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Abstract

Towards designing learned optimization algorithms that are usable beyond their
training setting, we identify key principles that classical algorithms obey, but have
up to now, not been used for Learning to Optimize (L2O). Following these princi-
ples, we provide a general design pipeline, taking into account data, architecture
and learning strategy, and thereby enabling a synergy between classical optimiza-
tion and L2O, resulting in a philosophy of Learning Optimization Algorithms. As
a consequence our learned algorithms perform well far beyond problems from
the training distribution. We demonstrate the success of these novel principles
by designing a new learning-enhanced BFGS algorithm and provide numerical
experiments evidencing its adaptation to many settings at test time.

1 Introduction

Learning to Optimize (L2O) is a modern and promising approach towards designing optimization
algorithms that reach a new level of efficiency. L2O is even the state-of-the-art approach in some
applications [44, 75]. However, it mostly excels when designed and trained specifically for each
application and still fails to be widely applicable without retraining models. This need to adapt L2O
specifically to each task is especially problematic given how difficult designing L2O algorithm is:
the design is prone to many conceptional pitfalls and training models is not only computationally
expensive [16] but also notoriously hard in L2O [49]. In contrast, standard optimization methods are
widely applicable, sometimes way beyond the setting they were originally designed for, as attested
for example by the success of momentum methods [55] in deep learning [34]. This transfer of
performance to different classes of problems is often achieved only at the cost of tuning a few scalar
hyper-parameters. Analytically designed optimization algorithms usually come with theoretical
guarantees, which most L2O algorithms lack completely.

We aim to bring L2O models closer to actual Learned Optimization Algorithms (LOAs), that are
applicable far beyond their training setting. This is achieved by identifying key theoretical principles
that standard optimization algorithms follow and by providing strategies ensuring that LOAs inherit
these properties. Thereby we systematically unify the advantages of both worlds: flexible applicability
and theoretically controlled convergence guarantees from mathematical optimization, and complex
operations from machine learning beyond what can be analytically designed. Following our general
recipe, we derive a learning-enhanced BFGS [11, 19, 24, 62] method. We present numerical and
theoretical results that show how our LOA benefits from our approach.
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2 Setting and Problem Statement

We first develop a mathematical and algorithmic formulation of the L2O setting that we are interested
in and then state the problem we study within this formalism.

2.1 Mathematical Formalism

We denote by N the set of non-negative integers and R the set of real numbers. In what follows we
consider unconstrained optimization problems of the form

min
x∈Rn

f(x),

where n ∈ N is the dimension of the problem, and f belongs to Fn, the set of real-valued lower
bounded twice-continuously differentiable functions on Rn (equipped with inner product ⟨·, ·⟩ and
norm ∥·∥). We denote by∇f and ∇2f the gradient and Hessian matrix of f respectively.

One of our goals is to design LOAs that are applicable in any dimension (see Principle 1 below),
like standard optimization algorithms. Therefore in the sequel, the dimension n is arbitrary and
need not be the same for all the problems the algorithms are applied to. Nevertheless, for the sake
of simplicity, the following discusses a fixed Rn. A triplet (f, x0, S0) with an objective function
f ∈ Fn, an initialization x0 ∈ Rn and a collection of vectors and matrices S0 ∈ Sn, called state
(where Sn is the set of all possible states, to be clarified hereafter), is called a problem.

We formulate L2O algorithms in a generic form described in Algorithm 1 that takes as input a problem
(f, x0, S0) and performs K ∈ N iterations before returning xK ∈ Rn. Algorithm 1 can also be
mathematically represented by an operator from A : Fn × Rn ×Sn × N→ Rn such that the K-th
iteration of the algorithm reads

xK = A (f, x0, S0,K) .

Algorithm 1 is fully characterized by what we call an oracle C, a model M, an update function
U and a storage function S. At any iteration k ∈ N, the oracle C collects the information the
algorithm has access to about f at the current point xk and the state Sk and constructs an input
Ik ∈ Rn×ni , where ni ∈ N. The input Ik is then fed to a (machine learning) model represented by a
parametric functionM(·, θ) : Rn×ni → Rn×m, where θ ∈ Rp (p ∈ N) is its parameter (in vector
form), and m ∈ N. The model outputs a prediction, i.e., yk =M(Ik, θ), which is used by the update
U : Rn×ni ×Rn×m×Rnh to improve the current point: xk+1 = xk +U(Ik, yk,Γ), where Γ ∈ Rnh

(nh ∈ N) are the hyper-parameters chosen by the user (a few scalars). The storage S then collects
in Sk+1 the information from the k-th iterate that will be used at the next iteration. This abstract
formalism is generic enough to encompass at the same time L2O and several classical algorithms.
Moreover, this systematic structuring allows for the formulation and analysis of key principles for
learned optimization algorithms in Section 3. We now illustrate this on an example.

Algorithm 1: Generic Learned Optimization Algorithm
given: oracle operator C, modelM(·, θ), update function U , storage function S
input: function to minimize f , initialization x0, state S0, hyper-parameter Γ, number of

iterations K
for k = 0 to K − 1 :

Ik ← C(f, xk, Sk) // Construct input
yk ←M(Ik, θ) // Model prediction
xk+1 ← xk + U(Ik, yk,Γ) // Update step
Sk+1 ← S(S, xk, Ik, yk) // Store relevant variables in state

return xK

Example: Throughout what follows we use the heavy-ball (HB) method [55] as running example
to illustrate the concepts we introduce. An iteration k ∈ N of HB reads:

xk+1 = xk + αdk − γ∇f(xk), (1)

where dk = xk − xk−1, α ∈ [0, 1) is called the momentum parameter and γ > 0 is the step-size.
Notice that for k = 0, the algorithm requires not only x0 but also x−1. This is the reason for
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introducing a state in Algorithm 1, in this case we would have S0 = {x−1}. Any iteration k of HB
reads as follows: the operator C takes (f, xk, Sk), where Sk = {xk−1}, and concatenates ∇f(xk)
and dk as Ik = (dk,∇f(xk)) ∈ Rn×ni , with ni = 2. There is no learning phase hence no model
M (by convention we say that m = 0 and yk = 0). The update function U has hyper-parameter
Γ = (α, γ)— so nh = 2 —and uses Ik to compute U(Ik, 0,Γ) = αdk − γ∇f(xk), which yields the
update (1). Finally, the storage S stores xk in Sk+1, as it will be required to compute dk+1.

2.2 The Stages of L2O vs LOA

Training phase: The parameter θ of the model M is set by building a training set of problems
(f, x0, S0) and by minimizing a loss function on this dataset, e.g., the value f(xK) achieved on
average after K iterations. Training is crucial to find a “good” θ but is computationally expensive
and notoriously hard in L2O [69, 49]. Therefore our work studies the case of training the model on a
fixed training set, after which the algorithm can be directly applied to any f ∈ Fn without retraining.

Test phase: In machine learning, the standard assumption is that the training set is sampled from an
unknown underlying distribution of problems. Generalization, in the statistical sense, then refers to
asserting how good the trained modelM(·, θ) performs on the whole distribution. This is estimated
by computing the performance on a test set sampled independently from the same distribution.

Generalization: As motivated in introduction, we aim for learned algorithms that perform well on
settings possibly significantly different from that of the training set. This is sometimes referred to as
out of distribution (OOD) generalization. We do not pursue OOD generalization, which is hopeless in
full generality [71]. In fact, this is where we draw the line between L2O and LOA: instead of studying
generalization from a statistical perspective, we list use cases to which one wants L2O algorithms
to be adaptable to, since successful standard algorithms are. Firstly, we want algorithms that are
applicable to some functions f and initializations not belonging to the training set only by tuning
the hyper-parameter Γ. This is more reasonable than OOD generalization. For example, HB was
originally designed for locally C2 functions [55], but works on larger classes of convex functions
[23] and even performs well on non-convex ones [73]. It also does not require a specific initialization
strategy and convergence rates are uniform in the dimension n [56, 9]. Finally, although for a given
f some choices of hyper-parameters (α, γ) might be optimal for HB (see e.g., [52]), the range of
admissible values for which it converges is usually larger.

3 Principles of Learning Optimization Algorithms and Consequences

The cornerstone principle of LOA, is that optimization algorithms should be applicable in any
dimension n. Since we do not retrain the modelM(·, θ), this implies the following.

Principle 1. Algorithm 1 should be independant of the dimension n, i.e., the size p of θ and ni should
be independent of n and as small as possible.

This principle creates the main shift between L2O and LOA: while L2O models might be used for
specific applications, making it possible to choose p larger than n, LOAs must work at any scale,
putting LOAs in the under-parameterized learning setting (p smaller than n). This implies that the
training phase cannot be used to memorize a large number of examples like in over-parameterized
settings [74], which makes generalizing (Section 2.2) significantly more challenging. We propose to
cope with this via a careful algorithmic design articulated around three ideas.

Enhancement: We use learning to enhance existing algorithms, preserving their theoretically-
grounded parts and using learning to replace the parts of that are based on heuristics, eventually
reducing the size of θ.
Adaption: LOAs must adapt on the fly (along the iterates) to each problem by storing information in
the state Sk. This can be achieved by recurrent neural networks, e.g., LSTMs [3, 30] or by enhancing
adaptive algorithms like ADAM [37] or quasi-Newton (QN) methods, as we do in Section 4.
Hard-coded generalization: We identify key transformations of optimization problems to which
standard optimization algorithms are robust to and “hard-code” this robustness (i.e., enforce it by
design) in LOAs. Enforcing such robustness avoids wasting parts of θ relearning it and is one of the
main contributions of our work. We now explain how to achieve this.
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Table 1: Summary of invariance and equivariant properties of several algorithms3

Translation
(Principle 2)

Permutation
(Principle 3)

Orthogonal
transform.

Geom. scaling
(Principle 4)

Func. scaling
(Principle 5)

Gradient desc. ✓ ✓ ✓ dep. Γ dep. Γ
Heavy-Ball ✓ ✓ ✓ dep. Γ dep. Γ
Newton Meth. ✓ ✓ ✓ ✓ ✓
BFGS ✓ ✓ ✓ ✓2 ✓2

ADAM [37] ✓ ✓ ✗ ✗ ∼
Algorithm 2 ✓ ✓ ✗ ✓2 ✓2

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0

Figure 1: Illustration of equivariances on the landscape of a two-dimensional function. Left: no
transformation, middle: translation, right: rotation. Transforming f and x0 does the same to the
iterates of HB. ADAM [37] is also translation equivariant but not rotation equivariant.

3.1 Hard-coding of Generalization

Fix f ∈ Fn, x0 ∈ Rn and S0 and consider an invertible mapping T : Rn → Rn. Since T is invertible,
observe that for all x ∈ Rn:

f(x) = f(T −1(T (x))) = f ◦ T −1(T (x)) = f̂(x̂), (2)

where we define f̂ as f ◦ T −1 and x̂ = T (x), for all x ∈ Rn. Therefore (2) expresses in particular
that (f, x0, S0) and (f̂ , x̂0, Ŝ0) are two different representations of the same problem, where Ŝ0 is
one-to-one with S0 such that for every vector2 v̂ ∈ Ŝ0 there exists v ∈ S0 such that v̂ = T (v). From
a generalization perspective, we want Algorithm 1 to perform the same regardless the representation,
i.e.,

f(A(f, x0, S0,K)) = f̂(A(f̂ , x̂0, Ŝ0,K)), ∀K ∈ N.

According to (2), this is the case ifA(f̂ , x̂0, Ŝ0,K) = T (A(f, x0, S0,K)) for all (f, x0, S0) and K.
When this is true, we say that the algorithm A is equivariant to T . While in theory equivariance with
respect to all invertible transformations seems best, this imposes severe restrictions to the design of
Algorithm 1 and does not actually hold for standard algorithms. Therefore, we analyze equivariance
only with respect to key transformations, summarized in Table 1. The complete list is only achieved
by Newton’s method, which is unsuitable for large-scale optimization. In the following, we discuss
equivariance of Algorithm 1 and how to enforce it by design.

3.1.1 Translations

Let v ∈ Rn, the translation Tv is defined for all x ∈ Rn by Tv(x) = x+ v. In this case f̂ = f(· − v)
and x̂0 = x0+v. Most algorithms are translation equivariant as summarized in Table 1 and illustrated
on Figure 1, which leads to the following principle.

Principle 2. Algorithm 1 should be translation equivariant, i.e., Tv-equivariant for all v ∈ Rn.

2The case of matrices contained in S0 is more complex and discussed in Appendix B.
3The symbol dep. Γ indicates that scale invariance depends on Γ, see Appendix A. ADAM is scale invariant

only when its numerical stability parameter is set to 0. The case of BFGS is discussed at the end of Section 4.2.
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Strategy. Remark that since x̂0 = x0 + v, then x̂K = xK + v ⇐⇒
∑K−1

k=0 d̂k =
∑K−1

k=0 dk.
So we want to ensure that ∀k ∈ N, dk = d̂k. Looking at the example of HB, it relies on ∇f(xk)

and dk = xk − xk−1. One can show (see Appendix A) that ∇f̂(x̂) = ∇f(x) and similarly
x̂− ŷ = x− y for all x, y ∈ Rn. These quantities are thus invariant by translation which makes HB
translation equivariant. This example shows that it is often possible to make C translation invariant
(i.e., C(f, x, S) = C(f̂ , x̂, Ŝ)) which is then enough to make the algorithm translation equivariant,
since by direct induction ŷk =M(Îk, θ) =M(Ik, θ) = yk and thus U(Îk, ŷk,Γ) = U(Ik, yk,Γ).
Practical consequences. An easy way to ensure translation invariance of C is to never output
“absolute” quantities such as xk but always differences such as dk = xk − xk−1, exactly like in the
example of HB above. We follow this strategy as it does not put any restriction onM nor U .

3.1.2 Permutations

In optimization, the ordering of coordinates is arbitrary in general. For example, the functions
(x, y) 7→ x2 + 2y2 and (x, y) 7→ 2x2 + y2 represent the same problem with permuted coordinates.
This transformation is represented by a permutation matrix P which contains only zeros except one
coordinate equal to 1 per line, and such that PTP = In where In denotes the identity matrix of size
n. Fix such P and consider the corresponding transformation (with f̂ and x̂ redefined accordingly).
As shown in Table 1, almost all popular algorithms are permutation equivariant.4

Principle 3. Algorithm 1 should be equivariant to all permutation matrices P .

Strategy. Remark that this time to get x̂k = Pxk for all k ∈ N, we need d̂k = Pdk i.e. we
need equivariance. Taking again the example of HB, we show in Appendix A that ∇f̂(x̂) =

(P−1)T∇f(x) = P∇f(x), and we should expect d̂k = Pdk (since this is what we want to obtain).
Therefore we expect C to be equivariant to permutations this time. This is enough to make HB
permutation equivariant. In the context of L2O, sinceM(Îk, θ) =M(PIk, θ), we will makeM(·, θ)
equivariant as well so that U gets only permuted quantities, and design U to preserve equivariance.
Practical consequences. Permutation equivariance ofM strongly restricts its design as Zaheer et al.
[72] showed that the only feed-forward (FF) layer operating along the dimension n and preserving
equivariance is very basic with only two learnable parameters and no bias. To be usable in any
dimension n, many L2O algorithms use models M that perform per-coordinate predictions [3],
making them permutation equivariant but completely neglecting interactions between coordinates. In
Section 4 we rather propose a model that is permutation equivariant while allowing such interactions.

The orthogonal group. Permutations matrices form a subset of the set of orthogonal matrices
(square matrices with PTP = In). They correspond to so-called rotations and reflections. Several
algorithms are equivariant to all orthogonal transformations, which makes this property desirable.
Yet, it is hardly compatible with L2O since it does not hold for any FF layer with ReLU activation
function (as we prove in Appendix A.4). Fortunately, in many setting the canonical coordinate system
has a clear meaning (e.g. each coordinate represents a weight of a neural network to train), in which
case this equivariance is not crucial, as the performance of ADAM in deep learning attests.

3.1.3 Rescaling

Let λ > 0 and consider the geometric rescaling Tλ(x) = λx, and redefine f̂ and x̂ accordingly.

Principle 4. Algorithm 1 should be equivariant to geometric rescaling.

This principle should be considered as optional as it is usually not satisfied by first-order methods
(see Table 1). Indeed, one can see that f̂(x̂k) =

1
λ∇f(x) and we want d̂k = λdk. So for example in

HB, one needs to tune (α, γ) to recover equivariance. However, Newton’s and QN methods can be
equivariant to geometric rescaling. In the context of LOA, we construct an algorithm (in Section 4)
where we makeM scale equivariant and show that our update U can then make Principle 4 hold.
This slightly restrictsM, for example the ReLU function is scale equivariant but the sigmoid is not.

4A notable exception regards algorithms constructing block-diagonal matrices like K-FAC [46], these blocks
depend on the ordering of coordinates.
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There is a last, different, principle. For λ > 0, if this time the function is rescaled: f̂ = λf , then
∇f̂ = λ∇f . This does not transform the optimization variable: x̂0 = x0 so this time we want
invariance of the algorithm (and function values are equivariant).

Principle 5. Algorithm 1 should be such that A(λf, x0, Ŝ0,K) = A(f, x0, S0,K), ∀λ > 0.

For very similar reasons as geometric rescaling, this principle needs to be dealt with specifically for
each algorithm. It is also compatible with LOA as we show for our algorithm (see Theorem 1).

4 Application to Learning Quasi-Newton Algorithms

We build a LOA, based on the structure of the BFGS method, that provably obeys the principles
identified above. BFGS is a quasi-Newton (QN) method, i.e., one that progressively builds an
approximation of the computationally-expensive inverse Hessian matrix used in Newton’s method.
This is thus in line with our idea to adapt to each problem on the fly (see Section 3). While combining
L2O and QN methods has been explored in the literature (see Section 6), our approach differs in
several aspects starting with the following.

4.1 A variational view on the BFGS algorithm

Let k ∈ N be an iteration, we use the notation ∆gk = ∇f(xk) − ∇f(xk−1) and recall that
dk = xk−xk−1. QN methods are based on the fact that for quadratic functions dk = ∇2f(xk)

−1∆gk,
which is called the secant equation. QN methods aim to iteratively build approximations Bk to
∇2f(xk)

−1 with the constraint that the secant equation must hold: dk = Bk∆gk and that Bk is
symmetric. From a variational perspective, [25, 24] showed that BFGS aims to keep Bk close to the
previous approximation Bk−1 by taking Bk as the solution of the following problem:

Bk = min
B∈Rn×n

s.t.Bk∆gk=dk and Bk−BT
k =0

∥B −Bk−1∥W . (3)

Here ∥·∥W denotes the Frobenius norm reweighted by some symmetric positive definite matrix W .
Denoting yk = W−1∆gk and rk = dk −Bk−1∆gk, one can show that the solution of (3) is

Bk = Bk−1 +
1

⟨∆gk, yk⟩

[
rky

T
k + ykr

T
k −

⟨∆gk, rk⟩
⟨∆gk, yk⟩

yky
T
k

]
. (4)

BFGS is then based on the heuristic (albeit elegant) trick that taking W−1 to be the unknown next
approximation Bk, yields yk = dk (due to the secant equation) and preserves positive-definiteness.
Instead of using L2O to directly predict the matrix Bk as done in prior work, we use L2O precisely
at this stage to predict a better choice for W−1. However, since W only appears through the vector
yk = W−1∆gk, we reduce the computational cost by designing a modelM that predicts directly yk
and not W . This allows enhancing BFGS with L2O while preserving the coherence of the algorithm.

4.2 Our Learned Algorithm

We now detail our algorithm, which is also described in Algorithm 2 in the appendix.

The oracle C. For each iteration k ∈ N of our algorithm, we use the state Sk =
{xk−1,∇f(xk−1), Bk−1}. Our oracle C computes ∇f(xk), dk and ∆gk as in BFGS but also
new features Bk−1∆gk and −γBk−1∇f(xk), gathered as Ik = (Bk−1∆gk, dk,−γBk−1∇f(xk)).
Note that all these features must be scale invariant since Bk−1 approximates∇2f(xk)

−1.

The learned modelM. Our model only takes three features as input (ni = 3) but creates additional
ones by applying a block of coordinate-wise FF layers, then averaging the result and concatenating it
to Ik. This allows feature augmentation and makes each coordinate interacting with all the others.
The result is then fed to another coordinate-wise block of FF layers added to a linear layer yielding the
output yk ∈ Rn. The architecture is detailed in Figure 2. The linear layer acts as a skip-connection
and will allow us to introduce a trick that stabilizes the training later in Section 5. Note that the cost
of each operation insideM is proportional to n which is cheaper than the matrix-vector products of
cost O(n2) that C and U (and vanilla BFGS) involve.
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Figure 2: Architecture of our L2O model that preserves the principles of Section 3.1 while computing
interactions between coordinates by transforming Ik (in green) and then averaging (in orange).

The update U and storage S . Our update is that of BFGS:5 the approximation Bk is updated using
(4) with a different yk, and xk+1 = xk − γBk∇f(xk), where γ is a step-size, usually close to 1 (or
chosen by line-search). Like in vanilla BFGS, S finally stores {xk,∇f(xk), Bk} for the next iterate.

Initialization of B−1. QN methods require an initial approximated inverse Hessian matrix B−1.
While the simplest choice is In, several works [7, 8] observed notable improvement by initializing
with the Barzilai-Borwein (BB) step-size [6]: γ(0)

BB
def
= ⟨∆g0,d0⟩

∥∆g0∥2 . We follow this approach and take

B−1 = 0.8γ
(0)
BBIn. With this choice, B−1 agrees with Principles 4 and 5 without additional knowledge

on f (see Appendix B). This is key to preserve scale invariance of our algorithm (and that of BFGS).

4.3 Theoretical Analysis

Based on our strategy from Section 3, our LOA follows the principles therein, as proved in Ap-
pendix B.

Theorem 1. With the choice of B−1 above, Algorithm 2 follows Principles 1-2-3-4-5.

Another benefit of preserving and enhancing existing algorithms is that their coherent structures allow
deriving convergence results, as proved in Appendix C.

Theorem 2. Assume that f has L-Lipschitz continuous gradient and that for all k ∈ N, Bk is positive
definite with eigenvalues upper-bounded by C > 0. Then for any step-size γ ≤ 2

CL , (f(xk))k∈N
converges and limk→+∞ ∥∇f(xk)∥ = 0.

It is important to note that Theorem 2 is more restrictive than usual convergence theorems. It is
indeed based on strong assumptions regarding the eigenvalues of the matrices (Bk)k∈N. Yet, the
result expresses that Bk is the only possible reason for the failure of the algorithm. Additionally,
since Bk is constructed based on the output of the modelM, the failure can only come from the
learning part of the algorithm. One could thus provide statistical guarantees on the assumption (but
only valid for the train/test sets) or enforce the assumption by design ofM [51]. This would put
additional restrictions on the model and does not seem necessary in the experiments below.

5 Numerical Experiments and Practical Considerations

In addition to the design choices that we already made to follow our principles (special models, use
of ReLU, no bias in FF layers, etc.), we detail some practical considerations that ease the training
of our modelM. In what follows assume that we have a dataset of D ∈ N problems indexed by
superscripts (fd, xd

0, S
d
0 ), for d = 1, . . . , N . For each problem we run the algorithm for K ∈ N

iterations and denote by (xd
k)k∈{0,...,K} the resulting sequence of iterates.

5Technically, BFGS and our algorithm would need U to also take Sk in input to fit in our mathematical
formalism. Since this would not affect any of the discussion above, we ignored this for the sake of simplicity.
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Figure 3: Performance of our learned BFGS method on quadratic functions in dimension n = 100.
Top row: sub-optimality gap against iterations on the training, test and OOD sets, each color represents
a different problem. Bottom: relative sub-optimality gap for each problem after 40 and 100 iterations.

Loss function. We build a loss function based on the final values (fd(xd
K))d∈{1,...,D}. However,

to avoid biasing the training process, we also make the loss function robust to shifts by using the
sub-optimality gap fd(xd

K) − fd,⋆ where fd,⋆ is the minimum of fd. A key element to take into
account in optimization is that the magnitude of function values may heavily vary between problems
and across iterations. This can be slightly mitigated by normalizing by the initial sub-optimality
gap fd(xd

0) − fd,⋆, however we instead propose to run vanilla BFGS for K iterations as well and
normalize by its sub-optimality gap. After averaging over all problems our loss function is:

L(θ) = 1

D

D∑
d=1

log

(
1 +

fd(xd
K(θ))− fd,⋆

fd(x̃d
K)− fd,⋆

)
, (5)

where x̃d
K is the K-th iteration of BFGS applied to the same problem. Note that we additionally use a

logarithmic transformation to make the loss even more robust to different magnitudes. We emphasize
that the algorithm does not make use of fd,⋆ which is only used for training.

Initialization ofM. Training L2O models is notoriously difficult as the loss function may easily
explode [69]. Our approach allows for a specific trick that dramatically stabilizes training. Indeed,
according to Section 4.1 BFGS is a special case of our algorithm in which yk = dk. By initializing
the weights of the last FF layer to zero and the linear layer to be (0, 0, 0, 0, 1, 0) one can check that
our algorithm is initialized to exactly coincide with BFGS. According to (5), the initial value of the
loss function is always log(2) which dramatically stabilizes the training as shown in Figure 6 in
Appendix F. To the best of our knowledge this is a completely new approach.

Methodology and results. We construct a training set of D = 20 problems made of ill-conditioned
quadratics functions in dimension n = 100 with eigenvalues generated at random and random
initializations. The details are provided in Apppendix E. We train our model for K = 40 iterations.
We then evaluate the performance of the algorithm on several settings that differ from the training
one: more than 40 iterations, in-distribution test problems, OOD ones, OOD quadratics in larger
dimension and finally on logistic regression.

Looking first at the training setting in Figure 3, observe that our L2O model improves upon BFGS
for every problem after 40 iterations, sometimes by several orders of magnitudes. This significant
improvement transfers to 100 (trained only for 40) iterations for almost all problems, and also to the
test set and most OOD problems. Testing the algorithm on quadratic functions in dimension 500 and
logistic regression in Figure 4, observe that not only our model does not break but even improves
upon vanilla BFGS in most cases despite not having been trained on such problems (although the
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Figure 4: Sub-optimality gap against iterations on problems that are different from the training setting,
each color represents a different problem. The two left plots are for quadratic functions dimension
n = 500 and right plots show regularized logistic regression (see Appendix E). For the logistic
regression problems, line-search is used both for BFGS and Algorithm 2.

improvement is not as dramatic as on the training set). These experiments evidence the benefits of
the strategy proposed in Section 3 in order to achieve generalization (Section 2.2).

6 Related Work and Comparison

L2O [40] is a recent but active topic of research. A lot of work focuses on unrolling [26, 1, 31, 44]
and «Plug and Play» [66, 48, 75, 64] approaches which improve over classical algorithms in several
practical cases. L2O often lacks theoretical guarantees, with a few exceptions where convergence
is enforced with “safeguards” [51, 28, 47], possibly discarding the model’s prediction, or estimated
statistically [63], which does not apply OOD. The literature on L2O is broad, we refer to [16] for a
detailed overview of the topic.

One of our contributions is to identify and enforce equivariance or invariance to transformations in
L2O. In fact, in standard optimization [20] hypothesizes that these equivariances might be the reason
for the success of BFGS (see below). Geometric deep learning [10] is a popular topic that studies
these equivariances in the learning context, with many applications [60, 13, 33, 64, 14, 36, 39]. It
is also connected to learning on sets [72, 38]. To the best of our knowledge the only work really
discussing equivariances for L2O is [53], from a probabilistic point of view. Our work rather
studies how to treat these properties in every step of a general L2O pipeline (through Algorithm 1).
Recently, [45] also advocated for more mathematical structure in L2O, but rather proposed to enforce
convergence properties by design, hence stabilizing L2O methods, whereas our principles aim to
improve generalization. Improving the design of L2O algorithms has been studied in [70, 49, 50]
and [15] also proposed to enhance algorithms and train by competing against a baseline, but not in
relative function values as we do in (5).

The BFGS algorithm [11, 19, 24, 62] is the most popular QN algorithm. BFGS has been extensively
analyzed [25, 18, 58] and many extensions have been proposed, featuring limited memory [43],
sparse [65] and non-smooth [68] versions, or modifications provably faster in specific settings
[59, 35]. Other approaches to make use of second-order derivatives only relying on gradients include
symmetric-rank-one methods [17, 7] and the dynamical inertial Newton family of methods [2, 4, 5]
which is at the interface of first-and second-order optimization [12].

Different approach have been proposed to learn BFGS methods. A transformer model has been
derived by [22], and [42] considered learning on the fly in the online setting. The idea to combine
the variational formulation from Section 4.1 with learning has been studied in [29] for Bayesian
optimization. A recent work [41] predicted a weighted average between DFP [57] and BFGS (a.k.a.
a Broyden method). This is more akin to hyper-parameter tuning as their method remains in the span
of Broyden’s family. In contrast our method can construct possibly very different matrices (Bk)k∈N.

7 Conclusion

We provided a new approach to design more robust learned optimization algorithms. Our work blends
all aspects of L2O: from optimization theory to machine learning models, including implementation
and training considerations. Applying our techniques to build a L2O-enhanced BFGS algorithm
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shows how promising the approach is in practice, and results in an algorithm outperforming vanilla
BFGS consistently beyond the training setting. Enhancing existing algorithms allowed us to provide
theoretical guarantees, which most L2O algorithms lack of, as well as a new training strategy that
significantly eases the training and could mitigate the difficulty of training many L2O models. This
work calls for exploring many directions such as designing more advanced models, enhancing
other algorithms, adding new principles, considering stochastic algorithms and even combining our
guarantees with statistical ones.
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A Detailed Analysis of Equivariance and Invariance of Popular Algorithms

Below we detail how to obtain the properties listed in Table 1. We begin by studying the transforma-
tions.

A.1 The Chain-rule

In this section we detail how each transformation affects the derivatives of f . All these results are
based on the chain-rule. For an invertible mapping T : Rn → Rn, we study the function f̂ = f ◦T −1.
The chain rule states that ∀y ∈ Rn

Dy(f̂) = Dy(f ◦ T −1) = DT −1(y)(f) ·Dy(T −1),

where Dy f̂ is the Jacobian of f̂ at y. Rewriting this in terms of gradients (the transpose of the
Jacobian):

∇f̂(y) = (Dy(T −1))T∇f(T −1(y)).

In most of what follows we will apply the chain rule above to the point x̂ = T (x), which yields

∇f̂(x̂) = (DT (x)(T −1))T∇f(T −1(T (x))) = (DT (x)(T −1))T∇f(x),

so the Jacobian of T −1 captures how the gradient is transformed. We now detail this for each
transformation.

A.2 List of Transformations

We consider the transformations in Table 1. For each case we redefine T and, without restating it,
define f̂ = f ◦ T −1 and x̂ = T (x), for all x ∈ Rn.

Translation. Let v ∈ Rn and for all x ∈ Rn, consider the translation T (x) = x + v. Then one
can see that D(T −1) = In which implies that (DT (x)(T −1))T = In. So, ∇f̂(x̂) = ∇f(x) and
similarly, one can show that∇2f̂(x̂) = ∇2f(x).

Orthogonal Linear Transformations. Let P ∈ Rn×n an orthogonal matrix (PTP = In) and
T : x ∈ Rn 7→ Px. Then using the orthogonality of P , T −1(x) = P−1x = PTx. It is a linear
mapping, so DT −1 = PT and (DT (x)(T −1))T ) = (PT )T = P . Therefore ∇f̂(x̂) = P∇f(x).
Similarly, using the linearity of T −1, we can show that∇2f̂(x̂) = P∇2f(x)PT .

Permutations. Permutation matrices are a specific type of orthogonal matrices, therefore the above
directly applies.

Geometric Rescaling. Let λ > 0 and consider the transformation T : x ∈ Rn 7→ λx. Then
T −1(x) = 1

λx which is again a linear mapping so DT −1 = 1
λ In. We deduce as before that

∇f̂(x̂) = 1
λ∇f(x) and ∇2f̂(x̂) = 1

λ2∇2f(x).
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Function Rescaling. Let λ > 0, when considering f̂ = λf , the linearity of the differentiation
directly gives∇f̂ = λ∇f and ∇2f̂ = λ∇2f .

A.3 Analysis of Popular Algorithms

We now show the properties of Table 1 for each algorithm therein, except BFGS which is analyzed
together with Algorithm 2 later in Section B. Each time, the proofs are done by induction. We can
safely assume that x0 and S0 are properly adapted so that the induction holds for k = 0 (this was
explained in Section 3).

To show each equivariance property (or invariance in the case of function rescaling), we fix k ∈ N
and assume that the equivariance holds for all iterates up to k, and then prove that it still holds at
iteration k + 1.

Gradient descent and HB. We already extensively discussed the properties of HB which was our
running example in Section 3.1. As for gradient descent, it is simply HB with α = 0. Using the
results of Section A.2 one can straightforwardly deduce translation, permutations and orthogonal
equivariances. Thus we only discuss the case of rescaling. For λ > 0 and f̂ = f( 1λ ·), assuming that
the induction hypothesis x̂k = λxk holds, we previously showed that, ∇f̂(x̂k) =

1
λ∇f(xk), so the

iteration of HB reads,

x̂k+1 = x̂k + αd̂k + γ∇f̂(x̂k) = λxk + λαdk +
γ

λ
∇f(xk).

So for λ ̸= 1 we see that x̂k+1 ̸= λxk+1. This can be fixed however by tuning γ specifically for each
problem (we would get γ̂ = λ2γ). The case of function rescaling f̂ = λf is almost identical.

Newton’s method. The update of Newton’s method reads

xk+1 = xk −
[
∇2f(xk)

]−1∇f(xk).

As above, translation equivariance is straightforward. As for orthogonal matrices P , using the results
from Section A.2 it holds that

x̂k+1 = x̂k −
[
∇2f̂(x̂k)

]−1

∇f(x̂k) = Pxk −
[
P∇2f(xk)P

T
]−1

P∇f(xk)

= Pxk − (PT )−1
[
∇2f(xk)

]−1
P−1P∇f(xk) = Pxk − P

[
∇2f(xk)

]−1∇f(xk),

which proves the equivariance.

For geometric rescaling by λ > 0, remark from Section A.2 that the inverse Hessian is rescaled by λ2

and the gradient is rescaled by 1/λ, so the result follows. The same is true for invariance with respect
to function rescaling.

The ADAM Algorithm. The iterations of the ADAM algorithm read
mk = β1mk−1 + (1− β1)∇f(xk)

v2k = β2v
2
k−1 + (1− β2)∇f(xk)⊙∇f(xk)

xk+1 = xk − mk√
v2
k

,

where β1, β2 ∈ [0, 1), ⊙ denotes the element-wise product, the square root and quotient are applied
element wise, and m−1, v

2
−1 ∈ Rn.

Again, translation equivariance is straightforward using the results from section A.2. The robustness
with respect to the two scalings is also easy to check in that case since both mk and

√
v2k are rescaled

like∇f . We now consider an orthogonal matrix P . According to section A.2 and assuming that up
to iteration k ADAM is equivariant to orthogonal transformations, we have f̂(x̂) = P∇f(x) and
m̂k = Pmk. However, looking at v2k, note that

∇f̂(x̂k)⊙∇f̂(x̂k) = (P∇f(xk))⊙ (P∇f(xk)) (6)

which in general is not equal to P (∇f(xk)⊙∇f(xk)). Therefore, for most orthogonal matrices we
do not have v̂k = Pvk and equivariance does not hold.
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Nevertheless, in the special case where P is a permutation matrix, each line of P contains exactly
one coefficient equal to one and all others are zero. Since ⊙ is an element-wise operation, one can
check that we then have (P∇f(xk))⊙ (P∇f(xk)) = P (∇f(xk)⊙∇f(xk)) such that v̂k = Pvk.
Applying the same reasoning to all other element-wise operations in (6), we deduce that, despite not
being equivariant to all orthogonal matrices, ADAM is permutation equivariant.

A.4 On the Difficulty of Preserving Orthogonal Equivariance for LOA

The discussion above regarding ADAM shows why preserving equivariance to all orthogonal matrices
is very hard for LOA since even element-wise operation may not commute with orthogonal matrices.

To give an example, let P an orthogonal matrix, let y ∈ Rn and σ : R→ R be a non-linear activation
function (to be applied element wise in layers of a neural network). To preserve equivariance with
respect to P , one would want that σ(Py) = Pσ(y), which, for the i-th coordinate reads,

σ

 n∑
j=1

Pi,jyj

 =

n∑
j=1

Pi,jσ(y)j . (7)

Yet, since σ is assumed to be non-linear, it does not commute with the sum (which would still not
be sufficient for (7) to hold). Therefore, if y is the result of an FF layer (used coordinate-wise like
in Algorithm 2) in a neural network, then applying a non-linear activation function (e.g., ReLU
or sigmoid), we see that equivariance with respect to P is broken. This shows that orthogonal
equivariance is not even compatible with coordinate-wise FF layers and hence hardly possible to
achieve for LOA.

Finally, note that when P is a permutation matrix, then ∀i ∈ {1, . . . , n}, there exists l ∈ {1, . . . , n}
such that Pi,l = 1 and for all j ̸= l, Pi,j = 0. So (7) becomes

σ (Pi,lyl) = Pi,lσ(y)l ⇐⇒ σ (yl) = σ(y)l, (8)

and since σ is applied element wise, (8) holds true. So permutation equivariance is more compatible
with LOA than orthogonal equivariance.

B Proof of Theorem 1

Proof of Theorem 1. Principle 1 holds by construction of the algorithm where n is not used to
choose p nor ni. We now prove that Principles 2 to 5 hold one by one. As for other algorithms in
Section A.3, in each case we explicitly state which transformation T is considered and implicitly
redefine f̂ = f ◦ T −1 and define (x̂k)k∈N as the iterates of the algorithm applied to (f̂ , x̂0, Ŝ0) (all
quantities with a “hat” symbol are defined accordingly). We again proceed by induction: we fix
k ∈ N and assume that equivariance (or invariance for Principle 5) holds up to iteration k and show
that it still holds at iteration k + 1. We also show that the principles hold at k = 0 by construction.

Unlike the algorithms discussed in Section A.3, Algorithm 2 and BFGS additionally use a matrix Bk,
(stored in the state Sk+1). Since Bk aims to approximate the inverse Hessian ∇2f(xk)

−1, we expect
Bk to be transformed by T in the same way as∇2f(xk)

−1 is (see Section A.2). We will prove that
this is the case, again by induction.

Translation. Let v ∈ Rn and the translation T : x ∈ Rn 7→ x + v. Assume that ∀i ≤ k,
x̂i = T (xi) = xi + v and that ∀i ≤ k− 1, B̂i = Bi. Then d̂k = x̂k − x̂k−1 = dk and we showed in
Section A.2 that∇f̂(x̂k) = ∇f(xk). Similarly, ∆̂gk = ∆gk. So,

Îk =
(
B̂k−1∆̂gk, d̂k,−γB̂k−1∇f̂(x̂k)

)
= (Bk−1∆gk, dk,−γBk−1∇f(xk)) = Ik,

This is not surprising as we explained in Section 3.1 that we constructed C so that the above is true.
Then we directly deduce ŷk =M(Îk, θ) =M(Ik, θ) = yk and the rest of the proof follows.

As for the case k = 0, by construction (see Section 3), x̂0 = x0 + v and x̂−1 = x−1 + v. One
can then easily check that our choice of B−1 (defined in Section 4.2) is translation invariant. So by
induction, Principle 2 holds.
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Permutation. Let P and permutation matrix of Rn and let T : x ∈ Rn 7→ Px. Assume that ∀i ≤ k,
x̂i = T (xi) = Pxi and that ∀i ≤ k− 1, B̂i = PBiP

T . Note that the hypothesis on Bi matches that
of the inverse Hessian in Section A.2. Then d̂k = Pxk − Pxk−1 = Pdk. We showed in Section A.2
that∇f̂(x̂k) = P∇f(xk), and similarly, ∆̂gk = P∆gk. So,

Îk =
(
PBk−1P

TP∆gk, Pdk,−γPBk−1P
TP∇f(xk)

)
= PIk,

i.e., C is permutation equivariant as intended. Then ŷk =M(Îk, θ) =M(PIk, θ) and as justified in
Appendix A.4, all the operations applied element-wise inM are permutation equivariant, and the
averaging also is. SoM is permutation equivariant, i.e., ŷk = Pyk.

Regarding the step U , we recall the notation rk = dk − Bk−1∆gk used in (4). Remark that
r̂k = Pdk−PBk−1∆gk = Prk, and substituting ŷk, ∆̂gk and r̂k in (4) (and using again PTP = In),
we obtain B̂k = PBkP

T and x̂k+1 = Pxk+1.

Finally, at k = 0, by construction x̂0 = Px0 and x̂−1 = Px−1 and one can easily check that
γ̂
(0)
BB = γ

(0)
BB (again due to P being orthogonal), such that B̂−1 = B−1. So Principle 3 holds true.

Geometric rescaling. Let λ > 0 and let T : x ∈ Rn 7→ λx. Assume that ∀i ≤ k, x̂i = T (xi) = λxi

and that ∀i ≤ k − 1, B̂i = λ2Bi (as in Section A.2). Then d̂k = λxk − λxk−1 = λdk. We also
showed in Section A.2 that∇f̂(x̂k) =

1
λ∇f(xk), thus ∆̂gk = 1

λ∆gk. So,

Îk =

(
λ2Bk−1

λ2

λ
∆gk, λdk,−γλ2Bk−1

λ2

λ
∇f(xk)

)
= λIk,

which means that C is equivariant as we prescribed. Then our modelM is a composition of linear
operations and ReLU activation functions which are all equivariant to rescaling, so the model is
equivariant, i.e., ŷk = λyk. Plugging this into the update step we obtain

B̂k = λ2Bk−1 +
1

⟨λ−1∆gk, λyk⟩

[
λ2rky

T
k + λ2ykr

T
k −

⟨λ−1∆gk, λrk⟩
⟨λ−1∆gk, λyk⟩

λ2yky
T
k

]
= λ2Bk.

Finally, the case k = 0 holds by construction and thanks to the BB step-size since

γ̂
(0)
BB =

⟨λ−1∆g0, λd0⟩
λ−2 ∥∆g0∥2

= λ2γ
(0)
BB.

This shows how the choice of B−1 is crucial to preserve equivariance to rescaling. Overall Principle 4
holds.

Function rescaling. Let λ > 0 and consider f̂ = λf . For this last principle we want to prove
invariance of the algorithm. Therefore assume that ∀i ≤ k, x̂i = xi and that ∀i ≤ k − 1, B̂i =

1
λBi

(it scales like the inverse Hessian). Then d̂k = dk and we also have ∇f̂(x̂k) = λ∇f(xk), thus
∆̂gk = λ∆gk. So

Îk =

(
1

λ
Bk−1λ∆gk, dk,−γ

1

λ
Bk−1λ∇f(xk)

)
= Ik,

so C is invariant, which directly implies ŷk = yk and then

B̂k =
1

λ
Bk−1 +

1

⟨λ∆gk, yk⟩

[
rky

T
k + ykr

T
k −

⟨λ∆gk, rk⟩
⟨λ∆gk, yk⟩

yky
T
k

]
=

1

λ
Bk.

Finally, the case k = 0 holds again thanks to the use of the BB step-size to initialize B−1, which
proves that Principle 5 holds and concludes the proof.

Remark 1. The proof above can easily be applied to BFGS since it corresponds to the special case
whereM is replaced by yk = dk.
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C Proof of Theorem 2

Proof of Theorem 2. Assume that f has L-Lipschitz continuous gradient, that is, for all x, y ∈ Rn,

∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ .
Then the descent lemma (see e.g., [21]) states that for all x, y ∈ Rn,

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2 . (9)

Now let (xk)k∈N and (Bk)k∈N be respectively the sequence of iterates and the matrices generated by
Algorithm 2 applied to (f, x0, S0). Using the descent lemma (9), we get,

f(xk+1) ≤ f(xk) + ⟨∇f(xk),−γBk∇f(xk)⟩+
L

2
γ2 ∥Bk∇f(xk)∥2 ,

which we rewrite

f(xk+1) ≤ f(xk) +

〈
Bk∇f(xk),−γ∇f(xk) +

L

2
γ2Bk∇f(xk)

〉
. (10)

By construction, (see (4)), Bk is real symmetric, so there exists an orthogonal matrix Pk ∈ Rn×n

and a diagonal matrix Dk ∈ Rn×n such that,

Bk = PkDkP
T
k .

Using this in (10), we obtain

f(xk+1) ≤ f(xk) +

〈
PkDkP

T
k ∇f(xk),−γPkP

T
k ∇f(xk) +

L

2
γ2PkDkP

T
k ∇f(xk)

〉
,

where we used the fact that PkP
T
k = In to write ∇f(xk) = PkP

T
k ∇f(xk). We denote gk =

PT
k ∇f(xk) and get:

f(xk+1) ≤ f(xk) +

〈
PkDkgk,−γPkgk +

L

2
γ2PkDkgk

〉
⇐⇒ f(xk+1) ≤ f(xk) +

〈
Dkgk,−γgk +

L

2
γ2Dkgk

〉
, (11)

where we used the fact that Pk is orthogonal in the last line. Since Dk is orthogonal, denoting by
(gk,i)i∈{1,...,n} and (bk,i)i∈{1,...,n} the coordinates of gk and the eigenvalues of Bk, respectively, we
deduce that〈

Dkgk,−γgk +
L

2
γ2Dkgk

〉
=

n∑
i=1

bk,ig
2
k,i

(
−γ +

L

2
γ2bk,i

)
= γ

n∑
i=1

bk,ig
2
k,i

(
L

2
γbk,i − 1

)

≤ γ
n∑

i=1

bk,ig
2
k,i

(
L

2
γC − 1

)
︸ ︷︷ ︸

≤0

≤ 0,

where for the last line we used the assumption that for all k ∈ N and ∀i ∈ {1, . . . , n}, 0 < bk,i ≤ C
and that γ ≤ 2

CL . We use this in (11):

f(xk+1) ≤ f(xk)− γ

(
1− L

2
γC

) n∑
i=1

bk,ig
2
k,i ≤ f(xk). (12)

So the sequence (f(xk))k∈N is non-increasing, and since f is a lower-bounded function, then
(f(xk))k∈N converges.

We now sum (12) from k = 0 to K ∈ N,
K∑

k=0

f(xk+1)− f(xk) ≤ −γ
(
1− L

2
γC

) K∑
k=0

n∑
i=1

bk,ig
2
k,i

⇐⇒ γ

(
1− L

2
γC

) K∑
k=0

n∑
i=1

bk,ig
2
k,i ≤ f(x0)− f(xK+1). (13)
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Since f is lower bounded, the right-hand side of (13) is uniformly bounded, so

γ

(
1− L

2
γC

) +∞∑
k=0

n∑
i=1

bk,ig
2
k,i < +∞ ⇐⇒

+∞∑
k=0

⟨Bk∇f(xk),∇f(xk)⟩ < +∞. (14)

Finally, by assumption Bk is positive definite, therefore (14) implies that
∑+∞

k=0 ∥∇f(xk)∥2 < +∞,
and thus in particular limk→+∞ ∥∇f(xk)∥ = 0.

D Details on the Learned Algorithm

D.1 Details on the Model

The network is exactly that described in Figure 2, we simply detail the FF and linear blocks. The
first coordinate-wise FF block is made of 3 layers with output shapes (6, 12, 3), the second-one has 2
layers with output shapes {12, 1}. We use ReLU activation functions after each layer except after
the layer of each block. The linear layer is of size 6 × 1, again with no bias. The total number of
parameter of the network is 216. In comparison, the training set is made of 20 problems in dimension
n = 100, thus p = 216 is much smaller than 20 × 100 = 2000. We also apply the algorithm to
problems in dimension 500 where even for a single problem p < 500.

D.2 Pseudo-code

Given the modelM defined above, our algorithm is an enhancement of the BFGS algorithm and can
be written as follows.

Algorithm 2: Learning enhanced Quasi-Newton Algorithm
given: ModelM defined in Figure 2 and Section D.1
input: function to minimize f , initialization x0, initial state

S0 = {x−1,∇f(x−1), B−1}, (with B−1 = 0.8γ
(0)
BBIn)

input: number of iterations K, step-size γ (default value γ = 1).
for k = 0 to K − 1 :

Compute C(f, xk, Sk):
∆gk = ∇f(xk)−∇f(xk−1)

dk = xk − xk−1

Ik ← (Bk−1∆gk, dk,−γBk−1∇f(xk))

return Ik

ComputeM(Ik, θ):
return yk

Compute Update step U:
rk = dk −Bk−1∆gk

Bk = Bk−1 +
1

⟨∆gk,yk⟩

[
rky

T
k + ykr

T
k −

⟨∆gk,rk⟩
⟨∆gk,yk⟩yky

T
k

]
xk+1 ← xk − γBk∇f(xk)

Compute Storage S:
Sk+1 = {xk,∇f(xk), Bk}

return xK

We mention again, that if one removes the modelM and replace it by yk = dk, then Algorithm 2
coincides exactly with BFGS.
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E Additional Details on the Experiments

In this section we provide additional details on how to reproduce the experiments of Section 5.

E.1 Problems and Datasets

Quadratic functions. To generate a quadratic function in dimension n, we proceed as follows.
We create a matrix A by first sampling its largest and smallest eigenvalues λmin, λmax uniformly
at random in [0.1, 1] and [1, 50] respectively. We then generate the n − 2 other eigenvalues of A
uniformly at random in [λmin, λmax]. This gives us a diagonal matrix D containing the eigenvalues
of A. We then generate another matrix B with Gaussian N (0, 1) entries and make it symmetric via
B ← B + BT . We then compute the orthogonal matrix P that diagonalizes B and use P to build
A = PDPT . We then sample a vector b ∈ Rn whose entry are sampled uniformly at random in
[0, 15]. Our function f finally reads: f : x ∈ Rn 7→ 1

2 ∥Ax− b∥2. The OOD problems are generated
with the same process but different parameters for the uniform distributions.

With this process, the largest eigenvalue of∇2f is λ2
max

2 . In our experiments the largest eigenvalue
in any problem is approximately 1159 and the largest condition number (the ratio between the
largest and smallest eigenvalues) is approximately 15156, hence our dataset includes ill-conditioned
problems.

Regularized Logitstic Regression. We consider a binary logistic regression problem, as presented
in [27]. For each problem, we generate two clouds of M points sampled from Gaussian distributions
N (µ1, 1) and N (µ2, 1) where µ1, µ2 are themselves sampled from N (−1, 1) and N (1, 1) respec-
tively. We store the coordinates of the 2M points in a matrix A ∈ R2M×(n+1) (a row of ones is
concatenated with A, see [27]). We also create a vector b ∈ R2M where each bi takes either the value
0 or 1 depending on which class the i-th data point belong to. Given these A and b, for all x ∈ Rn+1,
the function f is defined as:

f(x) =
1

2M

2M∑
i=1

log
(
1 + ex

TAi

)
− bix

TAi +
η

2
∥x∥2 .

The last term is a regularization that makes the problem strongly convex. We use a very small
η = 10−3. Our experiments are done for M = 100 and n = 50.

E.2 The BFGS Baseline

For a fair comparison, the BFGS algorithm is implemented exactly like Algorithm 2 but with yk = dk
instead of using learned model. We use the same strategy for initializing B−1. For both algorithms we
generate a random starting point x−1 ∈ Rn, and perform a gradient descent step along∇f(x−1) to
obtain the true initialization x0 ∈ Rn. Both algorithms thus always start at the same x0 with the same
state S0 = {x−1,∇f(x−1), B−1}. When using our algorithm with fixed step-size (during training
and in most experiments), we compare it to BFGS with fixed step-size. When using line-search, we
use it for both.

E.3 Training Strategy

Training set. Our training dataset is made of 10 quadratic functions in dimension n = 100 created
following the strategy described in Section E.1. We generate two different initializations at random
for each function, yielding a training dataset of 20 problems.

Initialization of the network. We initialize the parameter θ (the weights of our layers) by following
the new initialization strategy introduced in Section 5. Recall that with this strategy, before training θ
our model coincides with BFGS, stabilizing the training process.

Training by unrolling. We run the algorithm for K = 40 iterations and use the loss function L(θ)
described in (5). However, we observe in practice that unrolling the last iterate (i.e., computing
the gradient of L with respect to the last iterate K) is numerically unstable (known as the vanish-
ing/exploding gradient problem). We mitigate this issue by computing L(θ) every 5 iterations (i.e.,
at iterations {5, 10, . . . , 40}) and by “detaching” the matrix Bk every 5 iterations (i.e., neglecting
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the effect that old predictions of the model have on Bk). We then average the 8 values of the loss
computed along the trajectory and “back-propagate” to compute the gradient of this loss function.6

Training parameters. We train the model with the ADAM [37] optimizer with gradient clipping.
We do not compute the full gradient∇L(θ) but a mini-batch approximation of it by selecting only
two problems at random at every iteration. We use the learning rate 10−4 for the FF layers and 10−3

for the linear layer. We save the model that achieved the best training loss on average over one epoch
(a full pass on the training dataset).

E.4 Computational Architecture

We ran all the experiments on a DELL Precision 5820 Tower with 16 GiB of RAM, and an Intel
XEON W-2235 CPU with 12 cores at 3.8 GHz. No GPU was used for the experiments. We used
Python [61] 3.8, Numpy [67] 1.22.2 and Pytorch [54] 2.0 running on Ubuntu 20.04.

Figure 5: Same experiment as Figure 3 but we evaluate the performance of the algorithm used with
line-search, without retraining it. Top row: sub-optimality gap against iterations on the training, test
and OOD sets, each color represents a different problem. Bottom: relative sub-optimality gap for
each problem after 40 and 100 iterations.

F Additional Experiments

Compatibility with line-search. Like Newton’s method, one usually wants to use QN methods
with a step-size γ as close as possible to 1. This may however cause numerical instabilities (e.g., in
the logistic regression problem). Therefore, QN algorithms, including BFGS are often used with
line-search strategy (adapting the step-size based on some rules). It is thus important to evidence that
Algorithm 2 performs well when used with line-search strategies, despite having been trained with
fixed step-sizes. The results in Figure 5 show that Algorithm 2 significantly outperforms BFGS with
line-search on almost all problems, even in OOD problems. It thus appears to be highly comptatible
with line-search.

Visualization of the logistic regression problem. In Figure 7, we provide a 2D visualization of
the type of logistic regression problems considered in Figure 4 and described in Section E. The figure
shows how Algorithm 2 progressively finds a solution that separates most of the points of the two
classes (perfect separation is not possible as evidenced by the figure).

6Since we neglect the influence that old iterates have on Bk, we do not compute true gradients of L. Yet, this
is acceptable since training is only a mean to obtain a good parameter θ.
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Figure 6: Left: evolution of the training loss and test loss during the training of the model of our
algorithm. The blue area shows the value of the stochastic loss and the blue curve represents the
average over one epoch. The test loss is computed after each epoch. The black line corresponds to
log(2), any value of L(θ) below this line corresponds to an improvement compared to vanilla BFGS.
Right: Same figure as the left-hand side but comparison with the case where we did not initialize the
model to coincide with BFGS, causing instability in training.

Figure 7: Evolution of the decision boundary (the black line) found by our algorithm over the
iterations of the regularized logistic regression problem (see Section E). The orange and blue dots
represent data points from two classes. The problem is in dimension n = 50, the plots only represent
the first-two coordinates

Benefits of our initialization strategy. As mentioned in Section 5, we can easily find a closed-form
initialization of the modelM(·, θ) such that Algorithm 2 coincides with BFGS before training. This
dramatically stabilizes the training process as shown on Figure 6 where without this initialization
strategy, the average train loss stays high (despite having tuned the learning rate). This can be
explained by the fact that for a random initialization, the value f(xK) produced by the algorithm
will usually be very large, making it necessary to train with small learning rates, whereas with our
strategy we start in a more stable region as evidenced by the smaller oscillations in early training,
allowing larger learning rates.
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