KL assumption was first considered in [1], where the authors prove the convergence of
linesearch and trust-region methods for real analytic objective functions. The key idea in [1] is to
combine the KL inequality with some strong descent conditions holding for the iterates of classical
gradient methods. In [2, 9, 26, 10], the authors extend this seminal idea by providing the first
abstract descent schemes in the KL framework, namely a set of abstract properties ensuring the
convergence of a generic iterative scheme to a stationary point if combined with the KL inequality.
Such properties include a sufficient decrease condition on the function values, a relative error
condition on the norm of a subgradient at the current iterate, and a continuity condition of the
iterates with respect to the objective function. In [31, 30], the authors modify the abstract scheme
proposed in [2] in order to include an inertial term inside a classical FB splitting scheme and
devise the so-called iPiano (inertial Proximal algorithm for nonconvex optimization). Indeed, as
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a generalization of the Heavy-Ball method [33, 32], iPiano is not a monotone algorithm, and the
sufficient decrease condition cannot be directly imposed on the objective function; however, one can
define an appropriate surrogate function F (often called Lyapunov function) in such a way that the
decrease condition holds for F in place of the objective function. Similarly, the authors in [15, 16]
define a surrogate function in order to adapt the abstract descent scheme to their proposed method
VMILA (Variable Metric Inexact Linesearch Algorithm); yet, unlike in [31], the surrogate function
is introduced in order to include an implementable inexactness criterion for the computation of the
proximal point, and thus avoid the actual implementation of the relative error condition, which
seems rather difficult to impose in practice [15, 29]. Inexactness in FB methods may arise when
the proximal operator of the function f1 cannot be computed in closed form or the exact proximal
point is too costly to compute [3, 12, 17, 37].

In this paper, we propose a novel abstract descent scheme for proving the convergence of
iterative methods under the KL assumption. The proposed scheme defines two separate surrogate
functions, in order to treat separately the possible non–monotonicity of the algorithm and the
inexact computation of the iterate, and then imposes a set of abstract properties holding for the
surrogate functions evaluated at the iterates. Our approach can be considered as an extension of
the abstract scheme in [30], where the inexactness of the iterates is treated by employing the same
implementation mechanism used in [16] for VMILA. We show that the iterates generated by our
abstract scheme converge to a stationary point of one of the surrogate functions, provided that
this function satisfies the KL inequality on its domain. Furthermore, we devise two novel inertial
FB algorithms, which are encompassed by the proposed framework. The first one is denominated
i2Piano (inertial inexact Proximal algorithm for nonconvex optimization) and can be considered
as an inexact version of the iPiano algorithm equipped with a backtracking procedure based on a
local version of the Descent Lemma. The second one is denoted iPila (inertial Proximal inexact
line–search algorithm), which features an inertial–like step followed by a linesearch procedure along
the descent direction of a suitable merit function. The main advantage of iPila resides precisely in
its linesearch strategy, which allows to compute the inexact proximal point only once per iteration,
unlike the backtracking procedure of i2Piano.

The paper is organized as follows. In Section 2 some basic notions on variational analysis
and the definition of the KL property are reported. In Section 3 the proposed abstract scheme is
presented and its convergence properties analysed. Section 4 is devoted to the design of the two
algorithms i2Piano and iPila and their inclusion in the abstract framework presented in Section
3. Finally, a numerical illustration on an image deblurring problem in presence of impulse noise is
reported in Section 5.

2. Preliminaries. In the remainder of the paper, we denote with R = R ∪ {−∞,+∞} the
extended real numbers set and Rn×n the set of n× n real-valued matrices, while ‖ · ‖ denotes the
Euclidean norm. Given a function F : Rn → R and denoting with dom(F) = {x ∈ Rn : F(x) <
+∞} the domain of F , we say that F is proper if dom(F) 6= ∅ and F is finite on dom(F). The
distance operator of a point x ∈ Rn to a set Ω ⊂ Rn is defined as

dist(x,Ω) = inf
y∈Ω
‖x− y‖.

Observe that, if Ω = Ω1 × Ω2, where Ω1 ⊂ Rn1 , Ω2 ⊂ Rn2 , with n1 + n2 = n, then for all
x = (x1, x2) ∈ Rn, with x1 ∈ Rn1 , x2 ∈ Rn2 , we have

(2.1) dist(x,Ω) =
√

dist(x1,Ω1)2 + dist(x2,Ω2)2.

This follows by observing that ‖x− z‖2 = ‖x1 − z1‖2 + ‖x2 − z2‖2 for all z = (z1, z2) ∈ Ω.

Definition 2.1. Given a proper, lower semicontinuous function F : Rn → R, the Fréchet
subdifferential of F at z ∈ dom(F) is defined as the set [35, Definition 8.3(a)]

∂̂F(z) =

{
w ∈ Rn : lim inf

u→z,u6=z

F(u)−F(z)− (u− z)Tw
‖u− z‖

≥ 0

}
.

Furthermore, the limiting subdifferential of F at z is given by [35, Definition 8.3(b)]

∂F(z) = {w ∈ Rn : ∃ z(k) → z, F(z(k))→ F(z), w(k) ∈ ∂̂F(z(k))→ w as k →∞}.
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Definition 2.2. Let F : Rn → R be a proper, lower semicontinuous function. A point z ∈ Rn
is stationary for F if 0 ∈ ∂F(z).

Let us introduce the lazy slope of F at z, which is given by [26, p. 877]

‖∂F(z)‖− = inf
v∈∂F(z)

‖v‖.

It is then easy to prove the following sufficient criterion for establishing if a point z ∈ Rn is
stationary for the function F .

Lemma 2.3. [26, Lemma 2.1] Let F : Rn → R be a proper, lower semicontinuous func-
tion and z ∈ Rn. If there exists {z(k)}k∈N ⊂ Rn such that z(k) → z, F(z(k)) → F(z) and
lim infk→∞ ‖∂F(z(k))‖− = 0, then 0 ∈ ∂F(z).

Definition 2.4. Let F : Rn −→ R be a proper, lower semicontinuous function. The function
F is said to have the KL property at z ∈ dom(∂F) if there exist υ ∈ (0,+∞], a neighborhood U of
z, a continuous concave function φ : [0, υ) −→ [0,+∞) with φ(0) = 0, φ ∈ C1(0, υ), φ′(s) > 0 for
all s ∈ (0, υ), such that the following inequality is satisfied

φ′(F(z)−F(z))‖∂F(z)‖− ≥ 1

for all z ∈ U ∩ {z ∈ Rn : F(z) < F(z) < F(z) + υ}.
If F satisfies the KL property at each point of dom(∂F), then F is called a KL function.

The function φ in the previous definition is called desingularization function and it depends on
the point z̄. In [9, Lemma 6], the following uniformized version of the KL property is introduced,
where the KL inequality holds with the same desingularization function for all points in a suitable
neighborhood of a compact set where the function is constant.

Lemma 2.5. Let F : Rn → R be a proper, lower semicontinuous function and X ⊂ Rn a
compact set. Suppose that F satisfies the KL property at each point belonging to X and that F is
constant over X, i.e., F(x̄) = F̄ ∈ R for all x̄ ∈ X. Then, there exists µ, υ > 0 and a function φ
as in Definition 2.4 such that

(2.2) φ′(F(z)− F̄)‖∂F(z)‖− ≥ 1, ∀z ∈ B̄

where the set B̄ is defined as

(2.3) B̄ = {z ∈ Rn : dist(z,X) < µ and F̄ < F(z) < F̄ + υ}.

3. Abstract algorithm scheme. In the following, we are interested in proving the conver-
gence of an abstract descent algorithm to a stationary point of a proper, lower semicontinuous
function F . Such abstract algorithm is defined through a specific set of properties that are shared
by several first-order methods designed for nonsmooth nonconvex optimization, including gradi-
ent descent methods [1], forward–backward methods [12, 22, 31] and block coordinate methods
[2, 14, 26]. Similarly to other abstract descent algorithms in the KL framework, the two main
ingredients guaranteeing the convergence of our scheme are the sufficient decrease condition and
the relative error condition, the latter being related to the minimization subproblem that one has
to (inexactly) solve at each iteration of a first-order method. However, unlike in previous works
in the literature, we require that the relative error condition is satisfied at a point that might be
different from the actual iterate generated by the method. As we will see in Section 4, this sim-
ple modification allows to circumvent the issue of the actual implementation of the relative error
condition, allowing to include inexact forward-backward methods equipped with an implementable
inexactness criterion for the solution of the minimization subproblem.

Conditions 3.1 (Abstract algorithm scheme). Let F : Rn × Rm → R be a proper, lower
semicontinuous function and Φ : Rn × Rq → R a proper, lower semicontinuous, bounded from
below function. Consider two sequences {x(k)}k∈N, {u(k)}k∈N in Rn, a sequence {ρ(k)}k∈N in Rm,
a sequence {s(k)}k∈N in Rq and a sequence of nonnegative real numbers {dk}k∈N such that the
following relations are satisfied.
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[H1] There exists a sequence of positive real numbers {ak}k∈N such that

Φ(x(k+1), s(k+1)) + akd
2
k ≤ Φ(x(k), s(k)), ∀ k ≥ 0.

[H2] There exists a sequence of nonnegative real numbers {rk}k∈N with lim
k→∞

rk = 0 such that

Φ(x(k+1), s(k+1)) ≤ F(u(k), ρ(k)) ≤ Φ(x(k), s(k)) + rk, ∀ k ≥ 0.

[H3] There exist b > 0, a sequence of positive real numbers {bk}k∈N, a summable sequence of
nonnegative real numbers {ζk}k∈N, a non-empty finite index set I ⊂ Z and θi ≥ 0, i ∈ I
with

∑
i∈I θi = 1 such that, setting dj = 0 for j ≤ 0, we have

bk+1‖∂F(u(k), ρ(k))‖− ≤ b
∑
i∈I

θidk+1−i + ζk+1, ∀ k ≥ 0.

[H4] If {(x(kj), ρ(kj))}j∈N is a subsequence of {(x(k), ρ(k))}k∈N converging to some (x∗, ρ∗) ∈
Rn × Rm, then we have for {u(kj)}j∈N:

lim
j→∞

‖u(kj) − x(kj)‖ = 0, lim
j→∞

F(u(kj), ρ(kj)) = F(x∗, ρ∗).

[H5] There exists a positive real number p > 0 and k′ ∈ Z such that

‖x(k+1) − x(k)‖ ≤ pdk+k′ , ∀ k ≥ 0.

[H6] The sequences {ak}k∈N, {bk}k∈N satisfy the following conditions

+∞∑
k=0

bk = +∞, sup
k∈N

1

bkak
< +∞, inf

k∈N
ak > 0.

The abstract scheme given in Conditions 3.1 can be seen as a further extension of the one proposed
in [30], which is indeed recovered by setting Φ = F , u(k) = x(k+1) and ρ(k) ≡ s(k). In the following,
we discuss in detail conditions [H1]-[H6] and their relation with the abstract scheme in [30].

• Condition [H1] requires the sufficient decrease of a proper, lower semicontinuous function Φ
between two successive iterates. The quantity akd

2
k measures the amount of the decrease,

where dk is thought as a generalization of the Euclidean norm, whereas the parameter s(k)

allows for some flexibility in the asymptotic behaviour of the function Φ. Note that, in
earlier works based on the KL property [2, 9, 12, 26], condition [H1] is usually presented by
setting dk = ‖x(k+1) − x(k)‖2, ρ(k) ≡ s(k) ≡ 0 and Φ(x, s) = f(x), being f the function to
minimize. The generalized condition reported here is almost identical to the one introduced
in the more recent work [30], with the only difference that here the sufficient decrease is
required on a function Φ that may be different from the function F appearing in [H3].

• Condition [H3] is the so-called relative error condition, which is related to the (possibly)
inexact solution of the minimization subproblem performed at each iteration of a first-order
method. In the previous literature [2, 9, 12, 26], such condition is usually employed by
setting u(k) = x(k+1), dk = ‖x(k+1)−x(k)‖2, ρ(k) ≡ 0, I = {1}, θ1 = 1 and F(u, ρ) = f(u),
being f the function to minimize. In [30], a general positive term dk, a finite index
set I, a variable parameter s(k) and a generic surrogate function F are employed, while
keeping u(k) = x(k+1) and ρ(k) ≡ 0. Here we also allow the sequence {u(k)}k∈N to be
distinct from {x(k)}k∈N and the parameters {ρ(k)}k∈N to vary at each iteration. The
reason to do so comes from the fact that condition [H3] is hard to enforce algorithmically
on x(k+1) when the minimization subproblem is solved inexactly, as noted in [15, 16, 29].
However, if a specific, implementable inexactness criterion is adopted for the solution of
the subproblem, then the same condition holds for a surrogate function F evaluated at
a different iterate (u(k), ρ(k)). For instance, this is observed in the convergence analysis
of the so-called VMILA algorithm, a variable metric linesearch based forward–backward
method studied in [12, 15, 16]. In [12], VMILA is included in the KL framework by setting
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Φ(x, s) = F(x, ρ) = f(x), u(k) = x(k+1), dk = ‖x(k+1) − x(k)‖2, ρ(k) ≡ s(k) ≡ 0 and noting
that, in so doing, the relative error condition holds only by exactly computing the proximal
operator. In [15], the authors include VMILA in the abstract scheme in a different way,
by using Φ(x, s) = f(x), a surrogate function F defined upon the concept of forward–
backward envelope of f [36], the iterate u(k) as the inexact proximal-gradient point ỹ(k),
dk = ‖x(k+1) − x(k)‖2 and ρ(k) as the error parameter due to the computation of ỹ(k).
Finally, in [16], VMILA is framed by setting Φ(x, s) = f(x), F(u, ρ) = f(u) + ρ2/2, the
iterate u(k) as the exact proximal–gradient point y(k) and dk = −h(k)(ỹ(k)), where h(k)

is the function to minimize when computing the approximation ỹ(k) of the exact point
y(k). In other words, from the analysis in [16], it turns out that we are able to enforce the
relative error condition at the exact point y(k), which we do not need to compute explicitly,
provided that the approximation ỹ(k) is computed using a specific criterion.

• Condition [H2] is crucial in the convergence proof of Theorem 3.3. Indeed it ensures
that the sequence {F(u(k), ρ(k))}k∈N converges to a limit value F∗ ∈ R, thus allowing to
apply the uniformized KL property at the point (u(k), ρ(k)) for all sufficiently large k and,
furthermore, it enables the combination of [H3] and [H1] with the KL inequality. Imposing
condition [H2] is required only when Φ 6= F , this is why it does not appear in [30].

• Condition [H4] is the analogue of the so-called continuity condition in [30]. Here we impose
the property for all converging subsequences (x(kj), ρ(kj)), whereas in [30] it is only required
the existence of one such subsequence. This is because, unlike in [30], we need to ensure
that the distance between {(u(k), ρ(k))}k∈N and the limit set of {(x(k), ρ(k))}k∈N converges
to 0 (see Lemma 3.2(iii)).

• Condition [H5] is also called the distance condition. It states the connection between the
general term dk and the Euclidean norm, which is fundamental in order to prove the finite
length of the sequence {x(k)}k∈N. Note that the distance condition given in [30] is slightly
more general than [H5]; however, that condition alone allows to prove only the finite length
of the sequence {dk}k∈N, which in general does not imply the convergence of the sequence
{x(k)}k∈N. In order to obtain the strongest result, condition [H5] is then imposed in [30,
Theorem 10].

• Condition [H6] is the same as the parameter condition in [30]. These requirements on the
sequences {ak}k∈N, {bk}k∈N were first introduced in [26] in order to generalize the abstract
descent scheme in [2].

In the remainder of this section, we will denote with {x(k)}k∈N, {u(k)}k∈N, {ρ(k)}k∈N, {s(k)}k∈N
the sequences complying with Conditions 3.1. Furthermore, let us define the set of all limit points
of the sequence {(x(k), ρ(k))}k∈N:

Ω∗(x(0), ρ(0)) = {(x∗, ρ∗) ∈ Rn × Rm : ∃ {kj}j∈N ⊂ N such that (x(kj), ρ(kj))→ (x∗, ρ∗)}.

Note that the set Ω∗(x(0), ρ(0)) can be written as

Ω∗(x(0), ρ(0)) = X∗(x(0))×R∗(ρ(0))

where X∗(x(0)) = {x∗ ∈ Rn : ∃ {kj}j∈N ⊂ N such that x(kj) → x∗} ⊂ Rn, R∗(ρ(0)) = {ρ∗ ∈ Rm :
∃ {kj}j∈N ⊂ N such that ρ(kj) → ρ∗} ⊂ Rm.

Lemma 3.2. Let Conditions 3.1 be satisfied. Suppose that {(x(k), ρ(k))}k∈N is a bounded se-
quence. Then the following facts hold true.

(i) Ω∗(x(0), ρ(0)) is nonempty and compact.
(ii) There exists F∗ ∈ R such that lim

k→∞
Φ(x(k), s(k)) = lim

k→∞
F(u(k), ρ(k)) = F∗.

(iii) We have

lim
k→∞

dist((x(k), ρ(k)),Ω∗(x(0), ρ(0))) = lim
k→∞

dist((u(k), ρ(k)),Ω∗(x(0), ρ(0))) = 0.

(iv) We have F(x∗, ρ∗) = F∗, ∀ (x∗, ρ∗) ∈ Ω∗(x(0), ρ(0)).

Proof. (i) Since the sequence {(x(k), ρ(k))}k∈N is bounded, it admits at least a limit point and,
hence, Ω∗(x(0), ρ(0)) is nonempty. Compactness can be proved by observing that Ω∗(x(0), ρ(0)) is
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a countable intersection of compact sets (see [9, Lemma 5]).
(ii) From [H1] we have that the sequence {Φ(x(k), s(k))}k∈N is nonincreasing and, since Φ is bounded
from below, there exists F∗ ∈ R such that

lim
k→∞

Φ(x(k), s(k)) = F∗.

The previous relation combined with [H2] proves Part (ii).
(iii) Since {(x(k), ρ(k))}k∈N is bounded and by definition of Ω∗(x(0), ρ(0)), we have

lim
k→∞

dist((x(k), ρ(k)),Ω∗(x(0), ρ(0))) = 0.

Observing that Ω∗(x(0), ρ(0)) = X∗(x(0))×R∗(ρ(0)) and recalling (2.1), the previous limit implies

lim
k→∞

dist(x(k), X∗(x(0))) = 0, lim
k→∞

dist(ρ(k), R∗(ρ(0))) = 0.

Combining the boundedness of {x(k)}k∈N with the definition of X∗(x(0)) and property [H4], we
obtain limk→∞ dist(u(k), X∗(x(0))) = 0, which together with the second limit above yields

lim
k→∞

dist((u(k), ρ(k)),Ω∗(x(0), ρ(0))) = 0.

(iv) This point follows directly from part (ii) and [H4]. �

Theorem 3.3. Let Conditions 3.1 be satisfied, and suppose that {(x(k), ρ(k))}k∈N is a bounded
sequence and that F is a KL function. Then the following statements are true.

(i) The sequence {dk}k∈N is summable, i.e., it satisfies

+∞∑
k=0

dk < +∞.

(ii) The sequence {x(k)}k∈N has finite length, i.e., it satisfies

+∞∑
k=0

‖x(k+1) − x(k)‖ < +∞

and thus {x(k)}k∈N is a convergent sequence.
(iii) If also {ρ(k)}k∈N converges, then the sequence {(x(k), ρ(k))}k∈N converges to a stationary

point for F .

Proof. (i) By Lemma 3.2(i)-(iv), the function F is constant over the compact set Ω∗(x(0), ρ(0)),
therefore we can apply Lemma 2.5. Let υ, µ, φ, B̄ be as in Lemma 2.5. Thanks to Lemma 3.2(ii)-
(iii) and [H2], there exists a positive integer k0 such that

(3.1) Φ(x(k), s(k)) + rk < F∗ + υ, dist((u(k), ρ(k)),Ω∗(x(0), ρ(0))) < µ

for all k ≥ k0. Without loss of generality, up to a translation of the iteration index, we can assume
k0 = 0.
Let us now set c = supk 1/(akbk), where c < +∞ due to [H6], ζ ′k = ζk/b and

φk =
b

c
(φ(Φ(x(k), s(k))−F∗)− φ(Φ(x(k+1), s(k+1))−F∗))

and prove that

(3.2) 2dk ≤ φk +
∑
i∈I

θidk−i + ζ ′k, ∀ k ≥ 1.
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We first observe that the definition of φk is well posed, since F∗ is the limit of the nonincreasing
sequence {Φ(x(k), s(k))}k∈N (see Lemma 3.2) and, hence, we have Φ(x(k), s(k)) ≥ F∗, ∀ k ∈ N.
Moreover, the monotonicity of both function φ and sequence {Φ(x(k), s(k))}k∈N implies that φk ≥ 0,
∀ k ∈ N.
Let us now consider the two cases dk = 0 and dk > 0 separately.
If dk = 0, inequality (3.2) holds trivially. Otherwise, for any iteration index k ≥ 1 such that dk > 0,
taking into account [H1] and [H2], we can write

F∗ ≤ Φ(x(k+1), s(k+1)) < Φ(x(k), s(k)) ≤ F(u(k−1), ρ(k−1)).

On the other hand, the rightmost inequality in [H2] gives

F(u(k−1), ρ(k−1)) ≤ Φ(x(k−1), s(k−1)) + rk−1,

which, in view of (3.1), implies that (u(k−1), ρ(k−1)) ∈ B̄. Then, we can write the KL inequality
related to the function F at (u(k−1), ρ(k−1)):

φ′(F(u(k−1), ρ(k−1))−F∗) ≥ 1

‖∂F(u(k−1), ρ(k−1))‖−
.

Furthermore, combining the previous inequality with [H3] yields

φ′(F(u(k−1), ρ(k−1))−F∗) ≥ 1
b
bk

∑
i∈I

θidk−i + 1
bk
ζk
.

Since φ is concave, φ′ is nonincreasing. Therefore, [H2] implies

φ′(Φ(x(k), s(k))−F∗) ≥ φ′(F(u(k−1), ρ(k−1))−F∗).

Exploiting again the concavity of φ, we have

φ(Φ(x(k), s(k))−F∗)−φ(Φ(x(k+1), s(k+1))−F∗) ≥ φ′(Φ(x(k), s(k))−F∗)(Φ(x(k), s(k))−Φ(x(k+1), s(k+1))).

Combining the last three relations with [H1] leads to

φ(Φ(x(k), s(k))−F∗)− φ(Φ(x(k+1), s(k+1))−F∗) ≥ Φ(x(k), s(k))− Φ(x(k+1), s(k+1))
b
bk

∑
i∈I

θidk−i + 1
bk
ζk

≥ akd
2
k

b
bk

∑
i∈I

θidk−i + 1
bk
ζk
.

Recalling the definition of φk and ζ ′k, the above inequality implies the following one

d2
k ≤ φk

(∑
i∈I

θidk−i + ζ ′k

)
.

Taking the square root of both sides and using the inequality 2
√
uv ≤ u+v on the right-hand-side,

we obtain (3.2).
Summing (3.2) from 1 to k leads to

(3.3) 2

k∑
j=1

dj ≤
k∑
j=1

φj +

k∑
j=1

∑
i∈I

θidj−i +

k∑
j=1

ζ ′j .

We now observe that

k∑
j=1

φj =
b

c
(φ(Φ(x(1), s(1))−F∗)− φ(Φ(x(k+1), s(k+1))−F∗))

≤ b

c
φ(Φ(x(1), s(1))−F∗),
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where the rightmost inequality follows from the positive sign of φ. Furthermore, the second sum
in the right-hand side of (3.3) can be rewritten as below

k∑
j=1

∑
i∈I

θidj−i =
∑
i∈I

k∑
j=1

θidj−i =
∑
i∈I

k−i∑
r=1−i

θidr

≤
∑
i∈I

0∑
r=1−i

θidr +

(∑
i∈I

θi

)
k∑
r=1

dr +
∑
i∈I

k−i∑
r=k+1

θidr

=
∑
i∈I

0∑
r=1−i

θidr +

k∑
r=1

dr +
∑
i∈I

k−i∑
r=k+1

θidr

where we have used the change of variable r = j − 1 and the property
∑
i∈I θi = 1. Note that the

sums appearing in the previous relation are assumed to be zero whenever the start index of the
summation is larger than the termination index. Therefore we can write

2

k∑
j=1

dj ≤
∑
i∈I

0∑
r=1−i

θidr +

k∑
r=1

dr +
∑
i∈I

k−i∑
r=k+1

θidr +
b

c
φ(Φ(x(1), s(1))−F∗) +

k∑
j=1

ζ ′j

which clearly implies

(3.4)

k∑
j=1

dj ≤
∑
i∈I

0∑
r=1−i

θidr +
∑
i∈I

k−i∑
r=k+1

θidr +
b

c
φ(Φ(x(1), s(1))−F∗) +

k∑
j=1

ζ ′j .

At this point, observe that the first two sums in the right-hand side of (3.4) are finite linear
combinations of the terms {dr}r∈N. Conditions [H1] and [H6] ensure that dk → 0, hence those
sums are converging to 0 for k → ∞. Noting also that {ζ ′k}k∈N is summable and taking the limit
of (3.4) for k →∞, we obtain

(3.5)

∞∑
k=0

dk < +∞.

(ii) Combining (3.5) with [H5], we also obtain

∞∑
k=0

‖x(k+1) − x(k)‖ ≤ p
∞∑
k=0

dk+k′ < +∞.

which implies that the sequence {x(k)}k∈N converges to a point x∗ ∈ Rn.
(iii) Let (x∗, ρ∗) ∈ Rn × Rm be the unique limit point of the sequence {(x(k), ρ(k))}k∈N, namely
(x(k), ρ(k)) → (x∗, ρ∗). By using [H4], it follows that (u(k), ρ(k)) → (x∗, ρ∗) and F(u(k), ρ(k)) →
F(x∗, ρ∗). Furthermore, summing [H3] for k = 0, . . . ,K yields

K∑
k=0

bk+1‖∂F(u(k), ρ(k))‖− ≤ b
K∑
k=0

∑
i∈I

θidk+1−i +

K∑
k=0

ζk.

Taking the limit for K →∞, using (3.5) and recalling that {ζk}k∈N is summable, we obtain

∞∑
k=0

bk+1‖∂F(u(k), ρ(k))‖− < +∞.

Since [H6] requires
∑
k bk = +∞, the previous relation implies that

lim inf
k→∞

‖∂F(u(k), ρ(k))‖− = 0.

In conclusion, the sequence {(u(k), ρ(k))}k∈N satisfies all the hypotheses of Lemma 2.3, which means
that 0 ∈ ∂F(x∗, ρ∗).

�
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4. Applications of the abstract scheme. In this section, we show how we can devise some
brand new forward–backward–type algorithms satisfying Conditions 3.1 and, hence, guarantee their
convergence to a stationary point in virtue of Theorem 3.3. In particular, from now on, we address
the problem

(4.1) min
x∈Rn

f(x), f(x) = f0(x) + f1(x),

where we assume that f0, f1 are as follows:
[A1] f1 : Rn → R ∪ {+∞} is a proper, lower semicontinuous, convex function;
[A2] f0 : Rn → R is continuously differentiable on an open set Ω0 ⊃ dom(f1).
[A3] f0 has L−Lipschitz continuous gradient on dom(f1), i.e.,

‖∇f0(x)−∇f0(y)‖ ≤ L‖x− y‖, ∀x, y ∈ dom(f1),

for some L > 0.
[A4] f is bounded from below.

Under the above assumptions, for any z ∈ dom(f1), the following subdifferential calculus rules
hold [35, Proposition 8.12, Exercise 8.8(c)]

∂f1(z) = {w ∈ Rn : f1(y) ≥ f1(z) + 〈w, y − z〉, ∀y ∈ Rn}
∂f(z) = {∇f0(z)}+ ∂f1(z).(4.2)

One of the most popular algorithms for solving problem (4.1) is the inertial, or heavy ball, proximal-
gradient method iPiano [31, 30], which is defined by the iteration

(4.3) x(k+1) = proxαkf1
(x(k) − αk∇f0(x(k)) + βk(x(k) − x(k−1))),

where αk, βk are suitably chosen parameters. By definition of the proximity operator, the above
updating rule consists in defining the new point as the unique solution of the minimization problem

(4.4) min
y∈Rn

f1(y)− f1(x(k)) + 〈∇f0(x(k))− βk
αk

(x(k) − x(k−1)), y − x(k)〉+
1

2αk
‖y − x(k)‖2.

We will refer to the minimizer of this problem as the inertial proximal gradient point. If βk = 0, we
recover the standard proximal gradient point, otherwise the inertial step x(k) − x(k−1) is included
in the argument of the proximal gradient operator, with the aim of improving the convergence
behaviour of the overall method.
In the following, we address the key challenge of designing algorithms that inexactly compute the
inertial proximal gradient point with implementable conditions that still preserve the convergence
guarantees of Theorem 3.3. More precisely, we propose two new inexact inertial–type algorithms,
where the second one also features a linesearch procedure along a descent direction of a suitable
merit function. The convergence analysis of both algorithms can be performed in the abstract
framework provided by Conditions 3.1. We stress that, due to the inexactness in the computation
of the inertial proximal gradient point, our algorithms cannot be cast in the abstract frameworks
proposed in previous works.
We start our presentation by defining the inexactness criterion for the inertial proximal gradient
point, which is a generalization of the one proposed in [11, 12, 15].

4.1. Inexact inertial proximal gradient point. Given two positive parameters α, β, con-
sider the function h : Rn × Rn × Rn → R ∪ {+∞} defined as follows:

(4.5) h(y;x, s) = f1(y)− f1(x) + 〈∇f0(x)− β

α
(x− s), y − x〉+

1

2α
‖y − x‖2.

Clearly, the inertial proximal gradient point (4.3) is the minimizer of the above function with
respect to the first argument, with α = αk, β = βk, x = x(k), s = x(k−1).
Given (x, s), we denote by ŷ the (exact) minimizer of the function in (4.5)

(4.6) ŷ = argmin
y∈Rn

h(y;x, s) = proxαf1(x− α∇f0(x) + β(x− s)).
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The point ŷ is the unique point satisfying the optimality condition

(4.7) 0 ∈ ∂h(ŷ;x, s)⇔ − 1

α
(ŷ − x+ α∇f0(x)− β(x− s)) ∈ ∂f1(ŷ).

Borrowing the ideas in [11, 16], we define an approximation of ŷ as any point ỹ ∈ dom(f1) such
that

(4.8) h(ỹ;x, s)− h(ŷ;x, s) ≤ −τ
2
h(ỹ;x, s).

The above condition is equivalent to the following one:

(4.9) h(ỹ;x, s) ≤
(

2

2 + τ

)
h(ŷ;x, s) ≤ 0,

where the rightmost inequality is a consequence of the fact that ŷ is a minimizer of h(·;x, s) and
h(x;x, s) = 0. Therefore, we have h(ỹ;x, s) ≤ 0 and condition (4.8) can be rewritten in equivalent
way as

(4.10) 0 ∈ ∂εh(ỹ;x, s), with ε = −τ
2
h(ỹ;x, s),

where ∂εh(ỹ;x, s) = {w ∈ Rn : h(y;x, s) ≥ h(ỹ;x, s)+〈w, y−ỹ〉−ε, ∀y ∈ Rn} is the ε-subdifferential
in the first argument of the convex function h(·;x, s) at point ỹ [38, p. 82]. Therefore, the point ỹ
is defined upon a relaxation of the optimality condition (4.7), where the subdifferential of h(·;x, s)
is replaced by the ε-subdifferential and the accuracy parameter ε is chosen in a specific way, which
is crucial for preserving the theoretical convergence properties.
Even if the inclusion (4.10) is implicit, a point ỹ ∈ dom(f1) satisfying (4.10) can be actually
computed in practice with a well defined, explicit primal–dual procedure, as explained in [11, 17]:
an iterative optimization method is applied to the dual of the function h(·;x, s), until the difference
between the primal and the dual function is below the tolerance ε. A more detailed discussion about
the inexactness criterion and on its practical realization can be found also in [16, Section 3.1].

4.1.1. Preliminary results. We collect new several basic results to incorporate inexactness
into the design and analysis of our proposed algorithms. The following lemma is a consequence of
the strong convexity of the function h(·;x, s), and will be often employed in the following.

Lemma 4.1. Suppose that Assumptions [A1]–[A2] hold true. For a given pair (x, s) ∈ dom(f1)×
Rn, let ŷ, ỹ be defined as in (4.6),(4.8). Then, the following inequalities hold.

1

2α
‖ŷ − x‖2 ≤

(
1 +

τ

2

)
(−h(ỹ;x, s))(4.11)

1

2α
‖ỹ − ŷ‖2 ≤ τ

2
(−h(ỹ;x, s))(4.12)

θ

2α
‖ỹ − x‖2 ≤ (−h(ỹ;x, s)), with θ = 1/

(√
1 +

τ

2
+

√
τ

2

)2

≤ 1.(4.13)

Proof. Inequalities (4.11)–(4.12) follow by combining the strong convexity of the function
h(·;x, s) and condition (4.8) as in [16, Lemma 2]. As for (4.13), we have

1

2α
‖ỹ − x‖2 =

1

2α
‖ỹ − ŷ + ŷ − x‖2 =

1

2α
‖ỹ − ŷ‖2 +

1

2α
‖ŷ − x‖2 +

1

α
〈ỹ − ŷ, ŷ − x〉

≤ 1

2α
‖ỹ − ŷ‖2 +

1

2α
‖ŷ − x‖2 +

1

α
‖ỹ − ŷ‖ · ‖ŷ − x‖

≤
(

1 +
τ

2

)
(−h(ỹ;x, s)) +

τ

2
(−h(ỹ;x, s)) + 2

√
1 +

τ

2

√
τ

2
(−h(ỹ;x, s))

=

(√
1 +

τ

2
+

√
τ

2

)2

(−h(ỹ;x, s)),

where the last inequality follows from the application of (4.11)-(4.12). �
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The next lemma provides a subgradient v̂ ∈ ∂f(ŷ) whose norm is bounded from above by a
quantity containing

√
−h(ỹ;x, s). Its proof is omitted since it is almost identical to the one of

Lemma 3 in [16].

Lemma 4.2. Suppose Assumptions [A1]–[A3] hold true. Let x be a point in dom(f1) and let
ŷ, ỹ be defined as in (4.6)–(4.8). Moreover, assume that α ∈ [αmin, αmax], with 0 < αmin ≤ αmax
and β ∈ [0, βmax], with βmax ≥ 0. Then, there exists a subgradient v̂ ∈ ∂f(ŷ) such that

‖v̂‖ ≤ p(‖ŷ − x‖+ ‖x− s‖)(4.14)

≤ q(
√
−h(ỹ;x, s) + ‖x− s‖),(4.15)

where the two constants p, q depend only on αmin, αmax, βmax and on the Lipschitz constant L.

The following lemma is the equivalent of Lemma 4-5 in [16].

Lemma 4.3. Suppose Assumptions [A1]–[A3] hold true and assume 0 < αmin ≤ α ≤ αmax,
β ∈ [0, βmax]. Let (x, s) be a point in dom(f1) × Rn and let ŷ, ỹ be defined as in (4.6)–(4.8), for
some τ ≥ 0. Then, there exists c, d, c̄, d̄ ∈ R depending only on αmin, αmax, βmax, τ such that

f(ŷ) ≥ f(ỹ) + ch(ỹ;x, s)− d‖x− s‖2(4.16)

f(ŷ) ≤ f(x)− c̄h(ỹ;x, s) + d̄‖x− s‖2.(4.17)

Proof. From the Descent Lemma [5, Proposition A.24] we have

(4.18) f0(ŷ) ≥ f0(ỹ)− 〈∇f0(ŷ), ỹ − ŷ〉 − L

2
‖ỹ − ŷ‖2.

The inclusion 0 ∈ ∂εh(ỹ;x, s) in (4.10) implies that there exists a vector e ∈ Rn with

(4.19)
1

2α
‖e‖2 ≤ ε

such that

− 1

α
(ỹ − x+ α∇f0(x)− β(x− s) + e) ∈ ∂εf1(ỹ)

(see [12] and references therein). The definition of ε-subdifferential implies

(4.20) f1(ŷ) ≥ f1(ỹ)− 1

α
〈ỹ − x, ŷ − ỹ〉+

β

α
〈ŷ − ỹ, x− s〉 − 〈∇f0(x), ŷ − ỹ〉 − 1

α
〈e, ŷ − ỹ〉 − ε.

Summing inequalities (4.18) and (4.20) yields

f(ŷ) ≥ f(ỹ)− 〈∇f0(x)−∇f0(ŷ), ŷ − ỹ〉+
β

α
〈ŷ − ỹ, x− s〉

− 1

α
〈ỹ − x, ŷ − ỹ〉 − 1

α
〈e, ŷ − ỹ〉 − L

2
‖ỹ − ŷ‖2 − ε.(4.21)

Now we consider each term at the right-hand-side in the above inequality so as to obtain a lower
bound. Using the Cauchy-Schwarz inequality, Assumption [A3], (4.11) and (4.12) we obtain

〈∇f0(x)−∇f0(ŷ), ŷ − ỹ〉 ≤ ‖∇f0(x)−∇f0(ŷ)‖‖ŷ − ỹ‖

≤ Lαmax
√

2τ
(

1 +
τ

2

)
(−h(ỹ;x, s)).(4.22)

Similarly, using again the Cauchy-Schwarz inequality, (4.12) and (4.13), we can write

1

α
〈ỹ − x, ŷ − ỹ〉 ≤ 1

αmin
‖ỹ − x‖‖ŷ − ỹ‖ ≤ αmax

αmin

√
2τ

θ
(−h(ỹ;x, s)).(4.23)
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Moreover, from (4.19) and (4.10) we obtain ‖e‖ ≤
√

2αmaxε ≤
√
αmaxτ(−h(ỹ;x, s)) which, using

also (4.12), yields

1

α
〈e, ŷ − ỹ〉 ≤ 1

α
‖e‖‖ŷ − ỹ‖ ≤ αmaxτ

αmin
(−h(ỹ;x, s)).(4.24)

Finally, using (4.12), we can also write

(4.25)
β

α
〈ŷ − ỹ, x− s〉 ≥ − β

2α
(‖ŷ − ỹ‖2 + ‖x− s‖2) ≥ − βmax

2αmin

(
−αmaxτh(ỹ;x, s) + ‖x− s‖2

)
.

Combining (4.21) with (4.13), (4.22), (4.23), (4.24), (4.25) and (4.10), gives (4.16) with

c = Lαmax

√
2τ
(

1 +
τ

2

)
+
αmax
αmin

√
2τ

θ
+
αmaxτ

αmin
+
Lαmaxτ

2
+
τ

2
+
βmaxαmaxτ

2αmin
, d =

βmax
2αmin

.

As for (4.17), using the Descent Lemma we obtain

f0(y) ≤ f0(x) + 〈∇f0(x), y − x〉+
L

2
‖y − x‖2,

for all x, y ∈ dom(f1). Summing f1(y) on both sides yields

f(y) ≤ f(x) + f1(y)− f1(x) + 〈∇f0(x), y − x〉+
L

2
‖y − x‖2

≤ f(x) + h(y;x, s) +
L

2
‖y − x‖2 +

β

α
〈x− s, y − x〉

≤ f(x) + h(y;x, s) +
L

2
‖y − x‖2 +

β

2α
(‖x− s‖2 + ‖y − x‖2).

From the previous inequality with y = ŷ, recalling that h(ŷ;x, s) ≤ 0 and combining with (4.11)
yields (4.17), where the constants are set as c̄ = (Lαmax + βmax)(1 + τ/2), d̄ = βmax/(2αmin). �

4.2. i2Piano: inertial inexact Proximal algorithm for nonconvex optimization. In
this section we propose a generalization of the inertial method in [30], introducing the possibility of
an inexact computation of the inertial proximal gradient point. We will refer to the new algorithm
as i2Piano (inertial inexact Proximal algorithm for nonconvex optimization). Let us describe the
i2Piano iteration as follows. STEP 1–4 determine the stepsize αk and inertial parameter βk at
iteration k. Given the parameters αk, βk, STEP 5 seeks to find a possibly inexact inertial proximal
point, i.e., an inexact minimizer of the function

(4.26) h(k)(y;x, s) = f1(y)− f1(x) + 〈∇f0(x)− βk
αk

(x− s), y − x〉+
1

2αk
‖y − x‖2.

According to (4.8)–(4.10), the i2Piano iterate is any point x(k+1) = ỹ(k) such that

(4.27) 0 ∈ ∂εkh(k)(x(k+1);x(k), x(k−1)), with εk = −τ
2
h(k)(x(k+1);x(k), x(k−1))

for some fixed nonnegative constant τ . When τ = 0, we recover the exact inertial proximal gradient
point provided by the iPiano method [30, 31]. As explained at the beginning of Section 4, Step 5
of i2Piano can be practically implemented with an inner loop consisting of an iterative optimization
method applied to the dual of problem miny∈Rn h(k)(y;x(k), x(k−1)), until the duality gap is smaller
than εk. In the implementation of i2Piano, besides the stepsize αk and the inertial parameter βk,
a further parameter, Lk, is introduced (cf. STEP 6) with the aim of estimating a local Lipschitz
constant of ∇f0 that allows us to take larger steps. In particular, Lk is successively increased by
a factor η > 1 until the following descent condition holds

(4.28) f0(x(k+1)) ≤ f0(x(k)) + 〈∇f0(x(k)), x(k+1) − x(k)〉+
Lk
2
‖x(k+1) − x(k)‖2.
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i2Piano inertial inexact Proximal algorithm for nonconvex optimization.

Choose x(−1), x(0) ∈ dom(f1), δ ≥ γ > 0, η > 1, 0 < Lmin ≤ Lmax, τ ≥ 0. Set θ = 2/(
√

2 + τ +√
τ)2 and choose ω ∈ [0, 1) if τ > 0, ω ∈ [0, 1] if τ = 0.

FOR k = 0, 1, . . .
Step 1. Choose Lk ∈ [Lmin, Lmax].

Step 2. Set bk =
Lk + 2δ

Lk + 2γ
.

Step 3. Set βk =
1 + θω

2
· bk − 1

bk − 1
2

.

Step 4. Set αk =
1 + θω − 2βk
Lk + 2γ

.

Step 5. Compute ỹ(k) such that

0 ∈ ∂εkh(k)(ỹ(k);x(k), x(k−1)), with εk = −τ
2
h(k)(ỹ(k);x(k), x(k−1))

Step 6. Check the local descent:

If f0(ỹ(k)) ≤ f0(x(k)) + 〈∇f0(x(k)), ỹ(k) − x(k)〉+
Lk
2
‖ỹ(k) − x(k)‖2

- Set x(k+1) = ỹ(k).
Else

- Set Lk = ηLk.
- Go to Step 2.

END

4.2.1. Convergence analysis. Our aim now is to frame i2Piano in the abstract scheme
defined by Conditions 3.1 to enjoy the favourable convergence guarantees that are provided by
Theorem 3.3. We start the convergence analysis by showing that i2Piano is well-posed and that
its parameters satisfy some useful relations.

Lemma 4.4. The loop between STEP 2 and STEP 6 terminates in a finite number of steps.
In particular, there exists L > 0 such that Lk ≤ L, ∀ k ≥ 0. Moreover, we have

(4.29) 0 ≤ βk ≤
1 + θω

2
, ∀ k ≥ 0

and there exist two positive constants αmin, αmax with 0 < αmin ≤ αmax such that αk ∈ [αmin, αmax],
∀k ≥ 0. We also have

1 + θω

2αk
− Lk

2
− βk

2αk
= δ(4.30)

δ − βk
2αk

= γ.(4.31)

Proof. Since η > 1, after a finite number of steps the tentative value of Lk satisfies Lk ≥ L,
where L is the Lipschitz constant of ∇f0. Then, from the Descent Lemma, the inequality at Step
6 is satisfied. From δ ≥ γ we have bk ≥ 1, which implies (4.29). A simple inspection shows that
the following equalities hold:

bk =
1 + θω − βk
1 + θω − 2βk

⇒ Lk + 2δ

Lk + 2γ
=

1 + θω − βk
1 + θω − 2βk

,

which leads to rewriting the parameter αk as

(4.32) αk =
1 + θω − βk
Lk + 2δ

.

Then there holds αk ≥ αmin with αmin = (1 + θω)/(2(L + 2δ)) and, since θω ≤ 1, we also have
αk ≤ αmax with αmax = 2/Lmin. Moreover, we have

1 + θω

αk
− Lk

2
− βk

2αk
=

1 + θω − βk
2αk

− Lk
2

=
Lk + 2δ

2
− Lk

2
= δ
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and

δ − βk
2αk

=
1 + θω

2αk
− Lk

2
− βk
αk

=
1 + θω − 2βk

2αk
− Lk

2
=
Lk + 2γ

2
− Lk

2
= γ.

�

Notice that the case τ = 0, which corresponds to the exact computation of the inertial proximal
gradient point at Step 5, implies θ = 1 and, choosing ω = 1, the parameters settings in i2Piano
are exactly the same as in [31]. The need of introducing the parameter ω is mainly technical and
will be explained in the following.
We now prove that condition [H1] holds for i2Piano when the corresponding surrogate function Φ
is defined as follows:

Φ : Rn × Rn → R, Φ(x, s) = f(x) + δ‖x− s‖2.(4.33)

Proposition 4.5. Let {x(k)}k∈N be the sequence generated by i2Piano. Then there holds

(4.34) Φ(x(k+1), x(k)) ≤ Φ(x(k), x(k−1))− γ‖x(k) − x(k−1)‖2 + (1− ω)h(k)(x(k+1);x(k), x(k−1)).

Consequently, there exist {s(k)}k∈N, {dk}k∈N, {ak}k∈N such that [H1] holds with Φ as in (4.33).

Proof. By summing the quantity f1(x(k+1)) to both sides of inequality (4.28) we obtain

f(x(k+1)) ≤ f(x(k)) + f1(x(k+1))− f1(x(k)) + 〈∇f0(x(k)), x(k+1) − x(k)〉+
Lk
2
‖x(k+1) − x(k)‖2

= f(x(k)) + h(k)(x(k+1);x(k), x(k−1))−
(

1

2αk
− Lk

2

)
‖x(k+1) − x(k)‖2

+
βk
αk
〈x(k+1) − x(k), x(k) − x(k−1)〉

≤ f(x(k)) + h(k)(x(k+1);x(k), x(k−1))−
(

1

2αk
− Lk

2

)
‖x(k+1) − x(k)‖2

+
βk

2αk
(‖x(k+1) − x(k)‖2 + ‖x(k) − x(k−1)‖2)

≤ f(x(k)) + (1− ω)h(k)(x(k+1);x(k), x(k−1))− θω

2αk
‖x(k+1) − x(k)‖2

−
(

1

2αk
− Lk

2

)
‖x(k+1) − x(k)‖2 +

βk
2αk

(‖x(k+1) − x(k)‖2 + ‖x(k) − x(k−1)‖2)

= f(x(k))−
(

1 + θω

2αk
− Lk

2
− βk

2αk

)
‖x(k+1) − x(k)‖2

+(1− ω)h(k)(x(k+1);x(k), x(k−1)) +
βk

2αk
‖x(k) − x(k−1)‖2

where the first equality is obtained by adding and subtracting to the right-hand-side the quantity
‖x(k+1)−x(k)‖2/(2αk)+βk/αk〈x(k+1)−x(k), x(k)−x(k−1)〉, the subsequent inequality follows from
the basic relation 2〈a, b〉 ≤ ‖a‖2 + ‖b‖2 and the next one from (4.13).
Recalling (4.30), the above inequality can be conveniently rewritten as

f(x(k+1)) + δ‖x(k+1) − x(k)‖2 ≤ f(x(k)) + δ‖x(k) − x(k−1)‖2

+

(
βk

2αk
− δ
)
‖x(k) − x(k−1)‖2 + (1− ω)h(x(k+1);x(k), x(k−1)).

Finally, exploiting (4.31), we obtain condition [H1] with Φ given in (4.33), ak = 1 and

s(k) = x(k−1)(4.35)

d2
k = γ‖x(k) − x(k−1)‖2 − (1− ω)h(k)(x(k+1);x(k), x(k−1)).(4.36)

�
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Under Assumption [A4], Φ is bounded from below, hence, condition [H1] implies

(4.37) lim
k→∞

‖x(k) − x(k−1)‖ = 0

and, if ω < 1, also

(4.38) lim
k→∞

h(k)(x(k+1);x(k), x(k−1)) = 0.

The choice ω < 1 is enforced when τ > 0 in order to obtain (4.38). If we take ω = 1, with the
same arguments as above we still obtain (4.37). It is also worth noticing that, for large values of
τ , that is when a coarser accuracy is allowed in the computation of ỹ(k), the parameter θ can be
very small and this also influences the choice of αk and βk.

In order to prove condition [H2], let us now introduce the second surrogate function as follows

(4.39) F : Rn × R→ R, F(u, ρ) = f(u) +
1

2
ρ2.

The following result is proved using similar arguments as the ones used in Lemma 4-5 in [16].

Proposition 4.6. Let {x(k)}k∈N be the sequence generated by i2Piano and, for each k, let the
point x̂(k+1) be defined as

(4.40) x̂(k+1) = argmin
y∈Rn

h(k)(y;x(k), x(k−1)).

Then, there exist {ρ(k)}k∈N, {rk}k∈N such that condition [H2] holds with Φ defined in (4.33), F
defined in (4.39), s(k) defined in (4.35) and u(k) = x̂(k+1).

Proof. When ω = 1 we necessarily have τ = 0, which means x(k+1) = x̂(k+1). Therefore, [H2]
direcly follows from [H1] with u(k) = x(k+1), ρ(k) =

√
2δ‖x(k) − x(k−1)‖, rk = 0. Consider now the

case ω < 1. From (4.16) and (4.17), we directly obtain

f(x̂(k+1)) ≥ f(x(k+1)) + ch(k)(x(k+1);x(k), x(k−1))− d‖x(k) − x(k−1)‖2

f(x̂(k+1)) ≤ f(x(k))− c̄h(x(k+1);x(k), x(k−1)) + d̄‖x(k) − x(k−1)‖2,

where c, d, c̄, d̄ are defined as in Lemma 4.3 and do not depend on k. Combining the two inequalities
above we obtain

f(x(k+1)) + δ‖x(k+1) − x(k)‖2 ≤
≤ f(x̂(k+1)) + δ‖x(k+1) − x(k)‖2 + c(−h(k)(x(k+1);x(k), x(k−1))) + d‖x(k) − x(k−1)‖2

≤ f(x(k))− (c+ c̄)h(x(k+1);x(k), x(k−1)) + (d+ d̄)‖x(k) − x(k−1)‖2 + δ‖x(k+1) − x(k)‖2.

Recalling the definition of F in (4.39), the above inequalities can be rewritten as

(4.41) f(x(k+1)) + δ‖x(k+1) − x(k)‖2 ≤ F(x̂(k+1), ρ(k)) ≤ f(x(k)) + δ‖x(k) − x(k−1)‖2 + rk

where ρ(k), rk are given by

ρ(k) =
√

2(δ‖x(k+1) − x(k)‖2 + c(−h(k)(x(k+1);x(k), x(k−1))) + d‖x(k) − x(k−1)‖2)
1
2(4.42)

rk = −(c+ c̄)h(x(k+1);x(k), x(k−1)) + (d+ d̄)‖x(k) − x(k−1)‖2 + δ‖x(k+1) − x(k)‖2.

From (4.37)–(4.38) we obtain limk→∞ rk = 0, hence, assumption [H2] is satisfied with the above
settings and with u(k) = x̂(k+1). �

Next we show that condition [H3] holds for i2Piano. The following result combines elements of
Lemma 3 in [16] and Lemma 17 in [30].

Proposition 4.7. There exist b > 0, I ⊂ Z, {θi}i∈I such that condition [H3] holds with
{u(k)}k∈N, {ρ(k)}k∈N, {dk}k∈N defined as in Proposition 4.6 and in (4.36), ζk+1 = 0 and bk+1 = 1.
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Proof. From the separable structure of F , if v ∈ ∂f(u) and ρ ∈ R, we have that (v, ρ) ∈
∂F(u, ρ). In particular,

(4.43) ‖∂F(u, ρ)‖− ≤ ‖v‖+ |ρ|, for all v ∈ ∂f(u), ρ ∈ R.

If ω = 1, we are in the case τ = 0. This means that x(k+1) = x̂(k+1), ρ(k) =
√

2δ‖x(k) − x(k−1)‖.
Moreover, (4.36) reduces to dk =

√
γ‖x(k) − x(k−1)‖ =

√
γ/(2δ)ρ(k). From (4.14), we have that

there exists a subgradient v̂(k+1) ∈ ∂f(x̂(k+1)) and a positive constant p such that

‖v̂(k+1)‖ ≤ p(‖x(k+1) − x(k)‖+ ‖x(k) − x(k−1)‖) =
p
√
γ

(dk+1 + dk).

Hence, ‖v̂(k+1)‖ + ρ(k) ≤ pdk+1/
√
γ + dk(p +

√
2δ)/
√
γ and, recalling (4.43), [H3] follows with

b = (p+
√

2δ)/
√
γ, I = {0, 1}, θ0 = θ1 = 1

2 .

Consider now the case ω < 1. From (4.15), there exists a subgradient v̂(k+1) ∈ ∂f(x̂(k+1)) and a
positive constant q such that

‖v̂(k+1)‖ ≤ q
√
−h(k)(x(k+1);x(k), x(k−1)) + q‖x(k) − x(k−1)‖

≤ q
√
−h(k)(x(k+1);x(k), x(k−1)) + q

√
2αmax
θ

√
−h(k−1)(x(k);x(k−1), x(k−2))

≤ q√
1− ω

√
−(1− ω)h(k)(x(k+1);x(k), x(k−1)) + γ‖x(k) − x(k−1)‖2

+q

√
2αmax
θ(1− ω)

√
−(1− ω)h(k−1)(x(k);x(k−1), x(k−2)) + γ‖x(k−1) − x(k−2)‖2(4.44)

≤ q√
1− ω

dk + q

√
2αmax
θ(1− ω)

dk−1.(4.45)

From (4.42) and (4.13) we have

ρ(k) ≤
√

2
(
−(2δαmax/θ + c)h(k)(x(k+1);x(k), x(k−1)) + d‖x(k) − x(k−1)‖2

) 1
2 ≤ r · dk(4.46)

where r =
√

2 max {(2δαmax/θ + c)/(1− ω), d/γ}
1
2 . Then, combining (4.45) with (4.46), in view

of (4.43) we obtain

‖∂F(x̂(k+1), ρ(k))‖− ≤
b

2
(dk + dk−1), with b = 2 max

{
q√

1− ω
+ r, q

√
2αmax
θ(1− ω)

}

and the thesis follows with I = {1, 2}, θ1 = θ2 = 1
2 . �

The following lemma holds for all methods whose iterates satisfy [H1],[H2], [H3] with F defined
as in (4.39), and it is crucial to ensure condition [H4] for i2Piano.

Proposition 4.8. Let Assumptions [A1]–[A4] be satisfied and assume that {x(k)}k∈N satisfies
[H1],[H2], [H3] with F defined as in (4.39). If {(x(kj), ρ(kj))}j∈N is a subsequence of {(x(k), ρ(k))}k∈N
converging to some (x∗, ρ∗) ∈ Rn × Rm such that limj→∞ ‖u(kj) − x(kj)‖ = 0, then ρ∗ = 0 and
limj→∞ F(u(kj), ρ(kj)) = F(x∗, ρ∗).

Proof. Recalling that [H1] implies limk→∞ dk = 0, from [H3] and thanks to the separable struc-
ture of F , we obtain that there exists v̂(k) ∈ ∂f(u(k)) such that limk→∞ ‖v̂(k)‖ = limk→∞ ρ(k) = 0.
In particular, in view of (4.2), we can write v̂(k) = ∇f0(u(k)) + w(k), where w(k) ∈ ∂f1(u(k)).
Therefore, by continuity of ∇f0, the following implication holds

lim
k→∞

v̂(k) = 0⇒ lim
j→∞

w(kj) = −∇f0(x∗).
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Adding the quantity 1
2 (ρ(kj))2 to both sides of the subgradient inequality yields

f1(x∗) +
1

2
(ρ(kj))2 ≥ f1(u(kj)) + 〈w(kj), x∗ − u(kj)〉+

1

2
(ρ(kj))2

= F(u(kj), ρ(kj))− f0(u(kj)) + 〈w(kj), x∗ − u(kj)〉

where the last equality is obtained by adding and subtracting f0(u(kj)) to the right-hand-side.
Taking limits on both sides we obtain

f1(x∗) +
1

2
(ρ∗)2 ≥ lim

j→∞
F(u(kj), ρ(kj))− f0(x∗),

which, rearranging terms, gives limj→∞ F(u(kj), ρ(kj)) ≤ F(x∗, ρ∗). On the other side, by assump-
tion, F is lower semicontinuous, therefore limj→∞ F(u(kj), ρ(kj)) ≥ F(x∗, ρ∗), which completes the
proof. �

We are now ready to prove that i2Piano complies with Conditions 3.1 and, hence, its iterates
converge to a stationary point.

Theorem 4.9. Suppose that F is a KL function and assume that the sequence {x(k)}k∈N
generated by i2Piano is bounded. Then, {x(k)}k∈N converges to a stationary point of f .

Proof. By Propositions 4.5-4.6-4.7, we know that conditions [H1]-[H2]-[H3] hold for i2Piano.
Furthermore, if ω = 1, then u(k) = x̂(k+1) = x(k+1), and (4.37) directly implies that limk→∞ ‖u(k)−
x(k)‖ = 0. If ω < 1, using (4.11) and (4.38) we have

lim
k→∞

‖u(k) − x(k)‖ = lim
k→∞

‖x̂(k+1) − x(k)‖ ≤ lim
k→∞

√
−2αmax

(
1 +

τ

2

)
h(k)(x(k+1);x(k), x(k−1)) = 0.

Then, in both cases, the assumptions of Proposition 4.8 are satisfied and, therefore, condition [H4]
holds. Finally, condition [H5] follows from (4.36), while condition [H6] is trivially satisfied, since
both sequences {ak}k∈N and {bk}k∈N are constant. Then, Theorem 3.3 applies and guarantees
that the sequence {(x(k), ρ(k))}k∈N converges to a stationary point (x∗, ρ∗) of F . Note that, since
F is the sum of separable functions, its subdifferential can be written as ∂F(x, ρ) = ∂f(x)× {ρ}.
Then, (x∗, ρ∗) is stationary for F if and only if ρ∗ = 0 and 0 ∈ ∂f(x∗). Hence, x∗ is a stationary
point for f and {x(k)}k∈N converges to it. �

Remark 4.10. We underline that F is a KL function if, for instance, f and 1
2‖ ·‖

2 are definable
in the same o−minimal structure [7, Definition 7]. Indeed functions definable in an o−minimal
structure satisfy the KL property on their domain [7, Theorem 11] and o−minimal structures are
closed with respect to the sum, see [7, Remark 5] and references therein. Examples of functions
definable in an o−minimal structure are semialgebraic, subanalytic and real analytic functions.

Remark 4.11. Theorem 4.9 requires the boundedness of the iterates as hypothesis. A standard
way to assert such a condition is when the Lyapunov function Φ defined in (4.33) is coercive,
since this assumption combined with the descent property (4.34) guarantees that the sequence
{(x(k), x(k−1))}k∈N is included in a (bounded) level set of the coercive function Φ.

4.3. iPila: inertial Proximal inexact line–search algorithm. In the following we in-
troduce a novel algorithm combining a line–search along the descent direction and an inertial
proximal-gradient step as a special case of our abstract scheme. A line–search procedure for the
objective function f requires a descent direction d ∈ Rn, i.e., a vector such that the directional
derivative f ′(x; d) = limλ↓0(f(x+λ)−f(x))/λ is negative. As explained extensively in [11, 12], the
inexact proximal-gradient point provides a descent direction for the objective function f . Indeed,
if ỹ satisfies (4.8), where the inertial parameter β in (4.5) is equal to zero, then the vector ỹ − x
is a descent direction for f at x. Unfortunately, this is not true, in general, when β > 0. In this
section we show that in the general case β ≥ 0, the point ỹ can be still used to define a descent
direction for a suitable merit function. Then, we propose a line–search procedure along this di-
rection that enable us to define a descent algorithm such that the merit function monotonically
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decreases along the iterates. Differently from the backtracking procedure in i2Piano, the proposed
line–search requires to solve the minimization subproblem (4.4) only once per iteration. Finally, we
show that the new algorithm can be analyzed in the framework of Section 3, in order to prove the
convergence of the iterates to a stationary point of f . In this case, unlike i2Piano, one of the two
merit functions involved in the abstract scheme defined by Conditions 3.1 will play an active role
in the algorithm, as it will be explicitly computed at each iteration to determine the new point.
In particular, we define the merit function Φ appearing in [H1]–[H2] as follows:

Φ : Rn × Rn → R ∪ {+∞}, Φ(x, s) = f(x) +
1

2
‖x− s‖2,

where the variable s will be considered as an actual optimization variable, independent on x. The
composite structure of Φ is Φ(x, s) = Φ0(x, s) + Φ1(x, s), with

Φ0(x, s) = f0(x) +
1

2
‖x− s‖2, Φ1(x, s) = f1(x).

The function Φ0 is differentiable with gradient

∇Φ0(x, s) =

(
∇xΦ0(x, s)
∇sΦ0(x, s)

)
=

(
∇f0(x) + x− s

s− x

)
.

It is easy to see that ∇Φ0(x, s) is Lipschitz continuous and in particular it holds that

(4.47) ‖∇Φ0(x, s)−∇Φ0(x̄, s̄)‖ ≤M
∥∥∥∥(x− x̄s− s̄

)∥∥∥∥ , ∀x, x̄, s, s̄,
with M = L+ 2, where L is the Lipschitz constant of ∇f0.
Given a vector d ∈ R2n

(4.48) d =

(
dx
ds

)
,

the directional derivative of Φ at the point (x, s) with respect to the direction d can be written as

Φ′(x, s; dx, ds) = Φ′0(x, s; dx, ds) + Φ′1(x, s; dx, ds) = f ′1(x; dx) + 〈∇Φ0(x, s), d〉
= f ′1(x; dx) + 〈∇f0(x) + x− s, dx〉+ 〈s− x, ds〉,

which always exists thanks to the convexity of f1.
A vector d ∈ R2n is called a descent direction for Φ at (x, s) when

Φ′(x, s; dx, ds) < 0.

Assume now that the vector dx has the form dx = y−x, where y is a point belonging to the domain
of f1; then, from [34, Theorem 23.1] we have

(4.49) Φ′(x, s; y − x, ds) ≤ f1(y)− f1(x) + 〈∇f0(x) + x− s, dx〉+ 〈s− x, ds〉.

The above inequality holds independently on the form of ds.

4.3.1. Descent direction for the merit function. Assume that (x(k), s(k)) is a given point
in dom(f1)× Rn, while αk, βk are two given parameters. Let the function h(k)(y;x, s) be defined
as in (4.26). Given a tolerance parameter τ > 0, according to (4.8)–(4.10), we denote by ỹ(k) any
point in dom(f1) satisfying

(4.50) 0 ∈ ∂εkh(k)(ỹ(k);x(k), s(k)), with εk = −τ
2
h(k)(ỹ(k);x(k), s(k)).

For a given γk ≥ 0, consider

(4.51) d(k) =

(
d

(k)
x

d
(k)
s

)
,
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where

d(k)
x = ỹ(k) − x(k)(4.52)

d(k)
s =

(
1 +

βk
αk

)
(ỹ(k) − x(k)) + γk(x(k) − s(k)).(4.53)

In the following lemma we show that d(k) is a descent direction for Φ at (x(k), s(k)).

Lemma 4.12. Let d(k) ∈ R2n be defined according to (4.52)-(4.53), where 0 < αk ≤ αmax,
βk ≥ 0, γk ≥ γmin, for some given positive real constants αmax, γmin > 0. Define ∆k ∈ R≤0 as

(4.54) ∆k = h(k)(ỹ(k);x(k), s(k))− γk‖x(k) − s(k)‖2.

Then, we have

Φ′(x(k), s(k); d(k)
x , d(k)

s ) ≤ ∆k(4.55)

≤ −a‖ỹ(k) − x(k)‖2 − γmin‖x(k) − s(k)‖2(4.56)

where a > 0 is a positive constant. Therefore, Φ′(x(k), s(k); d
(k)
x , d

(k)
s ) < 0 whenever ỹ(k) 6= x(k) or

x(k) 6= s(k).

Proof. We first observe that (4.49) with x = x(k), s = s(k), y = ỹ(k), dx = d
(k)
x , ds = d

(k)
s ,

gives:

Φ′(x(k), s(k); d(k)
x , d(k)

s )

≤ f1(ỹ(k))− f1(x(k)) + 〈∇f0(x(k)) + x(k) − s(k), d(k)
x 〉+ 〈s(k) − x(k), d(k)

s 〉(4.57)

= f1(ỹ(k))− f1(x(k)) + 〈∇f0(x(k)), ỹ(k) − x(k)〉+ 〈x(k) − s(k), y(k) − x(k)〉+

+

(
1 +

βk
αk

)
〈s(k) − x(k), ỹ(k) − x(k)〉 − γk‖x(k) − s(k)‖2

= f1(ỹ(k))− f1(x(k)) + 〈∇f0(x(k))− βk
αk

(x(k) − s(k)), ỹ(k) − x(k)〉 − γk‖x(k) − s(k)‖2

≤ h(k)(ỹ(k);x(k), s(k))− γk‖x(k) − s(k)‖2(4.58)

≤ − θ

2αk
‖ỹ(k) − x(k)‖2 − γk‖x(k) − s(k)‖2

where the last inequality follows from (4.13). Then, the thesis follows from αk ≤ αmax with
a = θ/2αmax. �

A useful consequence of the previous lemma is stated in the following corollary.

Corollary 4.13. Assume that αk ∈ [αmin, αmax], βk ∈ [0, βmax], γk ∈ [0, γmax], with 0 <
αmin ≤ αmax, βmax ≥ 0, γmax > 0. Then, there exists a positive constant C such that

(4.59) ∆k ≤ −C‖d(k)‖2.

Proof. Setting δk = 1 + βk

αk
, the bounds on the parameters imply that 1 ≤ δk ≤ δ̄, with

δ̄ = 1 + βmax

αmin
. By definition of d(k) in (4.51) we have

‖d(k)‖2 = ‖d(k)
x ‖2 + ‖d(k)

s ‖2

= ‖ỹ(k) − x(k)‖2 + ‖δk(ỹ(k) − x(k)) + γk(x(k) − s(k))‖2

= (1 + δ2
k)‖ỹ(k) − x(k)‖2 + γ2

k‖x(k) − s(k)‖2 + 2δkγk〈ỹ(k) − x(k), x(k) − s(k)〉
≤ (1 + δ2

k + δkγk)‖ỹ(k) − x(k)‖2 + (γ2
k + δkγk)‖x(k) − s(k)‖2

≤ (1 + δ̄2 + δ̄γmax)‖ỹ(k) − x(k)‖2 + γk(γmax + δ̄)‖x(k) − s(k)‖2

≤ 1

C
(a‖ỹ(k) − x(k)‖2 + γk‖x(k) − s(k)‖2)

where C = 1/max{(1 + δ̄2 + δ̄γmax)/a, γmax + δ̄}. Multiplying both sides of the last inequality
above by C and combining with (4.56) gives (4.59). �
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Line–Search Armijo line–search

INPUT: (x(k), s(k)) ∈ Rn × Rn, d(k), ∆k as in (4.54), σ, δ ∈ (0, 1)
Set λ+ = 1.
WHILE Φ(x(k) + λ+d

(k)
x , s(k) + λ+d

(k)
s ) > Φ(x(k), s(k)) + σλ+∆k

Set λ+ = δλ+

Set λ+
k = λ+

END
OUTPUT: λ+

k .

4.3.2. Outline of the algorithm. In this section we present a new forward–backward–
type method, which combines the inertial approach with the line–search procedure at the basis of
VMILA [12, 16]. The convergence guarantees of the new method are based on a line–search along
the descent direction defined in the previous section, ensuring the sufficient decrease of the merit
function Φ(x, s). The line–search consists in a backtracking procedure with a generalized Armijo
inequality as stopping rule. In particular, if the vector d(k) in (4.51) is a descent direction for Φ at
(x(k), s(k)), the line–search algorithm computes a positive parameter λ+

k satisfying

(4.60) Φ(x(k) + λ+
k d

(k)
x , s(k) + λ+

k d
(k)
s ) ≤ Φ(x(k), s(k)) + σλ+

k ∆k, σ ∈ (0, 1).

The well posedness of the line–search procedure and its main properties are summarized in the
following lemma.

Lemma 4.14. Let the assumptions of Lemma 4.12 be satisfied. Then, the Armijo backtracking
line–search algorithm terminates in a finite number of steps, and there exists λmin > 0 such that
the parameter λ+

k computed with the line–search algorithm satisfies

(4.61) λ+
k ≥ λmin.

Proof. Since Φ0 has M -Lipschitz continuous gradient, with M = L + 2 (see (4.47)), we can
apply the Descent Lemma obtaining

Φ0(x(k) + λd(k)
x , s(k) + λd(k)

s ) ≤ Φ0(x(k), s(k)) + λ〈∇Φ0(x(k), s(k)), d(k)〉+
M

2
λ2‖d(k)‖2

≤ Φ0(x(k), s(k)) + λ〈∇Φ0(x(k), s(k)), d(k)〉 − M

2C
λ2∆k,(4.62)

where the second inequality follows from (4.59). From the Jensen’s inequality applied to the convex
function f1 we also obtain

Φ1(x(k) + λd(k)
x , s(k) + λd(k)

s ) = f1(x(k) + λd(k)
x ) = f1(λỹ(k) + (1− λ)x(k))

≤ (1− λ)f1(x(k)) + λf1(ỹ(k)).(4.63)

Summing (4.62) with (4.63) gives

Φ(x(k) + λd(k)
x , s(k) + λd(k)

s ) ≤

≤ Φ(x(k), s(k)) + λ
(
f1(ỹ(k))− f1(x(k)) + 〈∇Φ0(x(k), s(k)), d(k)〉

)
− M

2C
λ2∆k

≤ Φ(x(k), s(k)) + λ∆k −
M

2C
λ2∆k,

where the last inequality follows from (4.57)–(4.58). The above relation implies

Φ(x(k) + λd(k)
x , s(k) + λd(k)

s ) ≤ Φ(x(k), s(k)) + λ(1− ρλ)∆k, ∀λ ∈ [0, 1]

with ρ = M
2C . Moreover, comparing the above inequality with the Armijo condition (4.60) shows

that the last one is surely fulfilled when λ+
k satisfies 1− ρλ+

k ≥ σ, that is when λ+
k ≤ (1− σ)/ρ.

Since λ+
k in the backtracking procedure is obtained starting from 1 and by successive reductions
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iPila : inertial Proximal inexact line–search algorithm

INPUT: (x(0), s(0)) ∈ dom(f1) × Rn, σ ∈ (0, 1), 0 < αmin ≤ αmax, βmax > 0, 0 < γmin ≤ γmax,
τ ≥ 0.
FOR k = 0, 1, . . .

STEP 1. Choose αk ∈ [αmin, αmax], βk ∈ [0, βmax]
STEP 2. Compute ỹ(k) such that

0 ∈ ∂εkh(k)(ỹ(k);x(k), s(k)), with εk = −τ
2
h(k)(ỹ(k);x(k), s(k)).

STEP 3. Choose γk ∈ [γmin, γmax].
STEP 4. Compute ∆k = h(k)(ỹ(k);x(k), s(k))− γk‖x(k) − s(k)‖2.
STEP 5. Compute the search direction

d(k)
x = ỹ(k) − x(k)

d(k)
s =

(
1 +

βk
αk

)
(ỹ(k) − x(k)) + γk(x(k) − s(k))

STEP 6. Compute λk ∈ (0, 1] such that

Φ(x(k) + λkd
(k)
x , s(k) + λkd

(k)
s ) ≤ Φ(x(k), s(k)) + σλk∆k

with the line–search backtracking algorithm.
STEP 7. Define the new point as

(x(k+1), s(k+1)) =

{
(ỹ(k), x(k)) if Φ(ỹ(k), x(k)) ≤ Φ(x(k), s(k)) + σλk∆k

(x(k) + λkd
(k)
x , s(k) + λkd

(k)
s ) otherwise

END

of a factor δ < 1, we have λ+
k ≥ δM , where M is the smallest nonnegative integer such that

δM ≤ (1− σ)/ρ. Therefore, (4.61) is satisfied with λmin = δM . �

The descent direction and the backtracking procedure described above are at the basis of the new
algorithm, named iPila (inertial Proximal inexact line–search algorithm), which formally consists
in a descent method for the merit function Φ(x, s). In particular, it generates a sequence of iterates
{(x(k), s(k))}k∈N and a sequence of steplength parameters {λk}k∈N fulfilling the following decrease
condition

Φ(x(k+1), s(k+1)) ≤ Φ(x(k), s(k)) + σλk∆k and Φ(x(k+1), s(k+1)) ≤ Φ(ỹ(k), x(k)).

The connection with the inertial methods is in fact that, when (x(k+1), s(k+1)) = (ỹ(k), x(k)) is
selected at STEP 7, the following iteration will consist of an actual inertial step. In practice, the
condition at STEP 7 can be considered as an alternative acceptance rule for the inexact inertial
proximal gradient point, having a similar role than the condition at STEP 6 of i2Piano (see also
(4.28)). The main difference is that here the acceptance condition is based on the Armijo inequality,
while the one in i2Piano is based on the Descent Lemma.
Notice also that the inexact evaluation of the proximity operator in iPila is required only once per
iteration, unlike in i2Piano, where it is needed at each step of the loop for selecting the parameter
Lk, until inequality (4.28) is satisfied.
The Armijo condition results also in a larger freedom of choosing the parameters αk, βk, which
here satisfy very minimal conditions. A possible strategy to choose these parameters preserving
both the theoretical prescriptions and the benefits deriving from the presence of an inertial step is
described in Section 5.
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4.3.3. Convergence analysis. In this section we first show that conditions [H1]–[H3] are
satisfied for iPila.

Proposition 4.15. Let {(x(k), s(k))}k∈N be the sequence generated by iPila. Then, condition
[H1] holds with dk =

√
−∆k, ak = σλmin. Moreover, under Assumption [A4], we also have

(4.64) 0 = lim
k→∞

‖x(k) − s(k)‖ = lim
k→∞

h(k)(ỹ(k);x(k), s(k)) = lim
k→∞

‖ỹ(k) − x(k)‖.

Proof. From the updating rule at STEP 7 and from Lemma 4.14, we have

Φ(x(k+1), s(k+1)) ≤ Φ(x(k), s(k)) + σλk∆k ≤ Φ(x(k), s(k)) + σλmin∆k.

Then, condition [H1] is satisfied with d2
k = −∆k, ak = σλmin. Since from Assumption [A4] f is

bounded from below, Φ is bounded from below as well. Therefore, [H1] implies −
∑∞
k=0 ∆k < ∞

which, in turn, yields limk→∞∆k = 0. Recalling (4.56), this implies (4.64). �

In the following we describe the setup for proving [H2], with the second auxiliary function defined
as in (4.39).

Proposition 4.16. Let {(x(k), s(k))}k∈N be the sequence generated by Algorithm iPila with
γmin > 0 and let F be defined as in (4.39). Then, there exist {ρ(k)}k∈N, {rk}k∈N ⊂ R, with
limk→∞ rk = 0, such that [H2] holds with u(k) = ŷ(k), where ŷ(k) is the exact minimizer of
h(k)(y;x(k), s(k)), i.e.,

ŷ(k) = argmin
y∈Rn

h(k)(y;x(k), s(k)).

Proof. From STEP 7, we have

Φ(x(k+1), s(k+1)) ≤ Φ(ỹ(k), x(k)) = f(ỹ(k)) +
1

2
‖ỹ(k) − x(k)‖2

≤ f(ŷ(k))−
(
c+

αmax
θ

)
h(k)(ỹ(k);x(k), s(k)) + d‖x(k) − s(k)‖2,

where the last inequality follows from (4.16) and (4.13). Setting

(4.65) ρ(k) =
√

2
(
−
(
c+

αmax
θ

)
h(k)(ỹ(k);x(k), s(k)) + d‖x(k) − s(k)‖2

) 1
2

,

we obtain Φ(x(k+1), s(k+1)) ≤ F(ŷ(k), ρ(k)), which represents the left-most inequality in [H2], with
u(k) = ŷ(k). On the other hand, from inequality (4.17) we obtain

F(ŷ(k), ρ(k)) = f(ŷ(k)) +
1

2
(ρ(k))2 ≤ f(x(k))− c̄h(k)(ỹ(k);x(k), s(k)) + d̄‖x(k) − s(k)‖2 +

1

2
(ρ(k))2.

Setting rk = (ρ(k))2/2− c̄h(k)(ỹ(k);x(k), s(k)) + (d̄− 1
2 )‖x(k) − s(k)‖2, we can write

F(ŷ(k), ρ(k)) ≤ f(x(k)) +
1

2
‖x(k) − s(k)‖2 + rk = Φ(x(k), s(k)) + rk.

From (4.64) we have that limk→∞ rk = 0 and this proves [H2]. �

Proposition 4.17. Let {(x(k), s(k))}k∈N be the sequence generated by iPila with γmin > 0.
Then, there exists a positive constant b such that [H3] is satisfied with I = {1}, θ1 = 1, ζk = 0.

Proof. From (4.15) we know that there exists a subgradient v̂(k) ∈ ∂f(ŷ(k)) such that

(4.66) ‖v̂(k)‖ ≤ q
√
−h(k)(ỹ(k);x(k), s(k)) + q‖x(k) − s(k)‖

and, reasoning as in the proof of Proposition 4.8, it follows that

(4.67) ‖∂F(ŷ(k), ρ(k))‖− ≤
∥∥∥∥(v̂(k)

ρ(k)

)∥∥∥∥ ≤ ‖v̂(k)‖+ |ρ(k)|.
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Let us analyze the two terms at the right-hand side of the inequality above, showing that both can
be bounded from above with a multiple of

√
−∆k. From (4.66) we obtain

‖v̂(k)‖ ≤ q
√
−h(k)(ỹ(k);x(k), s(k)) + γmin‖x(k) − s(k)‖2

+
q

√
γmin

√
γmin‖x(k) − s(k)‖2 − h(k)(ỹ(k);x(k), s(k)).

which, setting A = q
(
1 + 1/

√
γmin

)
and using (4.56), yields

(4.68) ‖v̂(k)‖ ≤ A
√
−h(k)(ỹ(k);x(k), s(k)) + γmin‖x(k) − s(k)‖2 ≤ A

√
−∆k.

On the other hand, from definition (4.65)

ρ(k) ≤ B
√
−h(k)(ỹ(k);x(k), s(k)) + γk‖x(k) − s(k)‖2 = B

√
−∆k

where B =
√

2 max {c+ αmax/θ, d/γmin}
1
2 . Therefore, combining the last inequality above with

(4.68) and (4.67), yields ‖∂F(ŷ(k), ρ(k))‖− ≤ (A + B)
√
−∆k which proves that [H3] is satisfied

with I = {1}, θ1 = 1, ζk = 0, b = A+B, bk = 1. �

We are now ready for presenting the main convergence result for Algorithm iPila.

Theorem 4.18. Suppose that F is a KL function. Moreover, assume that the sequence {x(k)}k∈N
generated by iPila is bounded. Then, {x(k)}k∈N converges to a stationary point of f .

Proof. By Proposition 4.15, 4.16, and 4.17, we know that conditions [H1]-[H2]-[H3] hold for
iPila. From (4.11) we have limk→∞ ‖u(k)− x(k)‖ = limk→∞ ‖ŷ(k)− x(k)‖ = 0. Hence we can apply
Proposition 4.8 and conclude that [H4] holds. Moreover, condition [H5] holds as a consequence
of Lemma 4.12, since dk =

√
−∆k and ‖ỹ(k) − x(k)‖ ≥ ‖x(k+1) − x(k)‖/λk ≥ ‖x(k+1) − x(k)‖ (see

STEP 7). Finally, condition [H6] is trivially satisfied, since both sequences {ak}k∈N and {bk}k∈N are
constant. Then Theorem 3.3 applies and guarantees that the sequence {(x(k), ρ(k))}k∈N converges
to a stationary point (x∗, ρ∗) of F . Note that, since F is the sum of separable functions, its
subdifferential can be written as ∂F(x, ρ) = ∂f(x)×{ρ}. Then, (x∗, ρ∗) is stationary for F if and
only if ρ∗ = 0 and 0 ∈ ∂f(x∗). Hence x∗ is a stationary point for f and {x(k)}k∈N converges to it.
�

We refer the reader to Remark 4.10-4.11 for conditions on f guaranteeing that F is a KL function
and that the sequence {x(k)}k∈N is bounded.

5. Numerical illustration: image denoising and deblurring in presence of impulse
noise. In image restoration problems the goal is to recover a good quality image from a noisy
blurred one. Following the variational approach, the clean image is obtained by solving an op-
timization problem with the structure (4.1), where the objective function includes a measure of
the data fidelity and a regularization/penalization term, incorporating all a priori information on
the desired solution. The data discrepancy is usually selected according to the noise statistics: in
particular, when the data are affected by impulse noise, the variational model is defined as

min
x∈Rn

≥0

‖Hx− g‖1 +R(x),

where g ∈ Rn is the noisy blurred data, H ∈ Rn×n represents the blurring operator, R : Rn → R is
the regularization term, and Rn≥0 = {x ∈ Rn : xi ≥ 0, i = 1, . . . , n} is the nonnegative orthant. In
the recent literature, several nonconvex regularization functionals have been proposed to overcome
the known drawbacks of classical approaches, for example those based on the Total Variation
function. In this paper we consider as regularization function the one proposed in [20, 21]:

R(x) = ρ

q∑
`=1

n∑
i=1

log(1 + (K`x)2
i ),



24 S. BONETTINI, P. OCHS, M. PRATO, AND S. REBEGOLDI

where the matrices K` ∈ Rn×n correspond to the convolution with a given filter k`, while ρ, θ` are
positive parameters. In particular, the set of 48 filters k` of size 7×7 and corresponding coefficients
θ` are computed with a supervised machine learning technique. It is possible to prove that R(x)
has Lipschitz-continuous gradient, using the same arguments as in [16]. Then, setting f0(x) = R(x)
complies with assumptions [A2]-[A3]. The nonnegativity constraint, expressed by means of the
indicator function of the nonnegative orthant ι≥0(x), can be included in the convex, nonsmooth
term of the objective function, i.e. f1(x) = ‖Hx − g‖1 + ι≥0(x). The regularization parameter ρ
has been manually tuned in order to have a good quality restoration. Its value has been set equal
to 0.08 for all the runs. Note that f1 does not have a closed-form proximal operator, therefore it
is necessary to employ implementable inexactness criteria as the one proposed in Section 4.1.
The proposed algorithms have been implemented in Matlab on a laptop equipped with a 2.5 GHz
Intel Core i7-6500 processor and 16GB of RAM; the Matlab code is available online at [13].
The parameters of Algorithm i2Piano have been set as δ = 0.5, γ = 0.2, η = 1.5, ω = 0.95. The
estimate of the Lipschitz constant Lk is updated in a nondecreasing way. In particular, the initial
value L0 is set as an input parameter: then, at Step 1 of each iteration, the first tentative value
is set as Lk = Lk−1. This value is possibly increased until inequality (4.28) is met. Actually,
more sophisticated updating rules for this parameter could be adopted; however the objective
function of the considered image restoration problem is very costly to evaluate, therefore a more
conservative parameters selection rule has shown to be more convenient. As for Algorithm iPila,
the parameters settings aim to mimic that of the inertial method i2Piano. Indeed, introducing the
additional parameters δ, γ, Lk, bk > 0, with bk = Lk+2δ

Lk+2γ , we set αk, βk, γk as follows

βk =
bk − 1

bk − 1
2

, αk = 2
1− βk
Lk + 2γ

, γk = γ.

This choice is motivated by the following arguments. If Lk is a good local approximation of the
Lipschitz constant satisfying condition

(5.1) f0(ỹ(k)) ≤ f0(x(k)) + 〈∇f0(x(k)), ỹ(k) − x(k)〉+
Lk
2
‖ỹ(k) − x(k)‖2,

then reasoning as in the proof of Proposition 4.5, and choosing δ = 0.5 and γk = γ, we obtain

Φ(ỹ(k), x(k)) ≤ Φ(x(k), s(k)) + ∆k +
1

2αk
‖ỹ(k) − x(k)‖2.

Hence, if Lk satisfies (5.1), the point (ỹ(k), x(k)) will be likely accepted at Step 7, as also confirmed
by the numerical experience. This reasoning suggests to implement algorithm iPila as follows. We
check the condition Φ(ỹ(k), x(k)) ≤ Φ(x(k), s(k)) + σ∆k right after Step 4: if the condition holds,
then the steps from 4 to 7 are skipped in order to avoid unnecessary computations, and the next
point is directly defined as (x(k+1), s(k+1)) = (ỹ(k), x(k)); otherwise, the value Lk is increased by a
factor η = 1.5, and the line–search in steps 5–7 is performed in order to compute the next point.
By possibly increasing Lk, we aim at improving the chances that (ỹ(k+1), x(k+1)) is accepted at
the next iteration, thus reducing the computational time due to the line–search reductions steps.
The parameter in the Armijo condition, is set to σ = 10−4.
For both i2Piano and iPila, the inexact proximal point ỹ(k) is computed by approximately solving
the dual of problem miny∈Rn h(k)(y;x(k), s(k)), which is a quadratic problem with simple con-
straints, with FISTA (more details can be found in [16] and references therein). The accuracy of
the approximation is controlled by the parameter τ : in our experiments we set τ = 106, which cor-
responds to a good balancing of the computational complexity among inner and outer iterations.
An extensive performance assessment of the algorithms with respect to this and other parameters
is out of the scope of this paper, and it will be subject of future research.
The deblurring test problem has been obtained by first artificially blurring a good quality im-
age, then simulating impulse noise on the 15% of the pixels with imnoise. The clean and the
noisy image are in Figure 1 (a) and (b). Assuming reflective boundary conditions, matrix-vector
multiplications involving H and HT can be implemented efficiently with the DCT transform. In
particular, each inner (dual) iteration requires the computation of two matrix vector product of
this kind. Indeed, in our experiments, only one or two inner iterations per outer iteration are,
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(a) (b) (c)

Fig. 1. Image deblurring test problem: (a) Original image (512×512 pixels); (b) Noisy image, PSNR = 13.19;
(c) Restored image, PSNR = 23.72
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Fig. 2. Image deblurring test problem: decrease of the objective function (a) with respect to the computational
time and (b) with different choices of L0.

in general, needed to satisfy the inner stopping criterion. We compare our proposed algorithms
to the variable metric line–search based method denominated VMILAn [12, 16] with its standard
parameters settings. The objective function decrease for all three algorithms i2Piano, iPila and
VMILAn is reported in Figure 2. Panel (a) reports the values f(x(k)) with respect to the compu-
tational time, where the initial estimate of the Lipschitz constant has been set equal to 0.001 for
both i2Piano and iPila. The decrease of the objective function during the iterates of i2Piano and
iPila with different choices of the parameter L0 is also presented in panel (b), where the horizontal
axis still refers to the computational time. The picture shows that iPila is quite insensitive to
the choice of L0. In general, the numerical results show that i2Piano and iPila are able to solve
challenging problems and are competitive with state-of-the-art methods. More effective rules for
selecting their parameters will be subject of future work.
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