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Abstract

We systematically study the local single-valuedness of the Bregman proximal mapping
and local smoothness of the Bregman–Moreau envelope of a nonconvex function under rel-
ative prox-regularity - an extension of prox-regularity - which was originally introduced by
Poliquin and Rockafellar. As Bregman distances are asymmetric in general, in accordance
with Bauschke et al., it is natural to consider two variants of the Bregman proximal mapping,
which, depending on the order of the arguments, are called left and right Bregman proxi-
mal mapping. Proving the desired properties for the left Bregman prox in the first place
often suffices, since a translation result yields analogue (and partially sharp) results for the
right Bregman proximal mapping. The class of relatively prox-regular functions significantly
extends the recently considered class of relatively hypoconvex functions. In particular, rel-
ative prox-regularity allows for functions with a possibly nonconvex domain. Moreover, as
a main source of examples and analogously to the classical setting, we introduce relatively
amenable functions, i.e. convexly composite functions, for which the inner nonlinear mapping
is component-wise smooth adaptable, a recently introduced extension of Lipschitz differentia-
bility. By way of example, we apply our theory to locally interpret joint alternating Bregman
minimization with proximal regularization as a Bregman proximal gradient algorithm, applied
to a smooth adaptable function.
Keywords: Bregman–Moreau envelope · Bregman proximal mapping · prox-regularity ·
amenable functions

2000 Mathematics Subject Classification: 49J52 · 65K05 · 65K10 · 90C26

1 Introduction

1.1 Motivation and Related Work

The Moreau envelope [39] is a widely used and powerful tool in variational analysis and
optimization, whose systematic study was initiated by Attouch [1, 2]. Given an input function,
it yields a regularized function with several favorable properties such as differentiability and
full domain. A key result, besides the aforementioned differentiability of the Moreau envelope,
is the single-valuedness of the proximal mapping and a formula that relates its gradient to
the proximal mapping.

For nonconvex functions, in general, these desirable properties are lost. However, if we
focus solely on local properties, most of the results can be transferred to a certain class of non-
convex functions, namely prox-regular functions. Prox-regularity was introduced by Poliquin
and Rockafellar [48] and comprises several widely used classes of functions, such as primal-
lower-nice functions [47], subsmooth functions, strongly amenable functions [48, 52], and
proper lower semi-continuous convex functions. Prox-regular functions often behave locally
like convex functions and, therefore, the single-valuedness property of the proximal mapping
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and the gradient formula for the Moreau envelope of a prox-regular function are locally valid
[48] (see [4, 31] for the infinite dimensional setting). In particular, indicator functions of closed
and prox-regular sets have rich properties [49].

While these concepts are closely tied to Euclidean geometry, Bregman [19] introduced a
generalization of the Euclidean distance, which has proved very effective for optimization.
In particular, the Bregman-proximal mapping is a key component in several algorithms (for
example, see [6, 18, 53, 5, 41, 11, 9, 10, 28, 46, 21, 23, 22, 25, 33, 34, 43, 27, 50, 29, 38, 20,
40, 44, 16, 24, 12] and references therein) and is known to improve constants in convergence
rate estimates [42, 53]. Recently, there has been increasing interest in understanding the
regularization properties for Bregman–Moreau envelopes [12, 26, 32, 15, 27], generalizing
the known results for the Moreau envelope. While [15, 12] consider a fully convex setting
with jointly convex Bregman distances, the aforementioned properties also hold for certain
nonconvex functions: For so-called (relatively) hypoconvex functions, i.e. functions that
become convex by adding a distance-generating kernel (or Legendre) function [26, 32, 27],
single-valuedness and the gradient formula of the Bregman–Moreau envelope are proved in
[26, 32]. This generalizes the Euclidean distance setting; see e.g. [54].

However, hypoconvexity is a global property, which is not satisfied by many nonconvex
functions in the Euclidean setting that are still prox-regular. In fact, hypoconvex functions
must have a convex domain. More specifically, for an indicator function of a closed set, at
least in finite dimensions, the global single-valuedness of the Bregman proximal mapping is
equivalent to the convexity of the set [15]. In a Euclidean setting, this is also known as the
Chebyshev problem.

In this paper, we introduce the counterpart of prox-regular functions with respect to a
nonlinear geometry induced by a Bregman distance. We refer to them as relatively prox-regular
or, to make the geometry explicit, prox-regular relative to a distance-generating Legendre
function. We systematically study this novel class of functions, provide several examples, and
generalize results for Moreau envelopes of (classically) prox-regular functions to Bregman–
Moreau envelopes of relatively prox-regular functions.

Intuitively, classically prox-regular functions allow for a local lower-quadratic support.
However, obviously, several simple functions cannot be supported by quadratic functions,
and even if they may be supported by a quadratic function, a tighter approximation may
be obtained for another (e.g. higher degree polynomial) supporting function. We exploit
the improved lower approximation and derive generalizations of the results that are known
from the Euclidean setting, such as local single-valuedness of the Bregman proximal mapping,
differentiability and the gradient formula for the Bregman–Moreau envelope. Although several
functions that are relatively prox-regular, are also classically prox-regular, the classical theory
cannot explain all of these situations.

Moreover, analogously to the Euclidean setting, for which strongly amenable functions
provide a source of examples for prox-regular functions, we introduce relatively amenable
functions. Their definition is based on a recent generalization of functions that have a Lip-
schitz continuous gradient to smooth adaptable (or relatively smooth) functions [6, 18], i.e.
functions that are continuously differentiable and convex relative to a distance-generating
Legendre function.

While our main focus is the (left) Bregman proximal mapping for such relatively prox-
regular nonconvex functions, we shall also transfer our results to the right Bregman proximal
mapping, that was introduced in [11] and further studied in [12] for convex functions and
jointly convex Bregman distances.

In addition, we provide explicit formulas for the gradients of both the left and the right
Bregman–Moreau envelope that hold locally, for example, in a neighborhood of a limit point of
an algorithm. In practice, this allows us to interpret a stationary point of a joint minimization
problem as a stationary point of a smoothed model involving a Bregman–Moreau envelope.
Such a “translation of stationarity” has been observed previously in [35, 36] for the classical
Moreau envelope and an anisotropic generalization of the former, both under prox-regularity.
In addition, we apply our theory to locally interpret joint alternating Bregman minimization
with proximal regularization as a Bregman proximal gradient algorithm.
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1.2 Outline and Summary of our Contribution

The remainder of the paper is organized as follows: Section 2 clarifies the notation and collects
important properties and facts about Bregman distances generated by Legendre functions, also
called (distance-generating) kernel functions.

In Section 3.1, we recall the definition of relative prox-boundedness [32, Definition 2.3]
and state some important results about the continuity properties of the nonconvex Bregman
proximal mapping and associated envelope function from [32]. We complement these results
by formulating equivalent characterizations of relative prox-boundedness, and transfer the
results also to the (nonconvex) right Bregman proximal mapping.

In Section 3.2, we study the single-valuedness of the left and right Bregman proximal
mapping of a relatively prox-regular (nonconvex) function, a generalization of [52, Definition
13.27], to a Bregman distance setting. In this context, we clarify the equivalence to classical
prox-regularity under very strict convexity of the kernel function.

In Section 3.3, we identify relatively amenable functions, i.e. the composition of a convex
function and a smooth adaptable mapping [6, 18], as a main source of examples for relative
prox-regularity. Relatively amenable functions generalize the notion of strongly amenable
functions [52, Definition 10.23] and are in general not relatively hypoconvex. We also en-
counter the property of amenability when statements about the single-valuedness of the left
Bregman proximal mapping are transferred to the right Bregman proximal mapping. This
includes the single-valuedness of the right Bregman proximal mapping of a convex function,
which yields a nonconvex minimization problem in general.

In Section 3.4, we study local regularity properties of the Bregman–Moreau envelope based
on the local single-valuedness of the Bregman proximal mappings. This yields explicit formulas
for the gradient of the left and right Bregman–Moreau envelope that will hold locally.

As an example of using the developed theory in optimization, in Section 4, we provide
an example of an analytically solvable Bregman proximal mapping of a nonconvex relatively
prox-regular function. In addition, we consider an alternating minimization algorithm with
Bregman proximal regularization. For relatively prox-regular functions, our results guarantee
stationarity with respect to the equivalent inf-projected problem that involves the Bregman–
Moreau envelope. Based on the gradient formulas for the Bregman–Moreau envelope, we
conclude this section by highlighting a local equivalence between alternating minimization and
recent Bregman proximal gradient algorithms [6, 18, 5].

2 Preliminaries and Notation

Unless otherwise specified, we deploy the notation used in [52]. In particular we adopt the

notation of the regular ∂̂f , limiting ∂f and horizon subgradients ∂∞f , from [52, Definition
8.3] and denote the indicator function of a set C as δC , i.e. δC(x) = 0 if x ∈ C and δC(x) =∞
otherwise. We say an extended real-valued function f : Rm → R := R ∪ {−∞,∞} is coercive
if f(x) → ∞ for ‖x‖ → ∞ and super-coercive if f(x)/‖x‖ → ∞ for ‖x‖ → ∞. According to
[52, Definition 1.33], a function f : Rm → R is locally lsc at x̄, a point where f(x̄) is finite,
if there is an ε > 0, such that all sets of the form {x ∈ Rm : ‖x − x̄‖ ≤ ε, f(x) ≤ α} with
α ≤ f(x̄) + ε are closed. For a C1 mapping F : Rn → Rm let ∇F (x) ∈ Rm×n denote the
Jacobian of F at x ∈ Rn. With some slight abuse of notation, for a given set C ⊂ Rm, let
conC denote its convex hull, i.e. the smallest convex set that contains C, and for an extended
real-valued function f let con f denote the largest convex function that is majorized by f .
Let Γ0(X) denote the set of all proper, lsc convex functions that map from some Euclidean
space X to R.

A function φ ∈ Γ0(X) of Legendre type is defined according to [51, Section 26]:

Definition 2.1 (Legendre function). The function φ ∈ Γ0(Rm) is

(i) essentially smooth, if int(domφ) 6= ∅ and φ is differentiable on int(domφ) such that
‖∇φ(xν)‖ → ∞, whenever xν → x ∈ bdry domφ, and

(ii) essentially strictly convex, if φ is strictly convex on every convex subset of dom ∂φ, and

(iii) of Legendre type, if φ is both essentially smooth and essentially strictly convex.

We list some basic properties of Legendre functions:
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Lemma 2.2. Let φ ∈ Γ0(Rm) of Legendre type. Then φ has the following properties:

(i) dom ∂φ = int(domφ), [51, Theorem 26.1].

(ii) φ∗ is of Legendre type, [51, Theorem 26.5].

(iii) ∇φ : int(domφ)→ int(domφ∗) is bijective with inverse ∇φ∗ : int(domφ∗)→ int(domφ)
with both ∇φ and ∇φ∗ continuous on int(domφ) resp. int(domφ∗), [51, Theorem 26.5].

(iv) φ is super-coercive if and only if domφ∗ = Rm, [7, Proposition 2.16].

Even though our main focus is on general Legendre functions, many classical Legendre
functions satisfy the following additional property, which we adopt from [13, Definition 2.8]:

Definition 2.3 (Very strictly convex functions). Suppose φ ∈ Γ0(Rm) is C2 on int(domφ) 6= ∅
and ∇2φ(x) is positive definite for all x ∈ int(domφ). Then we say φ is very strictly convex.

Lemma 2.4. Let φ ∈ Γ0(Rm) be Legendre and very strictly convex. Then φ∗ is Legendre
and very strictly convex. Moreover, for any conjugate pair x ∈ int(domφ) and ∇φ(x) ∈
int(domφ∗) the Hessian matrices ∇2φ(x) and ∇2φ∗(∇φ(x)) are inverse to each other.

Proof. By Lemma 2.2 we know that φ∗ ∈ Γ0(Rm) is Legendre. By assumption∇φ : int(domφ)→
int(domφ∗) is continuously differentiable on int(domφ) with derivative ∇2φ(x) invertible for
any x ∈ int(domφ). Thus, by the inverse function theorem for any x ∈ int(domφ) there exist
open neighborhoods V of x and U of ∇φ(x) such that locally (∇φ)−1 : U → V is continuously
differentiable with derivative ∇((∇φ)−1)(∇φ(x)) = (∇2φ(x))−1. Since (∇φ)−1 = ∇φ∗ and
(∇2φ(x))−1 is positive definite, the assertion follows.

For examples of typical Legendre functions (e.g. Boltzmann–Shannon, Burg’s or Fermi-
Dirac entropy, Hellinger, Fractional Power) as well as their convex conjugates and derivatives
we refer to [5, Example 2.2]. More examples can be found in [19, 53, 28, 7, 8]. In particular,
we highlight that the Legendre function φ(x) = (1/p)|x|p, p > 1, is not very strictly convex
for p 6= 2 and not even C2 if p ∈ ]1, 2[. The class of Legendre functions induces favorable
properties for the following generalized distance-like measure.

Definition 2.5 (Bregman distance). Let φ ∈ Γ0(Rm) be Legendre. Then, the Bregman
distance Dφ : Rm × Rm → R generated by the kernel φ is defined by

Dφ(x, y) =

{
φ(x)− φ(y)− 〈∇φ(y), x− y〉 , if y ∈ int(domφ),

+∞, otherwise.
(1)

Lemma 2.6. Let φ ∈ Γ0(Rm) be Legendre. Then the following properties hold for the Bregman
distance Dφ(·, ·) induced by φ:

(i) For all x ∈ Rm and y ∈ int(domφ) we have Dφ(x, y) = 0 ⇐⇒ x = y, [7, Theorem
3.7(iv)].

(ii) For all x, y ∈ int(domφ) we have Dφ(x, y) = Dφ∗(∇φ(y),∇φ(x)), [7, Theorem 3.7(v)].

(iii) If φ is very strictly convex for any compact and convex K ⊂ int(domφ) there exist
positive scalars Θ, θ > 0 such that

θ

2
‖x− y‖2 ≤ Dφ(x, y) ≤ Θ

2
‖x− y‖2,

for any x, y ∈ K, [13, Proposition 2.10].

It should be noted that for the remainder of this paper, we have not made standing
assumptions. Instead, we explicitly state the assumptions in each theorem separately.

3 Bregman Proximal Mappings and Moreau Envelopes

3.1 Definition, Properness and Continuity

We define the left Bregman–Moreau envelope and proximal mapping with step-size parameter
λ > 0 according to [32] or [12] for the convex setting.
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Definition 3.1 (Left Bregman–Moreau envelope and proximal mapping). Let φ ∈ Γ0(Rm)
be Legendre and f : Rm → R be proper. For some λ > 0 and y ∈ Rm we define the left
Bregman–Moreau envelope (in short: left envelope) of f at y as

←−envφλf(y) = inf
x∈Rm

f(x) +
1

λ
Dφ(x, y), (2)

and the associated left Bregman proximal mapping (in short: left prox) of f at y as

←−−proxφλf(y) = arg min
x∈Rm

f(x) +
1

λ
Dφ(x, y). (3)

From the definition, it is clear that dom(←−−proxφλf) ⊂ int(domφ) and dom(←−envφλf) ⊂
int(domφ).

The set ←−−proxφλf(y) is possibly empty in the nonconvex setting. A sufficient condition which
guarantees that the Bregman proximal mapping is non-empty is prox-boundedness, which we
adapt from [32, Definition 2.3].

Definition 3.2 (Relative prox-boundedness). Let φ ∈ Γ0(Rm) be Legendre and f : Rm → R be
proper. We say f is prox-bounded relative to φ if there exists λ > 0 such that ←−envφλf(y) > −∞
for some y ∈ int(domφ). The supremum of the set of all such λ is the threshold λf of the
prox-boundedness, i.e.

λf = sup{λ > 0 : ∃ y ∈ int(domφ) : ←−envφλf(y) > −∞}.

Prox-boundedness also allows us to extract a continuity property for both the Bregman
proximal mapping and the Bregman–Moreau envelope. The following result summarizes im-
portant properties of the left envelope from [32].

Lemma 3.3 (Continuity properties of the left prox and envelope). Let φ ∈ Γ0(Rm) be Leg-
endre and super-coercive and f : Rm → R be proper, lsc and relatively prox-bounded with
threshold λf and let λ ∈ ]0, λf [. Assume that domφ ∩ dom f 6= ∅. Then ←−−proxφλf and ←−envφλf
have the following properties:

(i) ←−−proxφλf(y) 6= ∅ is compact for all y ∈ int(domφ) and the envelope ←−envφλf is proper, [32,
Theorem 2.2(i)].

(ii) The envelope ←−envφλf is continuous on int(domφ), [32, Corollary 2.2].

(iii) For any sequence yν → y∗ ∈ int(domφ) and xν ∈ ←−−proxφλf(yν) we have {xν}ν∈N is

bounded and all its cluster points x∗ lie in ←−−proxφλf(y∗), [32, Corollary 2.4].

Note that in general the left Bregman–Moreau envelope is not lsc relative to Rm, cf. [11,
Remark 3.6].

We complement the results of [32] by stating equivalent characterizations of relative prox-
boundedness. To this end, we need the following lemma, which is analogous to [52, Exercise
1.14].

Lemma 3.4. Let φ : Rm → R be proper, lsc and coercive with domφ = Rm and let f : Rm → R
be proper and lsc. Then we have the identity

lim inf
‖x‖→∞

f(x)

φ(x)
= sup {γ ∈ R : ∃β ∈ R with f(x) ≥ γφ(x) + β for all x ∈ Rm} .

Proof. Note that since φ is coercive, we have φ(x) → ∞, whenever ‖x‖ → ∞. Let γ̄ :=
lim inf‖x‖→∞ f(x)/φ(x) and

γ ∈ Γ := {γ ∈ R : ∃β ∈ R with f(x) ≥ γφ(x) + β for all x ∈ Rm} .

This means that there exists β such that f(x) ≥ γφ(x) + β, for all x ∈ Rm. Dividing by
φ(x) > 0 which holds for ‖x‖ > t, for some t > 0, and taking the lim inf on both sides yields
lim inf‖x‖→∞ f(x)/φ(x) ≥ γ+0, meaning that γ̄ ≥ γ. Now let γ ∈ R with −∞ < γ < γ̄ ≤ +∞
be finite. Suppose that for any compact level set ∅ 6= lev≤r φ := {x ∈ Rm : φ(x) ≤ r} with
r > 0 there exists x ∈ (lev≤r φ)c 6= ∅ in the complement of lev≤r φ, which is non-empty due
to the coercivity of φ, with f(x) < γφ(x). In particular this means that there is a sequence
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xν ∈ Rm with φ(xν)→∞ and f(xν)/φ(xν) < γ. Taking the lim inf on both sides implies due
to the coercivity of φ that

γ̄ = lim
r→∞

(
inf

r<‖x‖

f(x)

φ(x)

)
≤ lim
ν→∞

f(xν)

φ(xν)
≤ γ < γ̄,

which is a contradiction. This means that there is r > 0 such that for any x ∈ (lev≤r φ)c 6= ∅
we have f(x) ≥ γφ(x). By assumption h := f − γφ is proper lsc. In view of [52, Corollary
1.10], h is bounded below on lev≤r φ, showing that for some β ∈ R sufficiently small, it holds
f(x) ≥ γφ(x) + β for any x ∈ lev≤r φ. Overall we have f(x) ≥ γφ(x) + β, for all x ∈ Rm.
This shows the result.

The following proposition adapts [52, Exercise 1.24] to a Bregman distance setting.

Proposition 3.5 (Characterization of relative prox-boundedness). Let φ ∈ Γ0(Rm) be Leg-
endre and super-coercive and let f : Rm → R be proper and lsc with dom f ∩domφ 6= ∅. Then,
the following properties are equivalent:

(i) f is prox-bounded relative to φ.

(ii) for some r > 0 the function f + rφ is bounded from below on Rm.

If futhermore domφ = Rm the above properties are equivalent to

lim inf
‖x‖→∞

f(x)

φ(x)
> −∞. (4)

Proof. The equivalence between (i) and (ii) follows thanks to the properness of the envelope
function from Lemma 3.3:

(i) =⇒ (ii): Let f be prox-bounded relative to φ with threshold λf > 0. In view of
Lemma 3.3(ii), we have for any λ ∈ ]0, λf [ that

←−envφλf(∇φ∗(0)) = inf
x∈Rm

f(x) +
1

λ
φ(x)− 1

λ
φ(∇φ∗(0)) > −∞.

(ii) =⇒ (i): Let r > 0. Then there exists β ∈ R such that f(x) + rφ(x) ≥ β for any x ∈ Rm.
Adding −rφ(∇φ∗(0)) to both sides of the inequality yields

f(x) + rDφ(x,∇φ∗(0)) ≥ β − rφ(∇φ∗(0)),

for all x ∈ Rm and the assertion follows for y := ∇φ∗(0) and λ := 1/r.
To show the remaining statement, assume that domφ = Rm and let (4) hold. In view of

Lemma 3.4, we have that

sup {γ ∈ R : ∃β ∈ R with f(x) ≥ γφ(x) + β for all x ∈ Rm} > −∞.

Then there exists a finite +∞ > γ > −∞ such that f(x) ≥ γφ(x) + β holds for some β ∈ R
and any x ∈ Rm. For r > max{0,−γ}, we have that r + γ ≥ 0 and

f + rφ ≥ (r + γ)φ+ β > −∞,

since φ ∈ Γ0(Rm) is coercive and therefore bounded from below on Rm, meaning we have (ii).
Assume (ii) holds. By assumption there is some β ∈ Rm such that for any x ∈ Rm we

have:
f(x) > −rφ(x) + β.

Let Γ := {γ ∈ R : ∃β ∈ R with f(x) ≥ γφ(x) + β for all x ∈ Rm}. Then −r ∈ Γ and in view
of Lemma 3.4, we have lim inf‖x‖→∞ f(x)/φ(x) = sup Γ > −∞.

For using the left Bregman proximal mapping in an algorithm, well-definedness is crucial,
i.e. the output of one iteration must be compatible with the input of the next iteration.
Usually, this can be achieved by the property

ran(←−−proxφλf) ⊂ int(domφ),

which, however, requires a constraint qualification (CQ):
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Lemma 3.6. Let λ > 0, φ ∈ Γ0(Rm) be Legendre and f : Rm → R be proper lsc. Assume
that domφ ∩ dom f 6= ∅ and that the following constraint qualification holds:

∂∞f(x) ∩ −Ndomφ(x) = {0}, (5)

for any x ∈ dom f ∩ domφ. Then we have that

ran(←−−proxφλf) ⊂ ran((∂(φ+ λf))−1 ◦ ∇φ) (6)

⊂ ran((∂(φ+ λf))−1) ⊂ int(domφ). (7)

Proof. In case y /∈ int(domφ) we have ←−−proxφλf = ∅ such that for the first inclusion only vectors
y contained in int(domφ) matter: Fix y ∈ int(domφ). By the definition of the left prox it is
clear that ran(←−−proxφλf) ⊂ dom f ∩ domφ. For x ∈ dom f ∩ domφ, using [52, Corollary 10.9]
and the smoothness of the affine function φ(y) + 〈· − y,∇φ(y)〉, we observe that

∂(f +Dφ(·, y))(x) = ∂

(
f +

1

λ
φ

)
(x)− 1

λ
∇φ(y).

Therefore, invoking Fermat’s rule [52, Theorem 10.1], the first inclusion follows:

x ∈ ←−−proxφλf(y) =⇒ 0 ∈ ∂(φ+ λf)(x)−∇φ(y)

=⇒ x ∈ (∂(φ+ λf)−1 ◦ ∇φ)(y).

The second inclusion is clear. For the third inclusion note that

ran((∂(φ+ λf))−1) = dom ∂(φ+ λf).

Let x ∈ dom ∂(φ+ λf). This means in particular x ∈ dom f ∩ domφ and there exists v ∈ Rm
such that v ∈ ∂(φ + λf)(x). In view of condition (5), we invoke Lemma [52, Corollary 10.9]
and [52, Proposition 8.12] to obtain

v ∈ ∂(φ+ λf)(x) ⊂ ∂φ(x) + λ∂f(x).

This shows that the subset relation is preserved under the dom-operation: dom ∂(φ+ λf) ⊂
dom ∂φ ∩ dom ∂f . In addition, since φ is essentially smooth we know from Lemma 2.2 that
dom ∂φ = int(domφ). This yields

dom ∂φ ∩ dom ∂f ⊂ dom ∂φ = int(domφ)

and overall ran((∂(φ+ λf))−1) ⊂ int(domφ).

We remark that (5) is the standard CQ that ensures the sum-rule [52, Corollary 10.9] to
hold with inclusion: ∂(φ+ f) ⊂ ∂φ+ ∂f . The condition is guaranteed to hold everywhere if
for instance f is smooth, cf. [52, Exercise 8.8] or domφ is open or simply dom f ⊂ int(domφ).
The conclusion also follows when f ∈ Γ0(Rm) and int(dom f) ∩ int(domφ) 6= ∅.

We state the notion of the right Bregman–Moreau envelope and associated proximal map-
ping for some step-size parameter λ > 0 adopting the definition from [12] for the convex
setting. We would highlight a close connection between the left and the right Bregman prox-
imal mapping, which we invoke in the course of this work to transfer results from the left to
the right Bregman proximal mapping.

Definition 3.7 (Right Bregman–Moreau envelope and proximal mapping). Let φ ∈ Γ0(Rm)
be Legendre and f : Rm → R be proper. For some λ > 0 and y ∈ Rm we define the right
Bregman–Moreau envelope (in short: right envelope) of f at y as

−→envφλf(y) = inf
x∈Rm

f(x) +
1

λ
Dφ(y, x), (8)

and the associated right Bregman proximal mapping (in short: right prox) of f at y as

−−→proxφλf(y) = arg min
x∈Rm

f(x) +
1

λ
Dφ(y, x). (9)
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[15, 14] studied the single-valuedness of the (nonconvex) right Bregman projection1, through
the left Bregman projection, expressing the right Bregman projection as a transformed left
Bregman projection via the identity Dφ(y, x) = Dφ∗(∇φ(x),∇φ(y)) for x, y ∈ int(domφ),
see [15, Proposition 7.1] or [14, Lemma 2.1]. We adapt their approach to the left and right
nonconvex Bregman proximal mapping and obtain the following relation between the two.

Lemma 3.8. Let φ ∈ Γ0(Rm) be Legendre and let f : Rm → R be proper such that int(domφ)∩
dom f 6= ∅ and let y ∈ int(domφ). Then we have for the right Bregman envelope

−→envφλf(y) = ←−envφ
∗

λ (f ◦ ∇φ∗)(∇φ(y)), (10)

and the associated right Bregman-prox

−−→proxφλf(y) = ∇φ∗(←−−proxφ
∗

λ (f ◦ ∇φ∗)(∇φ(y))). (11)

Proof. Let y ∈ int(domφ). In view of Lemma 2.6(ii), we may introduce a substitution z =
∇φ(x), for x ∈ int(domφ) and rewrite due to the properness of f :

−→envφλf(y) = inf
x∈Rm

f(x) +
1

λ
Dφ(y, x)

= inf
x∈int(domφ)

f(x) +
1

λ
Dφ(y, x)

= inf
x∈int(domφ)

f(x) +
1

λ
Dφ∗(∇φ(x),∇φ(y))

= inf
z∈int(domφ∗)

f(∇φ∗(z)) +
1

λ
Dφ∗(z,∇φ(y))

= ←−envφ
∗

λ (f ◦ ∇φ∗)(∇φ(y)).

By the same argument, we also have:

x ∈ −−→proxφλf(y)

⇐⇒ x ∈ arg min
x∈int(domφ)

f(x) +
1

λ
Dφ∗(∇φ(x),∇φ(y))

⇐⇒ ∇φ(x) ∈ arg min
z∈int(domφ∗)

f(∇φ∗(z)) +
1

λ
Dφ∗(z,∇φ(y))

⇐⇒ x ∈ ∇φ∗(←−−proxφ
∗

λ (f ◦ ∇φ∗)(∇φ(y))).

The above relation between left and right envelope reveals that prox-boundedness of f◦∇φ∗
relative to φ∗ is equivalent to −→envφλf(y) > −∞ for some y ∈ int(domφ) and λ > 0. This leads
us to formulate an analogue definition of prox-boundedness for the right prox.

Definition 3.9 (Relative right prox-boundedness). Let φ ∈ Γ0(Rm) be Legendre and f : Rm →
R be proper such that int(domφ)∩ dom f 6= ∅. We say f is right prox-bounded relative to φ if
there exists λ > 0 such that −→envφλf(y) > −∞ for some y ∈ int(domφ). The supremum of the
set of all such λ is the threshold λf of the right prox-boundedness, i.e.

λf = sup{λ > 0 : ∃ y ∈ int(domφ) : −→envφλf(y) > −∞}.

The above expression for the right Bregman proximal mapping shows that the continuity
properties of the left prox carry over to right prox under right prox-boundedness and super-
coercivity of φ∗, or equivalently, in view of Lemma 2.2(iv), domφ = Rm. Full domain of φ
has appeared as an assumption in several earlier related works that are concerned with the
single-valuedness of the right Bregman projection [15, 14], while [14] posed the open question
as to whether these assumptions are really necessary in the context of Chebyshev sets, see
[14, Problem 2].

1We write “nonconvex Bregman projection” or “nonconvex Bregman proximal mapping” for the sake of conve-
nience, whereby they mean Bregman projection with respect to a (possibly) nonconvex set or Bregman proximal
mapping with respect to a (possibly) nonconvex function.
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Lemma 3.10 (Continuity properties of the right prox and envelope). Let φ ∈ Γ0(Rm) be
Legendre with domφ = Rm and let f : Rm → R be proper, lsc and relatively right prox-
bounded with threshold λf and let λ ∈ ]0, λf [. Then −−→proxφλf and −→envφλf have the following
properties:

(i) −−→proxφλf(y) 6= ∅ is compact for all y ∈ Rm and the envelope −→envφλf is proper.

(ii) The envelope −→envφλf is continuous.

(iii) For any sequence yν → y∗ and xν ∈ −−→proxφλf(yν) we have {xν}ν∈N is bounded and all its

cluster points x∗ lie in −−→proxφλf(y∗).

Proof. Since f is right prox-bounded relative to φ with threshold λf , due to the identity
−→envφλf(y) = ←−envφ

∗

λ (f ◦ ∇φ∗)(∇φ(y)) for any y ∈ Rm (which holds thanks to Lemma 3.8), we
know that f ◦ ∇φ∗ is (left) prox-bounded relative to φ∗ with the same threshold. The result
then follows by invoking Lemma 3.3 for f ◦∇φ∗, the super-coercivity of φ∗ and the continuity
of both ∇φ and ∇φ∗, cf. Lemma 2.2.

3.2 Single-Valuedness of Bregman Proximal Mappings under
Relative Prox-regularity

We generalize the definition of proximal subgradients [52, Definition 8.45] to a Bregman
distance setting: A classical proximal subgradient is a regular subgradient for which the error
term o(‖x − x̄‖) can be specialized to a negative quadratic: o(‖x − x̄‖) = −(r/2)‖x − x̄‖2.
Analogously, a relatively proximal subgradient is a regular subgradient where the error term
o(‖x− x̄‖) specializes to a Bregman distance −rDφ(x, x̄).

Definition 3.11 (Relatively proximal subgradients and normals). Let φ ∈ Γ0(Rm) be Leg-
endre. A vector v is called a relatively proximal subgradient (relative to φ) of a function
f : Rm → R at x̄ ∈ int(domφ), a point where f(x̄) is finite, if there exist r > 0 and ε > 0 such
that for all ‖x− x̄‖ ≤ ε it holds that x ∈ int(domφ) and

f(x) ≥ f(x̄) + 〈v, x− x̄〉 − rDφ(x, x̄). (12)

If f = δC specializes to an indicator function of a set C we shall refer to v as a relatively
proximal normal to C.

We shall point out the following relation to classical proximal subgradients and normals
[52, Definition 8.45], i.e. when φ = (1/2)‖ · ‖2.

Proposition 3.12. Let φ ∈ Γ0(Rm) be Legendre and C2 on int(domφ). Let f : Rm → R
be finite at x̄ ∈ int(domφ). Then the following implication holds: If v ∈ Rm is a relatively
proximal subgradient of f at x̄, then v is a proximal subgradient of f at x̄. The converse is
true if, furthermore, ∇2φ(x) is positive definite for any x ∈ int(domφ), i.e. φ is very strictly
convex.

Proof. This is a direct consequence of Lemma 2.6(iii).

Lemma 3.13 (Globalization of proximal subgradient inequality). Let φ ∈ Γ0(Rm) be Legen-
dre and super-coercive and f : Rm → R be proper lsc, relatively prox-bounded with threshold
λf and finite at x̄ ∈ int(domφ). Let v̄ be a relatively proximal subgradient of f at x̄. Then, if
r > 0 is sufficiently large the subgradient inequality (12) holds globally for all x ∈ Rm.

Proof. Since v̄ is a relatively proximal subgradient of f at x̄ we know that there exists r′ > 0
and ε > 0 such that for any r ≥ r′ we have

f(x) ≥ f(x̄) + 〈v̄, x− x̄〉 − rDφ(x, x̄), (13)

whenever ‖x − x̄‖ < ε and ε is sufficiently small such that x ∈ int(domφ). We prove the
assertion by showing that the inequality also holds for any x ∈ Rm with ‖x − x̄‖ ≥ ε, when
r is chosen to be sufficiently large: Let λ ∈ ]0, λf [. Since f : Rm → R is prox-bounded and
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Figure 1: Illustration of Bregman proximal normals and Bregman projections by means of
Example 3.32. The set C = epih, given as the epigraph of h(x) = 2x2 − 3|x|1.1, is indicated
as the area above the solid line, which corresponds to the graph of h around 0. The arrows
indicate the relatively proximal normals v of C at x̄. The dashed line corresponds to the
Bregman distance ball around the point ∇φ∗(∇φ(x̄) + λv) generated by φ(x1, x2) = x21 +
|x1|1.1 + x22, whose “radius” is chosen such that its upper surface touches the epigraph of h
only at x̄, which is possible if λ > 0 is sufficiently small. While in the right figure, v is both
a relatively proximal normal and a classical proximal normal of C at x̄, in the left figure the
situation is different: While it is a relatively proximal normal of C at x̄, it is not a classical
proximal normal, since for any λ > 0 there is no Euclidean ball around x̄+ λv, below C that
touches C only at 0. In view of the subgradient inequality (12), ṽ := v + (1/λ)∇φ(x̄) is a
classical proximal subgradient of f̃ := (1/λ)φ+ δC at x̄ though, cf. also Remark 3.22.

proper, lsc and x̄ ∈ int(domφ) we know from Lemma 3.3 that +∞ > ←−envφλf(x̄) > −∞ since
f is prox-bounded and f(x̄) is finite. Then we have

f(x) ≥ ←−envφλf(x̄)− 1

λ
Dφ(x, x̄), (14)

for all x ∈ Rm. Combining (13) and (14) shows that (12) holds with modulus r ≥ max {r′, 1/λ},
when

←−envφλf(x̄)− 1

λ
Dφ(x, x̄) ≥ f(x̄) + 〈v̄, x− x̄〉 − rDφ(x, x̄)

is satisfied, which is implied (using the Cauchy–Schwarz inequality) by

f(x̄)− ←−envφλf(x̄)

‖x− x̄‖ + ‖v̄‖ ≤
(
r − 1

λ

)
Dφ(x, x̄)

‖x− x̄‖ . (15)

Using super-coercivity of φ, the inequality happens to be true for r ≥ max {r′, 1/λ} and all
x with ‖x − x̄‖ ≥ µ for some µ > ε. It remains to verify (15) for µ > ‖x − x̄‖ ≥ ε > 0
for some r. However, since for such x, using strict convexity of φ, obviously, Dφ(x, x̄) is
bounded away from 0, we can find some r sufficiently large such that (15) also holds for x
with µ > ‖x− x̄‖ ≥ ε.

The following lemma shows that analogous to the classical prox, the left Bregman prox
and envelope of a tilted function f − 〈·, v〉 can be written as the Bregman prox and envelope
of f at a transformed point, respectively.

Lemma 3.14 (Effects of tilt transformation). Let φ ∈ Γ0(Rm) be Legendre and f : Rm → R
be proper lsc. Let y ∈ int(domφ) and v ∈ Rm. Denote by z := ∇φ∗(∇φ(y) + λv) and by
f0 := f − 〈·, v〉. Then we have the following identities for the prox

←−−proxφλf0(y) = ←−−proxφλf(z),

and the envelope function

←−envφλf0(y) = ←−envφλf(z) +
1

λ
Dφ(z, y)− 〈v, z〉.
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Proof. For z = ∇φ∗(∇φ(y) + λv) the identities follow from the following calculation:

Dφ(x, z) = φ(x)− φ(z)− 〈∇φ(y) + λv, x− z〉
= −λ〈v, x〉+Dφ(x, y) + φ(y)− 〈∇φ(y), y〉+ 〈∇φ(y) + λv, z〉 − φ(z).

Scaling the equality with 1/λ and adding f(x) and reordering yields

f0(x) +
1

λ
Dφ(x, y) = f(x) +

1

λ
(Dφ(x, z)− φ(y)

+ 〈∇φ(y), y〉 − 〈∇φ(y) + λv, z〉+ φ(z))

= f(x) +
1

λ
Dφ(x, z) +

1

λ
Dφ(z, y)− 〈v, z〉.

Based on the globalized subgradient inequality from Lemma 3.13 we shall characterize
relatively proximal subgradients via the Bregman proximal map. This property is used fre-
quently in the course of this section to assert the single-valuedness of the Bregman proximal
mapping.

Proposition 3.15. Let φ ∈ Γ0(Rm) be Legendre and f : Rm → R be proper lsc and finite at
x̄ ∈ int(domφ). Then the following conditions are equivalent for some λ > 0:

(i) The following inclusion holds:

x̄ ∈ ←−−proxφλf(∇φ∗(∇φ(x̄) + λv)). (16)

(ii) The subgradient inequality (12) holds globally for all x ∈ Rm and r := 1/λ,

where strict inequality holds for all x 6= x̄ by decreasing λ. Equivalently this means the
inclusion (16) holds with equality. If, furthermore, φ is super-coercive and f relatively prox-
bounded with threshold λf then the above conditions hold for some λ < λf sufficiently small,
if and only if v ∈ Rm is a relatively proximal subgradient of f at x̄.

Proof. Let λ > 0 and let the subgradient inequality (12) hold globally for all x ∈ Rm and
r := 1/λ. This means:

f(x)− 〈v, x〉 ≥ f(x̄)− 〈v, x̄〉 − 1

λ
Dφ(x, x̄). (17)

Define f0 := f − 〈v, ·〉. Then, by reordering the terms the above is equivalent to:

f0(x) +
1

λ
Dφ(x, x̄) ≥ f0(x̄) +

1

λ
Dφ(x̄, x̄), (18)

which holds if and only if x̄ ∈ ←−−proxφλf0(x̄), which, in view of Lemma 3.14, is equivalent

to x̄ ∈ ←−−proxφλf(∇φ∗(∇φ(x̄) + λv)). Then, clearly, strict inequality holds for all x 6= x̄ by
decreasing λ, which equivalently means the inclusion (16) holds with equality.

Let v be a relatively proximal subgradient of f at x̄ with constants ε > 0 and r > 0.
Then we may invoke Lemma 3.13 to make the subgradient inequality in (12) hold globally,
for all x ∈ Rm, r := 1/λ and λ > 0 sufficiently small. Conversely, when the subgradient
inequality (12) holds globally for r := 1/λ, this means in particular that v is a relatively
proximal subgradient.

An important class of prox-bounded functions f are indicator functions f = δC of a
possibly nonconvex closed set C. Indeed, the threshold of prox-boundedness for such f is
λf =∞. Invoking the above lemma we obtain that v is a relatively proximal normal to C at
x̄ if and only if we can perturb x̄ along v in the Bregman sense as y := ∇φ∗(∇φ(x̄) + λv) so
that by Bregman-projecting the perturbed point y back on C (i.e. computing the left prox of
f at y), we recover x̄. Indeed for φ = (1/2)‖ · ‖2 we obtain the classical definition of proximal
normals:

NP
C (x̄) := {r(y − x̄) : x̄ ∈ projC(y), r ≥ 0, y ∈ Rm},

where projC denotes the classical Euclidean projection onto the set C. This is illustrated in
Figure 1.
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We now define relative prox-regularity, generalizing [52, Definition 13.27] to a Bregman
distance setting: We fix a reference point (x̄, v̄), where f(x̄) is finite and v̄ ∈ ∂f(x̄) is a
relatively proximal subgradient, and require the subgradient inequality (12) to hold uniformly
on a f -attentive neighborhood of (x̄, v̄):

Definition 3.16 (Relative prox-regularity). Let φ ∈ Γ0(Rm) be Legendre. We say a function
f : Rm → R is relatively prox-regular at x̄ ∈ int(domφ) for v̄ ∈ Rm if f is finite and locally lsc
at x̄ with v̄ ∈ ∂f(x̄) and there exist ε > 0 and r ≥ 0 such that for all ‖x′− x̄‖ < ε, ‖x− x̄‖ < ε,
with ε sufficiently small such that x, x′ ∈ int(domφ), it holds that:

f(x′) ≥ f(x) +
〈
v, x′ − x

〉
− rDφ(x′, x), (19)

whenever f(x)−f(x̄) < ε, v ∈ ∂f(x), ‖v− v̄‖ < ε. When this property holds for all v̄ ∈ ∂f(x̄),
f is said to be relatively prox-regular at x̄.

For examples of relatively prox-regular functions we refer to Section 3.3 below. We
first clarify a relation between the new relative prox-regularity property and classical prox-
regularity.

Proposition 3.17. Let φ ∈ Γ0(Rm) be Legendre and C2 on int(domφ). Let f : Rm → R
be extended real-valued and x̄ ∈ int(domφ). Then the following implication holds: If f is
relatively prox-regular at x̄ for v̄, then f is also prox-regular at x̄ for v̄. The converse is true
if, furthermore, ∇2φ(x) is positive definite for any x ∈ int(domφ), i.e. φ is very strictly
convex.

Proof. This is a direct consequence of Lemma 2.6(iii).

The relative prox-regularity property of a tilted function is preserved as the following
lemma shows:

Lemma 3.18 (Invariance under tilt transformation). Let φ ∈ Γ0(Rm) be Legendre, f : Rm →
R be extended real-valued and x̄ ∈ int(domφ). Then f is relatively prox-regular at x̄ for
v̄ ∈ ∂f(x̄) if and only if f0 := f − 〈v, ·〉 is relatively prox-regular at x̄ for 0 ∈ ∂f0(x̄).

Proof. This is clear from the definition of relative prox-regularity.

The following theorem is analogous to [48, Theorem 3.2] or [52, Theorem 13.36] for clas-
sical prox-regularity. More precisely, for a function f and a reference point (x̄, v̄) ∈ gph ∂f
we provide an equivalent characterization of relative prox-regularity in terms of the relative
hypomonotonicity of an f -attentive graphical localization T of the subdifferential ∂f at (x̄, v̄),
defined as follows:

Definition 3.19 (f -attentive localization of limiting subdifferential). Let f : Rm → R be
finite at x̄. Let v̄ ∈ ∂f(x̄). Then for some ε > 0 the f-attentive ε-localization T : Rm ⇒ Rm
of ∂f around (x̄, v̄) is defined by

T (x) :=

{
{v ∈ ∂f(x) : ‖v − v̄‖ < ε} if ‖x− x̄‖ < ε and f(x) < f(x̄) + ε,

∅, otherwise.
(20)

Such a statement can be seen as a localized analogue to the equivalence between the
relative hypoconvexity of f , i.e. f + rφ is convex on int(domφ) for some r ≥ 0, and the
relative hypomonotonicity of ∂f . An important difference to note is that, in the following
statement, we also require v̄ to be a relatively proximal subgradient of f at x̄.

Theorem 3.20. Let φ ∈ Γ0(Rm) be Legendre and super-coercive and the function f : Rm → R
be proper lsc, prox-bounded with threshold λf and finite at x̄ ∈ int(domφ). Then the following
conditions are equivalent:

(i) f is relatively prox-regular at x̄ for v̄.

(ii) v̄ ∈ ∂f(x̄) is a relatively proximal subgradient and ∂f has an f-attentive ε-localization
T : Rm ⇒ Rm around (x̄, v̄) such that T + r∇φ is monotone for some r > 0.
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(iii) For v̄ ∈ ∂f(x̄) and λ < λf sufficiently small it holds that ←−−proxφλf is a singled-valued map

near the point ȳ := ∇φ∗(∇φ(x̄) + λv̄) such that {x̄} = ←−−proxφλf(ȳ) and

←−−proxφλf(y) = ((∇φ+ λT )−1 ◦ ∇φ)(y), (21)

for some f-attentive ε-localization T : Rm ⇒ Rm of ∂f around (x̄, v̄) and y near ȳ.

Proof. (i) =⇒ (ii): Let f be relatively prox-regular at x̄ for v̄ ∈ ∂f(x̄). This means that there
exist constants ε > 0 and r > 0 such that the subgradient inequality (19) holds for x′, x ∈ Rm
with ‖x′ − x̄‖ < ε, ‖x − x̄‖ < ε and v ∈ ∂f(x), v′ ∈ ∂f(x′), ‖v′ − v̄‖ < ε, ‖v − v̄‖ < ε. In
particular this implies that v̄ is a relatively proximal subgradient at x̄ and we have:

f(x′) ≥ f(x) +
〈
v, x′ − x

〉
− rDφ(x′, x), f(x) ≥ f(x′) +

〈
v′, x− x′

〉
− rDφ(x, x′).

Adding these inequalities yields:

0 ≥
〈
v, x′ − x

〉
+
〈
v′, x− x′

〉
− r(Dφ(x′, x) +Dφ(x, x′))

= −
〈
v − v′, x− x′

〉
− r

〈
∇φ(x)−∇φ(x′), x− x′

〉
.

This shows that the corresponding map T + r∇φ is monotone, where T is the f -attentive
ε-localization of ∂f at (x̄, v̄).

(ii) =⇒ (iii): By assumption, v̄ is a relatively proximal subgradient. Then we may
invoke Proposition 3.15 to obtain that {x̄} = ←−−proxφλf(ȳ) is a singleton for λ < min{λf , 1/r}
being sufficiently small. Due to the prox-boundedness, we can invoke Lemma 3.3 to assert
that ←−−proxφλf(y) 6= ∅ for any y ∈ int(domφ). Furthermore, for any sequence xν ∈ ←−−proxφλf(yν),

yν → ȳ we have {xν}ν∈N is bounded and all its cluster points lie in ←−−proxφλf(ȳ) = {x̄}, meaning

xν → x̄ and ←−envφλf(yν)→ ←−envφλf(ȳ). In addition we have f(xν)→ f(x̄) as

←−envφλf(yν) = f(xν) +
1

λ
Dφ(xν , yν)→ ←−envφλf(ȳ) = f(x̄) +

1

λ
Dφ(x̄, ȳ).

Overall this shows that for any y, which is sufficiently near to ȳ, we have x ∈ ←−−proxφλf(y),
‖x − x̄‖ < ε, |f(x) − f(x̄)| < ε and ‖v − v̄‖ < ε, for v := (1/λ)∇φ(y) − (1/λ)∇φ(x) due
to the continuity of ∇φ (cf. Lemma 2.2). By applying Fermat’s rule [52, Theorem 10.1] to
←−−proxφλf(y) we obtain

0 ∈ ∂f(x) +
1

λ
(∇φ(x)−∇φ(y)),

or equivalently
0 ∈ T (x) + r(∇φ(x)−∇φ(y)),

where ∂f(x) is replaced by T (x) due to the arguments above. This means

∅ 6= ←−−proxφλf(y) ⊂
{
x ∈ Rm : 0 ∈ T (x) +

1

λ
(∇φ(x)−∇φ(y))

}
= ((∇φ+ λT )−1 ◦ ∇φ)(y),

which is at most a singleton due to the strict monotonicity of T + (1/λ)∇φ for λ < 1/r. This
implies {x} = ←−−proxφλf(y) is a singleton for y near ȳ.

(iii) =⇒ (i): Let T be some f -attentive ε-localization of ∂f at x̄ for v̄, which has the
properties in (iii). Let x ∈ Rm with ‖x− x̄‖ < ε, f(x) < f(x̄) + ε and v ∈ ∂f(x), ‖v− v̄‖ < ε.
We have v ∈ T (x) and for ε > 0 sufficiently small x ∈ int(domφ) and y := ∇φ∗(∇φ(x) + λv)
near ∇φ∗(∇φ(x̄) + λv̄)), due to the continuity of ∇φ∗ guaranteed by Lemma 2.2. Then for
such y we have that x ∈ ((∇φ+ λT )−1 ◦ ∇φ)(y) and by assumption

←−−proxφλf(y) = ((∇φ+ λT )−1 ◦ ∇φ)(y) 3 x.

Invoking Proposition 3.15 we obtain the subgradient inequality (19) for r := 1/λ, which holds
even globally, cf. Lemma 3.13. We may conclude f is relatively prox-regular at x̄ for v̄.
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Remark 3.21. We would highlight that items (i) and (ii) in the above theorem only depend
on the local structure of the epigraph of f near (x̄, f(x̄)), while in contrast, (iii) depends on its
global structure. This means that (i) resp. (ii) hold for f if and only if they hold for f̃ := f+δC
for C := {x ∈ Rm : ‖x− x̄‖ ≤ ε, f(x) ≤ f(x̄) + ε} compact, where f̃ is always proper lsc and
prox-bounded whenever f is locally lsc at x̄, a point where f is finite. This shows that the
equivalence between (i) and (ii) holds even if we relax the globally lsc assumption towards
locally lsc at x̄ and entirely drop the prox-boundedness assumption. In that sense (iii) can be
seen as an auxiliary statement applied to f̃ to show the direction (ii) implies (i), which is also
used as a strategy in the proof of [52, Theorem 13.36].

Remark 3.22. When φ is strongly convex on compact convex subsets K ⊂ int(domφ) (which
is implied by very strict convexity, see Lemma 2.6(iii), but holds more generally, for, e.g.
φ(x) = (1/p)|x|p, p ∈]1, 2[), the direction (ii) implies (i) follows alternatively from [48, The-
orem 3.2] or [52, Theorem 13.36]. To this end, let v̄ be a relatively proximal subgradient of
f at x̄ ∈ int(domφ) and let T be a relatively hypomonotone, f-attentive ε-localization of ∂f
at x̄ for v̄. This means that there is r > 0 such that ṽ := v̄ + r∇φ(x̄) is a classical proximal

subgradient of f̃ := f + rφ at x̄ and T̃ := T + r∇φ is monotone. Furthermore T̃ is a f̃-
attentive graphical localization of ∂f̃ at (x̄, ṽ). Invoking [52, Theorem 13.36] this means that
f̃ is classically prox-regular at x̄ for ṽ. Due to the strong convexity of φ on compact convex
subsets K ⊂ int(domφ) we can bound the negative quadratic term −(1/2)‖x′ − x‖2 in the
classical subgradient inequality (locally) by a Bregman distance −θDφ(x′, x). Rewriting the
estimate gives us the result. In the general case, however, existing theory cannot be applied in
its present form, which leads us to provide a generalization by means of the above theorem.

Corollary 3.23. Let φ ∈ Γ0(Rm) be Legendre and super-coercive. Let the function f : Rm →
R be proper lsc, prox-bounded with threshold λf , and relatively prox-regular at x̄ ∈ int(domφ)
for v̄. Assume that φ is very strictly convex. Then for λ < λf sufficiently small, ←−−proxφλf is a
Lipschitz map on a neighborhood of ȳ := ∇φ∗(∇φ(x̄) + λv̄).

Proof. Since f is relatively prox-regular at x̄ for v̄ ∈ ∂f(x̄) due to Theorem 3.20 there exists
r > 0 such that T + r∇φ is monotone. This means for (x′, v′), (x, v) ∈ gphT we have:〈

v′ − v, x′ − x
〉

+ r
〈
∇φ(x′)−∇φ(x), x′ − x

〉
≥ 0.

Let x ∈ ←−−proxφλf(y) and x′ ∈ ←−−proxφλf(y′). Due to Theorem 3.20 we know that (1/λ)(∇φ(y)−
∇φ(x)) ∈ T (x) and (1/λ)(∇φ(y′)−∇φ(x′)) ∈ T (x′). This means we have

1

λ

〈
∇φ(y′)−∇φ(y), x′ − x

〉
≥
(

1

λ
− r
)〈
∇φ(x′)−∇φ(x), x′ − x

〉
.

Since φ is very strictly convex we may invoke Lemma 2.6(iii) to assert that there are constants
Θ and θ such that for any x, x′ ∈ int(domφ) near x̄:

〈∇φ(x′)−∇φ(x), x′ − x〉 ≤ Θ‖x− x′‖2,

〈∇φ(x′)−∇φ(x), x′ − x〉 ≥ θ‖x− x′‖2.

This yields 〈
∇φ(y′)−∇φ(y), x′ − x

〉
≥ (1− λr) θ‖x− x′‖2,

and via Cauchy–Schwarz〈
∇φ(y′)−∇φ(y), x′ − x

〉
≤ ‖∇φ(y′)−∇φ(y)‖ · ‖x′ − x‖
≤ Θ‖y′ − y‖ · ‖x′ − x‖,

and overall

‖x− x′‖ ≤ Θ

θ(1− λr)‖y − y
′‖.
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3.3 Relatively Amenable Functions

An important source for examples of prox-regular functions is strong amenability [52, Defi-
nition 10.23], i.e. functions f that can locally be represented as a composition of a convex
function with a smooth function and a certain constraint qualification. In the following we
generalize this concept to the Bregman distance case. To this end, the recently introduced
generalization of L-smooth functions to L-smooth adaptable (L-smad) functions [6, 18] (called
relatively smooth functions in [38]) is used. We state a slightly modified version, where we
introduce an additional open subset V ⊆ int(domφ) of int(domφ) and require the property
to hold only on V instead of int(domφ).

Definition 3.24 (Smooth adaptable function (L-smad)). Let φ ∈ Γ0(Rm) be Legendre. A
function f : Rm → R that is C1 on an open subset V ⊆ int(domφ) is called L-smooth adaptable
relative to φ on V , if there exists L ≥ 0 such that both Lφ− f and Lφ+ f are convex on V .

The following lemma, which we adopted from Lemma [18, Lemma 2.1], is a generalization
of the classical full descent lemma to the L-smad case:

Lemma 3.25 (Full Extended Descent Lemma). Let φ ∈ Γ0(Rm) be Legendre. Then, a
function f : Rm → R that is C1 on an open subset V ⊆ int(domφ) is L-smooth adaptable
relative to φ on V with L ≥ 0 if and only if the following holds for all x, y ∈ V

|f(x)− f(y)− 〈∇f(y), x− y〉| ≤ LDφ(x, y).

Definition 3.26. A function F : Rm → Rn that is C1 on an open subset V ⊆ int(domφ)
is called L-smooth adaptable relative to φ on V with L ≥ 0 if each coordinate function Fi is
L-smooth adaptable relative to φ on V .

We extend [52, Definition 10.23] to a setting where the inner smooth map is L-smooth
adaptable. Note that this property is required to hold only on a local neighborhood of a
reference point. The first part recapitulates the definition of an amenable function from [52,
Definition 10.23(a)], while a relatively amenable function generalizes the notion of strong
amenability [52, Definition 10.23(b)].

Definition 3.27 (Relatively amenable functions). A function f : Rm → R is amenable at x̄,
a point where f(x̄) is finite, if there is an open neighborhood V ⊂ Rm of x̄ on which f can
be represented in the form f = g ◦ F for a C1 mapping F : V → Rn and a proper, lsc, convex
function g : Rn → R such that, in terms of D = cl(dom g),

the only y ∈ ND(F (x̄)) with ∇F (x̄)∗y = 0 is y = 0. (22)

If the mapping F is L-smooth adaptable relative to φ ∈ Γ0(Rm) on V ⊆ int(domφ) it is called
relatively amenable at x̄ ∈ V relative to φ.

Clearly, the constraint qualification (22) is satisfied whenever F (x̄) ∈ int(dom g).
In the following proposition, we show that relatively amenable functions are indeed rela-

tively prox-regular, which is completely analogous to the classical setting of strong amenability
and prox-regularity [52, Proposition 13.32]. Actually, this also generalizes the classical Eu-
clidean setting with φ = (1/2)‖ · ‖2 to requiring the inner functions to be only C1 with a
locally Lipschitz continuous gradient instead of C2.

Proposition 3.28. Let φ ∈ Γ0(Rm) be Legendre and f : Rm → R be relatively amenable at
x̄ ∈ int(domφ) relative to φ. Then f is prox-regular relative to φ at x̄.

Proof. Since f is relatively amenable at x̄ ∈ int(domφ) relative to φ, there exists an open
neighborhood V ⊆ int(domφ) of x̄ on which f = g ◦ F for a proper lsc convex function
g : Rn → R and a C1 map F : V → Rm that is L-smooth adaptable relative to φ on V .
Clearly, f is lsc relative to V and therefore in particular locally lsc at x̄. Note that the
constraint qualification (22) holds not only at x̄ but also on V , by possibly narrowing V .
Otherwise there exists a sequence xν → x̄ and 0 6= yν ∈ ND(F (xν)) with ∇F (xν)∗yν = 0
where we may assume ‖yν‖ = 1 by normalizing. Taking a convergent subsequence of {yν}ν∈N
we have at the limit point y that ∇F (x̄)∗y = 0 and ‖y‖ = 1, which is a contradiction.

In view of the chain rule from [52, Theorem 10.6], we have for all x ∈ V that ∂f(x) =
∇F (x)∗∂g(F (x)). This means for x ∈ V , it holds that for any v ∈ ∂f(x) there is some
u ∈ ∂g(F (x)) such that v = ∇F (x)∗u. Fix v̄ ∈ ∂f(x̄). We want to show that there exist
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ε > 0 and η > 0 such that for any x with ‖x − x̄‖ < ε and u ∈ ∂g(F (x)) with the property
‖v − v̄‖ = ‖∇F (x)∗u− v̄‖ < ε we have that ‖u‖ < η. Since g is convex it is locally Lipschitz
on int(dom g). This means whenever F (x̄) ∈ int(dom g) there is ε > 0 sufficiently small such
that due to continuity of F we have F (x) ∈ int(dom g) near F (x̄) and there is some finite
η > 0 such that ‖u‖ < η for any u ∈ ∂g(F (x)). Now assume F (x̄) ∈ bdry(dom g) and suppose
that there exist sequences xν → x̄ and uν ∈ ∂g(F (xν)) with ∇F (xν)∗uν → v̄ and ‖uν‖ → ∞.
For a decomposition uν = uν0 + uνi with uν0 ∈ ker∇F (xν)∗ and uνi ∈ ran∇F (xν), this yields
‖uν0‖ → ∞. Through [52, Proposition 8.12] uν is in particular a regular subgradient of g at
F (xν). Obviously, by possibly going to a subsequence, uν/‖uν‖ converges to a point on the
unit circle, which, by definition, belongs to the horizon subgradient and, by [52, Proposition
8.12], to Ncl(dom g)(F (x̄)). Moreover, this point lies in ker∇F (x̄)∗, since uνi /‖uν‖ → 0. This is
a contradiction to the constraint qualification. Let ‖x− x̄‖ < ε, ‖x′− x̄‖ < ε and ∇F (x)∗u =
v ∈ ∂f(x) with ‖v − v̄‖ < ε for some u ∈ ∂g(F (x)). Due to the argument above we have
‖u‖ ≤ η and therefore also ‖u‖1 ≤ γ for some γ > 0. Then, since F is component-wise
L-smad, thanks to Lemma 3.25, we can make the following computation. We have for some
r ≥ γL:

f(x′)− f(x) = g(F (x′))− g(F (x))

≥ 〈u, F (x′)− F (x)〉

≥ 〈u,∇F (x)(x′ − x)〉 −
n∑
i=1

|ui|LDφ(x′, x)

≥ 〈u,∇F (x)(x′ − x)〉 − γLDφ(x′, x)

≥ 〈∇F (x)∗u, x′ − x〉 − rDφ(x′, x)

= 〈v, x′ − x〉 − rDφ(x′, x),

which shows that f is prox-regular at x̄ for v̄ relative to φ.

Remark 3.29. Note that the estimate in the proof also holds when each component function
Fi is L-smad relative to a potentially different φi. In addition, it should be noted that when
g is globally Lipschitz, which means in particular that dom g = Rn, and F is L-smad relative
to φ on V = int(domφ), the composition f = g ◦ F is even relatively hypoconvex, i.e. f + rφ
is convex on int(domφ) for some r > 0 sufficiently large.

Amenable functions whose representation g ◦ F involves a diffeomorphism F have rich
properties: As the following proposition shows, even for a prox-regular (outer) function g, the
composition is also prox-regular.

Proposition 3.30. Let f : Rm → R be finite at x̄. Let V ⊂ Rm be an open neighborhood of
x̄ on which f can be represented in the form f = g ◦ F for a C1 mapping F : V → Rm and
a function g : Rm → R. If g is prox-regular at F (x̄) for ū ∈ ∂g(F (x̄)), ∇F (x̄) is nonsingular
and ∇F is Lipschitz on V , then f is prox-regular at x̄ for v̄ = ∇F (x̄)∗ū.

Proof. Since g is prox-regular at F (x̄) for ū ∈ ∂g(F (x̄)) and due to the continuity of F , there
exists a constant r′ > 0 such that for any ε′ > 0 sufficiently small we have:

g(F (x′)) ≥ g(F (x)) + 〈u, F (x′)− F (x)〉 − r′

2
‖F (x′)− F (x)‖2

for ‖F (x̄)− F (x′)‖ < ε′, ‖F (x̄)− F (x)‖ < ε′, ‖ū− u‖ < ε′ with u ∈ ∂g(F (x)) and |g(F (x))−
g(F (x̄))| < ε′. Since F is locally Lipschitz, there exists r′′ such that

r′

2
‖F (x′)− F (x)‖2 ≤ r′′

2
‖x′ − x‖2.

For the inner product, we use the fact that the component functions Fi satisfy

Fi(x
′)− Fi(x) =

∫ 1

0

〈∇Fi(x+ t(x′ − x)), x′ − x〉dt
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and since ∇F is Lipschitz we have for some L > 0

〈u, F (x′)− F (x)〉 = 〈u,∇F (x)(x′ − x)〉

+

∫ 1

0

〈u, (∇F (x+ t(x′ − x))−∇F (x))(x′ − x)〉dt

≤ 〈∇F (x)∗u, x′ − x〉

+ ‖u‖
∫ 1

0

‖∇F (x+ t(x′ − x))−∇F (x)‖ · ‖x′ − x‖ dt

≤ 〈∇F (x)∗u, x′ − x〉+ ‖u‖ · ‖x′ − x‖2L
2
.

Combining the inequalities we obtain, since u is bounded around ū, that for some r > 0 we
have

g(F (x′)) ≥ g(F (x)) + 〈∇F (x)∗u, x′ − x〉 − r

2
‖x′ − x‖2, (23)

whenever ‖F (x̄) − F (x′)‖ < ε′, ‖F (x̄) − F (x)‖ < ε′, ‖ū − u‖ < ε′ with u ∈ ∂g(F (x)) and
|g(F (x))− g(F (x̄))| < ε′.

As F is C1 with ∇F (x̄) nonsingular, in view of the inverse function theorem, we know that
F is invertible on a small neighborhood of x̄.

In view of [52, Exercise 10.7], the chain rule holds on a neighborhood of x̄, i.e. we have
∇F (x)∗∂g(F (x)) = ∂f(x) when x near x̄. This means for such x and any v ∈ ∂f(x) there
exists u ∈ ∂g(F (x)) such that v = ∇F (x)∗u.

Let v ∈ ∂f(x) near v̄ and x near x̄. Let u ∈ ∂g(F (x)) such that v = ∇F (x)∗u. In view of
the Lipschitz continuity of ∇F , we can make the following computation:

σmin(∇F (x))‖u− ū‖ ≤ ‖∇F ∗(x)u−∇F ∗(x)ū‖
≤ ‖∇F ∗(x)u−∇F ∗(x̄)ū‖+ ‖∇F ∗(x̄)ū−∇F ∗(x)ū‖
≤ ‖v − v̄‖+ ‖ū‖L‖x̄− x‖.

Since ∇F (x) is invertible we know that the smallest singular value σmin(∇F (x)) of ∇F (x) is
positive. Then dividing the inequality by σmin(∇F (x)) shows that for v ∈ ∂f(x) near v̄ and
x near x̄ we guarantee u near ū.

Overall, this means we can find ε > 0 sufficiently small, such that whenever ‖x̄− x‖ < ε,
‖x̄−x′‖ < ε and ‖v̄−v‖ < ε, v ∈ ∂f(x) and |f(x)−f(x̄)| < ε, we guarantee via the continuity
of F that ‖F (x̄)−F (x′)‖ < ε′, ‖F (x̄)−F (x)‖ < ε′, |g(F (x))−g(F (x̄))| < ε′ and ‖ū−u‖ < ε′.
Then, in view of (23), we have:

f(x′) ≥ f(x) + 〈v, x′ − x〉 − r

2
‖x′ − x‖2.

Since g is in particular finite and locally lsc at F (x̄), f is finite and locally lsc at x̄. We may
conclude that f is prox-regular at x̄ for v̄.

A particularly interesting choice for F in context of the right Bregman proximal mapping
is F = ∇φ∗, for a Legendre function φ:

Corollary 3.31. Let φ ∈ Γ0(Rm) be Legendre and f : Rm → R be finite at x̄. Let φ ∈ Γ0(Rm)
be Legendre, very strictly convex and ∇2φ locally Lipschitz at x̄. Then f is prox-regular at
x̄ for v̄ ∈ ∂f(x̄) if and only if f ◦ ∇φ∗ is prox-regular at ∇φ(x̄) for ū = ∇2φ∗(∇φ(x̄))v̄ ∈
∂(f ◦ ∇φ∗)(∇φ(x̄)).

Proof. Since φ is very strictly convex, we know that ∇2φ(x) is positive definite for x ∈
int(domφ) and therefore nonsingular. In view of Lemma 2.4 we know that ∇2φ∗(x) =
(∇2φ(∇φ∗(x)))−1, which is locally Lipschitz as the composition of the inverse matrix map,
∇2φ and ∇φ∗, all of which are locally Lipschitz, cf. [30, Section 15; Exercise 22]. The con-
clusion then follows from applying Proposition 3.30 to f ◦∇φ∗ resp. f = (f ◦∇φ∗) ◦∇φ.

In particular, combining Lemma 3.8, Theorem 3.20 and the Corollary 3.31 above we may
guarantee the local single-valuedness of the right Bregman proximal mapping −−→proxφλf of f
under prox-regularity of f and very strict convexity of φ.

The class of relatively amenable functions is a wide source of examples for relatively prox-
regular functions:
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Example 3.32. Choose f : R2 → R with f(x1, x2) = g(F (x1, x2)) for g : R → R with g :=
δR≤0

and F : R2 → R with F (x1, x2) = 2x21−3|x1|1.1−x2. Choose φ : R2 → R with φ(x1, x2) =

x21 + |x1|1.1 + x22. Then, clearly, F is L-smad relative to φ for L = 3. Since ∇F (0) = (0,−1)
is full rank, f is relatively amenable at 0 and in view of Proposition 3.28, relatively prox-
regular at 0. Note that f is the indicator function of the epigraph of the nonconvex function
h(x) = 2x2−3|x|1.1 and therefore neither hypoconvex relative to φ nor classically prox-regular
at 0.

The above example is illustrated in Figure 1.

3.4 Gradient Formulas for Bregman–Moreau Envelopes

So far we know that relative prox-regularity provides us with a sufficient condition for the
local single-valuedness of the left and right Bregman proximal mapping. This in turn allows
us to guarantee that the Bregman envelope functions are locally C1 providing an explicit
formula for their gradients, which involves the corresponding Bregman proximal mappings.
The formulas for both the left and the right envelope have been proven previously in the
convex setting [11, Proposition 3.12] and for the left envelope in a more general relatively
hypoconvex setting [32, Corollary 3.1].

The following proposition provides us with an explicit formula for the gradient of the
composition ←−envφλf ◦ ∇φ

∗. The gradient formulas of both the left and right envelope are
direct consequences of this underlying formula.

Proposition 3.33. Let φ ∈ Γ0(Rm) be Legendre and super-coercive and the function f : Rm →
R be proper lsc and prox-bounded with threshold λf . Let f be relatively prox-regular at x̄ ∈
int(domφ) ∩ dom f for v̄ ∈ ∂f(x̄).

If λ ∈ ]0, λf [ is sufficiently small, we have that ←−envφλf ◦ ∇φ
∗ is C1 around

ȳ := ∇φ(x̄) + λv̄,

with

∇(←−envφλf ◦ ∇φ
∗)(y) =

1

λ
(∇φ∗(y)− ←−−proxφλf(∇φ∗(y))), (24)

and y sufficiently close to ȳ. If, furthermore, φ is very strictly convex, then ∇(←−envφλf ◦ ∇φ
∗)

is Lipschitz continuous on a neighborhood of ȳ.

Proof. Let λ ∈ ]0, λf [. In view of the relative prox-boundedness of f , we know due to the
continuity properties summarized in Lemma 3.3, the super-coercivity of φ and the continuity
of ∇φ∗ and the fact that domφ∗ = Rm, cf. Lemma 2.2, that for any y ∈ Rm there is a
neighborhood V ⊂ Rm of y, sufficiently small along with a compact set Z ⊂ domφ such that
for any y′ ∈ V we can write −(←−envφλf ◦ ∇φ

∗)(y′) = maxx∈Z h(x, y′), for

h(x, y′) := −f(x)− 1

λ
Dφ(x,∇φ∗(y′)) = −f(x)− 1

λ
(φ(x) + φ∗(y′)− 〈y′, x〉)

and ←−−proxφλf(∇φ∗(y′)) ⊂ Z. Clearly, h(x, ·) is C1 as φ∗ is C1 on domφ∗ = Rm with h(x, y)
and ∇yh(x, y) = −(1/λ)(∇φ∗(y)− x) both depending continuously on (x, y) ∈ Z × V . Hence
h is lower-C1, cf. [52, Definition 10.29], and therefore we can invoke [52, Theorem 10.31], to
obtain that

∂(−←−envφλf ◦ ∇φ
∗)(y) = con{∇yh(x, y) : x ∈ ←−−proxφλf(∇φ∗(y))}

= − 1

λ
(∇φ∗(y)− con(←−−proxφλf(∇φ∗(y)))). (25)

Due to the assumptions we can invoke Theorem 3.20(iii) and assert that for λ ∈ ]0, λf [
sufficiently small ←−−proxφλf ◦ ∇φ

∗ is singled-valued at y near ȳ = ∇φ(x̄) + λv̄. In view of

Equation (25), this means that ∂(−←−envφλf ◦ ∇φ
∗) is single-valued around ȳ. Through [52,

Corollary 9.19] we obtain that −←−envφλf ◦ ∇φ
∗ is C1 around ȳ with

1

λ
(∇φ∗(y)− ←−−proxφλf(∇φ∗(y))) = ∇(←−envφλf ◦ ∇φ

∗)(y).

If, furthermore, φ is very strictly convex, we know due to Corollary 3.23 that ←−−proxφλf is locally

Lipschitz at ∇φ∗(ȳ). Then ∇(←−envφλf ◦ ∇φ
∗) is locally Lipschitz at ȳ as a composition resp.

sum of locally Lipschitz maps.
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Corollary 3.34. Let φ ∈ Γ0(Rm) be Legendre, super-coercive and C2 on int(domφ) and
f : Rm → R be proper lsc and prox-bounded with threshold λf . Let f be relatively prox-regular
at x̄ ∈ int(domφ) ∩ dom f for v̄ ∈ ∂f(x̄). If λ ∈ ]0, λf [ is sufficiently small we have that
←−envφλf is C1 around

ȳ := ∇φ∗(∇φ(x̄) + λv̄),

with

∇←−envφλf(y) =
1

λ
∇2φ(y)(y − ←−−proxφλf(y)), (26)

and y sufficiently close to ȳ. If, furthermore, φ is very strictly convex and ∇2φ is locally
Lipschitz on int(domφ), then ∇←−envφλf is Lipschitz continuous on a neighborhood of ȳ.

Proof. The result follows from the identity ←−envφλf = (←−envφλf ◦ ∇φ
∗) ◦ ∇φ via the chain rule

and Proposition 3.33: Then we have for y near ȳ that

∇←−envφλf(y) = ∇((←−envφλf ◦ ∇φ
∗) ◦ ∇φ)(y)

= ∇2φ(y) · ∇(←−envφλf ◦ ∇φ
∗)(∇φ(y))

=
1

λ
∇2φ(y)(∇φ∗(∇φ(y))− ←−−proxφλf(∇φ∗(∇φ(y))))

=
1

λ
∇2φ(y)(y − ←−−proxφλf(y)).

If, furthermore, φ is very strictly convex and ∇2φ is locally Lipschitz, clearly, ∇←−envφλf is
locally Lipschitz at ȳ as it is given as the product of two locally Lipschitz maps.

In view of Lemma 3.8, the right Bregman envelope involves the expression ←−envφ
∗

λ (f ◦∇φ∗)◦
∇φ. This allows us to invoke the proposition above to derive a gradient formula for the right
envelope.

Corollary 3.35. Let φ ∈ Γ0(Rm) be Legendre with domφ = Rm and the function f : Rm → R
be proper lsc and right prox-bounded with threshold λf . For x̄ ∈ dom f let f ◦ ∇φ∗ be prox-
regular relative to φ∗ at ∇φ(x̄) for v̄ ∈ ∂(f ◦ ∇φ∗)(∇φ(x̄)). If λ ∈ ]0, λf [ is sufficiently small
we have that −→envφλf is C1 around

ȳ = x̄+ λv̄

with

∇−→envφλf(y) =
1

λ
(∇φ(y)−∇φ(−−→proxφλf(y)))

=
1

λ
(∇φ(y)− ←−−proxφ

∗

λ (f ◦ ∇φ∗)(∇φ(y))), (27)

and y sufficiently close to ȳ. If, furthermore, φ is very strictly convex, ∇−→envφλf is Lipschitz
continuous on a neighborhood of ȳ.

Proof. In view of Lemma 2.2, φ∗ is super-coercive. Then the result follows from the identities

−→envφλf = ←−envφ
∗

λ (f ◦ ∇φ∗) ◦ ∇φ

and
−−→proxφλf(y) = ∇φ∗(←−−proxφ

∗

λ (f ◦ ∇φ∗)(∇φ(y))),

cf. Lemma 3.8 as well as Lemma 3.10 and Proposition 3.33 applied to ←−envφ
∗

λ (f ◦∇φ∗)◦∇φ.

Note that when φ is very strictly convex and in addition ∇2φ is Lipschitz at x̄, in view
of Corollary 3.31 and Proposition 3.17, the relative prox-regularity assumption on f ◦ ∇φ∗ is
equivalent to classical prox-regularity of f at x̄ for ∇2φ(x̄)v̄ ∈ ∂f(x̄).

The gradient formula of the right Bregman envelope provides us with an explicit sufficient
condition for the local C1 property of the right Bregman distance function of a convex set,
which, in view of [15, Theorem 6.6] and [15, Example 7.5], does not hold globally in general.
To illustrate this we revisit and extend [15, Example 7.5].
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Example 3.36. Define the Legendre function φ : R2 → R as

φ(x1, x2) := exp(x1) + exp(x2).

Then the convex conjugate is given as

φ∗(y1, y2) =

{
y1 log(y1)− y1 + y2 log(y2)− y2 if y1 ≥ 0, y2 ≥ 0,

+∞, otherwise.

Define f := δC for
C := {(x, 2x) : x ∈ [0, 1]}.

Then f ◦ ∇φ∗ = δ∇φ(C) for ∇φ(C) = {(exp(x), exp(2x)) : x ∈ [0, 1]} which is obviously
a nonconvex set. Let x̄ ∈ C. Since φ∗ is C3 on int(domφ∗) and very strictly convex and
therefore ∇2φ∗ is full rank at ∇φ(x̄) and (f ◦ ∇φ∗)(∇φ(x̄)) = f(x̄) is finite we have that
f ◦ ∇φ∗ is strongly amenable at ∇φ(x̄). In view of [52, Proposition 13.32] f ◦ ∇φ∗ is also
prox-regular at ∇φ(x̄). Let v̄ ∈ ∂(f ◦ ∇φ∗)(∇φ(x̄)), i.e. v̄ is a limiting normal of ∇φ(C) at
∇φ(x̄) and, in view of the prox-regularity of f ◦ ∇φ∗ at ∇φ(x̄), even a proximal normal of
∇φ(C) at ∇φ(x̄). In view of Proposition 3.17, f ◦ ∇φ∗ is also prox-regular relative to φ∗ at
∇φ(x̄). Then we can invoke Corollary 3.35 to assert, that for λ > 0 being sufficiently small,
the right Bregman distance function −→envφλf = −→envφ1 δC is C1 around the point ȳ = x̄+ λv̄.

In view of Corollary 3.31, the local C1 property of the right Bregman distance function
−→envφ1 δC even holds for nonconvex C with δC prox-regular.

We conclude this section by providing an interesting additional (global) regularity property
of the Bregman envelope function: Both the left envelope ←−envφλf ◦∇φ

∗ and the right envelope
−→envφλf have the one-sided L-smad property relative to φ∗ resp. φ, and therefore yield promising
candidates for optimization with Bregman proximal gradient methods [6, 18], cf. Section 4.

Proposition 3.37. Let φ ∈ Γ0(Rm) be Legendre and f : Rm → R be proper lsc. Then it
holds that:

(i) If dom f ∩ domφ is non-empty, f is prox-bounded relative to φ with threshold λf and φ
is super-coercive, then for any λ ∈ ]0, λf [,

1

λ
φ∗ − ←−envφλf ◦ ∇φ

∗ =

(
f +

1

λ
φ

)∗ ( ·
λ

)
is proper, lsc and convex.

(ii) If f is right prox-bounded relative to φ with threshold λf and domφ = Rm, then for any
λ ∈ ]0, λf [,

1

λ
φ− −→envφλf =

(
f ◦ ∇φ∗ +

1

λ
φ∗
)∗ ( ·

λ

)
is proper, lsc and convex.

Proof. Let f be prox-bounded relative to φ super-coercive with threshold λf > 0 and let
λ ∈ ]0, λf [. From [32, Theorem 2.4] we obtain that we have for all y ∈ Rm:

1

λ
φ∗(y)−

(
f +

1

λ
φ

)∗ ( y
λ

)
= (←−envφλf ◦ ∇φ

∗)(y).

Then, in view of Lemma 3.3, we know that ←−envφλf is proper and continuous on int(domφ) =

ran∇φ∗, which means in particular, thanks to Lemma 2.2(iv), dom(←−envφλf ◦ ∇φ
∗) = Rm.

Furthermore, in view of Proposition 3.5(ii), f + (1/λ)φ is bounded below and proper. Then,
clearly, con(f + (1/λ)φ) is proper, and in view of [52, Theorem 11.1], (f + (1/λ)φ)∗ (·/λ) is
proper, lsc and convex. Since in view of Lemma 2.2(iv) also domφ∗ = Rm we can reorder the
terms and obtain that

1

λ
φ∗(y)− (←−envφλf ◦ ∇φ

∗)(y) =

(
f +

1

λ
φ

)∗ ( y
λ

)
,

and the assertion follows.
Part (ii) follows from a similar argument invoking [12, Proposition 2.4(ii)] and the obser-

vation that right prox-boundedness of f relative to φ implies prox-boundedness of f ◦ ∇φ∗
relative to φ∗.
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4 Algorithmic Implications of Relative Prox-regularity

4.1 Example of a Simple Bregman Proximal Mapping

We present an analytically solvable Bregman proximal mapping for the relatively prox-regular
function (1/p)|x|p for p ∈ ]0, 1[. While the function is also prox-regular, the classical proximal
mapping cannot be solved analytically, except for p = 1/2. For each p ∈ ]0, 1[, we define a
Legendre function φ relative to which (1/p)|x|p is prox-regular and the left Bregman proximal
mapping can be solved easily. This example is potentially interesting for applications that
involve optimization with sparsity regularization, as for example in compressed sensing.

Example 4.1. Let f : R → R with f(x) = (1/p)|x|p with p ∈ ]0, 1[ and choose φ(x) =
(1/q)|x|q with q > 1. For some y ∈ Rm we seek a closed form solution of the left Bregman
proximal mapping

←−−proxφλf(y) = arg min
x∈R

1

p
|x|p +

1

λ
Dφ(x, y) = arg min

x∈R

1

p
|x|p +

1

qλ
|x|q − cx,

for c := (1/λ) sign(y)|y|q−1. Let x̄ ∈ ←−−proxφλf(y). Note that

∂f(x) =

{
sign(x)|x|p−1 if x 6= 0,

R, otherwise.

and φ′(x) = sign(x)|x|q−1. Then, the first order necessary optimality condition is given as
follows:

0 ∈ ∂f(x̄) +
1

λ
φ′(x̄)− c =


x̄p−1 + 1

λ
x̄q−1 − c if x̄ > 0,

R if x̄ = 0,

−x̄p−1 − 1
λ
x̄q−1 − c, otherwise.

This shows that the left Bregman proximal mapping can be evaluated by checking the three
conditions individually and combining the minimum objective solutions. Note that the first and
the last condition are exclusive while the first two and the last two conditions can potentially
be satisfied simultaneously. Indeed, the Bregman proximal mapping of the given f can be
multivalued. Assume that x̄ > 0 as the other case follows analogously. I.e. we seek a point
x̄ > 0 that satisfies

x̄p−1

(
1 +

1

λ
x̄q−p − cx̄1−p

)
= 0.

Let α ∈ {2, 3, 4, . . .} and choose q according to the following condition:

q − p
1− p = α,

which is equivalent to q = α+ (1− α)p. Now, the substitution

x̄1−p = u ⇐⇒ x̄ = u1/(1−p)

leads to the following root-finding problem

u−1

(
1 +

1

λ
u
q−p
1−p − cu

)
= 0 ⇐⇒ 1 +

1

λ
uα − cu = 0,

which can be solved analytically (at least) for α ∈ {2, 3, 4}. Verification that f is relatively
prox-regular is yet to be performed. Let x̄ > 0. We can choose ε > 0 such that the ε-ball around
x̄ lies in R>0. Then we find r > 0 sufficiently large such that for all x ∈ R with |x − x̄| < ε
the second order derivative of f + rφ at x, given as (f + rφ)′′(x) = (1/(p− 1))xp−2 + r(1/(q−
1))xq−2 ≥ 0, is nonnegative, which is asserted for

r ≥ q − 1

1− p · inf
{
x(p−2)/(q−2) : |x− x̄| < ε

}
> 0,

since (q − 1)/(1 − p) > 0. This implies that f + rφ is convex on the open ε-ball around x̄
and therefore f is relatively prox-regular at x̄. The case x̄ < 0 follows by symmetry. Now, we
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choose x̄ = 0 and fix v̄ ∈ ∂f(0) = R. Since limx→0, x6=0 |f ′(x)| → ∞ we can find ε sufficiently
small such that the graph of the ε-localization T of ∂f around (x̄, v̄) degenerates to

gphT = {(x̄, v) : |v − v̄| < ε}.

Relative prox-regularity of f at x̄ = 0 for v̄ is then asserted by verifying the subgradient
inequality (19) for all (x, v) ∈ gphT . Indeed, we can find ε > 0, such that for all such
|v − v̄| < ε we have f(x′) ≥ vx′ for all |x′ − x̄| < ε, which shows that f is relatively prox-
regular also at 0.

4.2 Optimization Algorithms

We denote by C := int(domφ). We are interested in the following optimization problem,

minimize

{
Fλ(u, x) ≡ f(x) +

1

λ
Dφ(x,∇φ∗(A(u))) + g(u) : (u, x) ∈ Rn × C

}
, (28)

where A : Rn → Rm is an optional linear map. Via inf-projection with respect to x, the model
is equivalent to the left Bregman relaxation:

minimize
{

(←−envφλf ◦ ∇φ
∗ ◦A)(u) + g(u) : u ∈ Rn

}
. (29)

We are particularly interested in finding stationary points of the lower problem by a proximally
regularized alternating minimization strategy applied to the upper problem.

4.2.1 Convergence with Bregman Proximal Regularization

The first algorithm we consider is a variant of alternating minimization of model (28), see
Algorithm 1, which involves a proximal regularization of both variables, similar to proximal
alternating minimization [3].

Algorithm 1 (Bregman Proximal Alternating Minimization). Choose appropriate Leg-
endre functions σ ∈ Γ0(Rm) and ω ∈ Γ0(Rn) with domω = Rn and domσ ⊇ domφ and
initialize x0 ∈ int(domφ) and u0 ∈ Rn. For t = 1, 2, . . . do

xt+1 := arg min
x∈Rm

Fλ(ut, x) +Dσ(x, xt), (30)

ut+1 := arg min
u∈Rn

Fλ(u, xt+1) +Dω(u, ut). (31)

Note that the u-update is in general a difficult problem. We may therefore replace the
coupling function Dφ(x,∇φ∗(A(u))) with a proximal linearization as in proximal alternat-
ing linearized minimization (PALM) [17], which is captured in the Bregman proximal term
Dω(u, ut) in our formulation. E.g. let φ∗ be classically L-smooth. Since, in addition, A is
linear,

Dφ(xt,∇φ∗(A(u))) = φ(xt) + φ∗(A(u))− 〈u,A∗xt〉
is guaranteed to be L‖A‖2-smooth in u and we may choose

ω(u) :=
M

2
‖u‖2 − φ∗(A(u)),

for M > L‖A‖2. Then the u-update (31) becomes a classical proximal gradient step on Fλ as
in PALM:

ut+1 = arg min
u∈Rn

g(u) + 〈u,A∗(∇φ∗(Aut)− xt)〉+
M

2
‖u− ut‖2.

Remarkably, prox-regularity as a stability condition allows us to interpret the limit point
u∗ as a stationary point of the regularized problem (29), even though the algorithm performs
proximally regularized x-updates and the problem is nonconvex. A similar “translation of
stationarity” has been oberserved previously in [35, 36] for the classical Moreau envelope and
an anisotropic generalization of the former.
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Theorem 4.2. Let φ, σ ∈ Γ0(Rm), ω ∈ Γ0(Rn) be Legendre and φ be super-coercive. Let f, g
be proper, lsc, dom f ∩ domφ be non-empty and let the qualification condition (5) hold. Let
Fλ : Rn×Rm → R be coercive for any λ ∈ ]0, λf [ and λf > 0. Let λ ∈ ]0, λf [. Then any limit
point (u∗, x∗) of the sequence of iterates {ut, xt}t∈N produced by Algorithm 1 is a stationary
point of Fλ, i.e.

0 ∈ ∂Fλ(u∗, x∗),

and in particular x∗ ∈ int(domφ) and

0 ∈ ∂f(x∗) +
1

λ
(∇φ(x∗)−A(u∗)), (32)

0 ∈ ∂g(u∗) +
1

λ
A∗(∇φ∗(A(u∗))− x∗). (33)

If, furthermore, f is prox-regular relative to φ at x∗ for v∗ ∈ ∂f(x∗), λ > 0 is chosen to be
sufficiently small and it holds that A(u∗) = ∇φ(x∗) + λv∗, then u∗ is also a stationary point
of the left Bregman relaxation (29), i.e. in particular we have:

0 ∈ ∂(←−envφλf ◦ ∇φ
∗ ◦A+ g)(u∗).

Proof. The first part of the proof is standard. For the sake of self-containedness we provide
a proof in the Appendix.

For the second part, it should first be noted that since Fλ is coercive for any λ ∈ ]0, λf [
and g, f are proper lsc, it can be seen that

inf
x∈Rm

f(x) + g(u∗) +
1

λ
Dφ(x,A(u∗)) > −∞

for any λ ∈ ]0, λf [ and therefore f is prox-bounded relative to φ with threshold λf . In view
of (32), the identity A(u∗) = ∇φ(x∗) + λv∗ yields

v∗ =
1

λ
(A(u∗)−∇φ(x∗)) ∈ ∂f(x∗).

Since by assumption f is prox-regular at x∗ for v∗ ∈ ∂f(x∗) we can invoke Theorem 3.20 and
Proposition 3.33 and prove that if the chosen λ ∈ ]0, λf [ is sufficiently small we have that
x∗ = ←−−proxφλf(A(u∗)) and ←−envφλf is C1 around A(u∗) = ∇φ(x∗) + λv∗ with

1

λ
A∗(∇φ∗(A(u∗))− x∗) = A∗∇(←−envφλf ◦ ∇φ

∗)(A(u∗)).

Combining this with (33) yields

0 ∈ ∂g(u∗) +A∗∇(←−envφλf ◦ ∇φ
∗)(A(u∗)).

In view of [52, Exercise 8.8(c)], we get the conclusion.

We conclude this section with the remark that one can derive analogous results for the
right Bregman envelope starting from the problem

minimize

{
Hλ(y, x) ≡ f(x) +

1

λ
Dφ(y, x) + g(y) : (y, x) ∈ Rm × Rm

}
, (34)

with domφ = Rm. In this case, we aim to find stationary points of

minimize
{−→envφλf(y) + g(y) : y ∈ Rm

}
, (35)

via alternating minimization of the upper problem.
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4.2.2 Local Convergence with Partial Bregman Proximal Regularization

In this section we consider a variant of Algorithm 1, where we leave out proximal regularization
of the x-update, i.e. σ ≡ 0. As a short computation reveals, when the gradient formula for
the envelope ←−envφλf ◦ ∇φ

∗ holds (which happens to be true locally whenever f is relatively
prox-regular around the limit point and relatively prox-bounded and λ > 0 is sufficiently
small) we can rewrite the algorithm as the following Bregman proximal gradient update:

ut+1 = arg min
u∈Rm

g(u) + 〈∇(←−envφλf ◦ ∇φ
∗ ◦A)(ut), u− ut〉+D 1

λ
φ∗+ω(u, ut).

Analogously, alternating minimization of (34) with a proximal regularization of the y-update
yields the following Bregman proximal gradient update involving the right Bregman envelope
(assuming the gradient formula for the right envelope holds):

yt+1 = arg min
y∈Rm

g(y) + 〈∇−→envφλf(yt), y − yt〉+D 1
λ
φ+ω(y, yt).

This illustrates a close relationship between alternating (Bregman) minimization and the
(Bregman) proximal gradient method, which is known from the quadratic case; see e.g.
[37, 45, 35]. Indeed, in view of Proposition 3.37, for φ super-coercive resp. domφ = Rm
and f relatively prox-bounded resp. relatively right prox-bounded with thresholds λf , both
(1/λ)φ∗ − ←−envφλf ◦ ∇φ

∗ and (1/λ)φ − −→envφλf are proper lsc and convex if λ ∈ ]0, λf [ and
therefore locally satisfy the one-sided extended descent lemma with modulus 1/λ when f is
relatively prox-regular and λ sufficiently small. Overall, this means that existing convergence
results from [6, 18] for the Bregman proximal gradient method carry over, at least locally.

5 Conclusions

In this paper, we have considered the left and right Bregman proximal mapping of nonconvex
functions including indicator functions of nonconvex sets. We define relative prox-regularity,
an extension of prox-regurity, which provides us with a sufficient condition for the local single-
valuedness of the left Bregman proximal mapping. In this context, we identify relatively
amenable functions, i.e. compositions of a convex function and a smooth adaptable mapping
as a main source for examples of relatively prox-regular functions. Since the right Bregman
proximal mapping can be related to the left Bregman proximal mapping via a substitution,
many results can be transferred to the right Bregman proximal mapping. By way of example,
we apply our theory to interpret joint alternating Bregman minimization with additional prox
terms, locally, as Bregman proximal gradient.
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Appendix: Proof of First Part of Theorem 4.2

Lemma A.1. Let the assumptions in Theorem 4.2 hold. Then we have, for the iterates
produced by Algorithm 1, that

(i) A monotonic sufficient decrease over the iterates is guaranteed:

Fλ(ut+1, xt+1) +Dσ(xt+1, xt) +Dω(ut+1, ut) ≤ Fλ(ut, xt), (36)

(ii) {ut, xt}t∈N is bounded and xt ∈ int(domφ) for all t.

(iii) We have that −∞ < β ≤ Fλ(ut, xt) is uniformly bounded from below for all t and
{Fλ(ut+1, xt+1)}t∈N converges.

Proof. Let λ ∈ ]0, λf [. In view of the coercivity of Fλ and since f, g are proper lsc, the iterates
are well-defined.

For part (i) note that by the definition of the x-update we have that

Fλ(ut, xt+1) +Dσ(xt+1, xt) ≤ Fλ(ut, xt)

and by the definition of the u-update

Fλ(ut+1, xt+1) +Dω(ut+1, ut) ≤ Fλ(ut, xt+1).

Summing the two yields (36).
For part (ii) note that the boundedness of {ut, xt}t∈N follows from (36) and the coercivity

of Fλ. By the qualification condition and an argument similar to the one in the proof of
Lemma 3.6 we have that xt ∈ int(domφ).

For part (iii) note that Fλ is proper and lsc and the iterates are bounded due to part (ii).
In view of [52, Corollary 1.10], Fλ is bounded from below over the iterates and the conclusion
follows.

We are now ready to prove the statement from Theorem 4.2:

Proof. We sum the estimate (36) form t = 0 to T and obtain, in view of Lemma A.1(iii), that

−∞ < Fλ(uT , xT )− Fλ(u0, x0) =

T∑
t=0

Fλ(ut+1, xt+1)− Fλ(ut, xt)

≤ −
T∑
t=0

(Dσ(xt+1, xt) +Dω(ut+1, ut)).

We take T →∞ and deduce that

Dσ(xt+1, xt) +Dω(ut+1, ut)→ 0,

and therefore Dσ(xt+1, xt) → 0 and Dω(ut+1, ut) → 0 and in view of the strict convexity of
σ, ω on int(domφ), we also have ‖xt+1− xt‖ → 0 and ‖ut+1− ut‖ → 0. In view of the x- and
u-updates and the qualification condition (5), we obtain that:

0 ∈ ∂f(xt+1) +
1

λ
(∇φ(xt+1)−A(ut+1)) +∇σ(xt+1)−∇σ(xt) +

1

λ
(A(ut+1)−A(ut)),

and

0 ∈ ∂g(ut+1) +
1

λ
A∗(∇φ∗(A(ut+1))− xt+1) +∇ω(ut+1)−∇ω(ut).

In view of [52, Exercise 8.8(c)] and [52, Proposition 10.5] and since xt+1 ∈ int(domφ), this
means (

∇σ(xt)−∇σ(xt+1) + 1
λ

(A(ut)−A(ut+1))
∇ω(ut)−∇ω(ut+1)

)
∈ ∂Fλ(ut+1, xt+1).

In view of Lemma A.1(ii), the iterates are bounded and we may consider a convergent subse-
quence {utj , xtj}j∈N ⊂ {ut, xt}t∈N. Let (u∗, x∗) denote the limit point. In view of the closed-
ness of gph ∂Fλ under the Fλ-attentive topology, we have for j → ∞, since Fλ(utj , xtj ) →
Fλ(u∗, x∗), the continuity of ∇σ,∇ω,A and ‖xt+1 − xt‖ → 0 and ‖ut+1 − ut‖ → 0 that:

0 ∈ ∂Fλ(u∗, x∗).
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It remains to argue that also the limit point x∗ ∈ int(domφ) is contained in the interior of
domφ: In view of the qualification condition (5) and an argument similar to the one in the
proof of Lemma 3.6, as well as [52, Proposition 10.5], we obtain that x∗ ∈ int(domφ) and
conclude that the optimality conditions (32) and (33) hold.
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