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Tikhonov Regularization for Stochastic Convex Optimization in

Hilbert Spaces

Rodrigo Maulen-Soto∗ Jalal Fadili† Hedy Attouch‡

Abstract. To solve convex optimization problems with a noisy gradient input, we analyze the global behavior of

subgradient-like flows under stochastic errors. The objective function is composite, being equal to the sum of two

convex functions, one being differentiable and the other potentially non-smooth. We then use stochastic differential

inclusions where the drift term is minus the subgradient of the objective function, and the diffusion term is either

bounded or square-integrable. In this context, under Lipschitz’s continuity of the differentiable term and a growth

condition of the non-smooth term, our first main result shows almost sure weak convergence of the trajectory process

towards a minimizer of the objective function. Then, using Tikhonov regularization with a properly tuned vanishing

parameter, we can obtain almost sure strong convergence of the trajectory towards the minimum norm solution. We

find an explicit tuning of this parameter when our objective function satisfies a local error-bound inequality. We also

provide a comprehensive complexity analysis by establishing several new pointwise and ergodic convergence rates in

expectation for the convex and strongly convex case.
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1 Introduction

1.1 Problem statement

We aim to solve convex minimization problems by means of stochastic differential inclusions (SDI), show-

ing the existence, uniqueness, and properties of the solution. Then, we work with Tikhonov regularization,

specifically when the drift term is the sum of the (sub-)gradient of the objective function and of a Tikhonov

regularization term with a vanishing coefficient. This makes it possible to take into account a noisy (impre-

cise) gradient input and obtain convergence a.s. to the minimal norm solution.

Let us consider the minimization problem

min
x∈H

F (x)
def
= f(x) + g(x), (P)
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where H is a separable real Hilbert space, and the objective F satisfies the following standing assumptions:





f : H → R is continuously differentiable and convex with L-Lipschitz continuous gradient;

g : H → R is proper, lsc and convex;

SF
def
= argmin(F ) 6= ∅.

(H0)

To solve (P), a fundamental dynamic to consider is the subgradient flow, which is the following differential

inclusion (DI) starting in t0 ≥ 0 with initial condition x0 ∈ H:

{
ẋ(t) ∈ −∂F (x(t)), t > t0;

x(t0) = x0.
(DI)

It is well known since the founding articles of Brezis, Baillon, Bruck in the 1970s that, when the initial

data x0 is in the domain of F , (more generally when it is in its closure), there exists a unique strong global

solution of (DI). Moreover, if the solution set argmin(F ) of (P) is nonempty then each solution trajectory of

(DI) converges weakly, and its limit belongs to argmin(F ).

In many cases, the gradient input is subject to noise, for example, if the gradient cannot be evaluated

directly, or due to some other exogenous factor. In such scenario, one can model the associated errors using

a stochastic integral with respect to the measure defined by a continuous Itô martingale. This entails the

following stochastic differential inclusion (SDI) as a stochastic counterpart of (DI), consider K a separable

real Hilbert space: {
dX(t) ∈ −∂F (X(t)) + σ(t,X(t))dW (t), t ≥ t0;

X(t0) = X0,
(SDI)

where the diffusion (volatility) term σ : [t0,+∞[×H → L2(K;H) (see notation in Section 2) is a measur-

able function, and W is a K-valued Brownian motion (see Section A.2.1 for a precise definition), and the

initial data X0 is an F0-measurable H-valued random variable. This dynamic can be viewed as a stochastic

dissipative system that aims to minimize F if the diffusion term vanishes sufficiently fast. Also, it is the

natural extension to the non-smooth setting of the work done in [1].

An important aspect of our work concerns the Tikhonov regularization of (DI) and (SDI). Given t0 > 0,

and a regularization parameter ε : [t0,+∞[→ R+, which is a measurable function that vanishes asymptoti-

cally in a controlled way, the Tikhonov regularization of (DI) is written:

{
ẋ(t) ∈ −∂F (x(t)) − ε(t)x(t), t > t0;

x(t0) = x0.
(DI-TA)

The stochastic counterpart of (DI-TA) (which is the Tikhonov regularization of (SDI)), is the following

stochastic differential inclusion with initial data X0 ∈ Lν(Ω;H) (for some ν ≥ 2):

{
dX(t) ∈ −∂F (X(t)) − ε(t)X(t) + σ(t,X(t))dW (t), t > t0;

X(t0) = X0.
(SDI−TA)

The impact of the Tikhonov term has been studied in depth in the deterministic case (DI-TA) (see [2]).

The fact that the Tikhonov regularization parameter ε(t) tends to zero not too fast as t → +∞ induces a

hierarchical minimization property: the limit of any trajectory no longer depends on the initial data, it is
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precisely the minimum norm solution. We propose to extend these results to the stochastic case (SDI−TA)

based on the recent work of Maulen-Soto, Fadili, and Attouch [1].

Our objective is to study the dynamics (SDI) and (SDI− TA) and their long-time behavior in order to

solve (P). If the diffusion term vanishes with time, one would expect to solve (P) with our dynamics and

obtain for (SDI− TA) the hierarchical minimization property described above. We refer the reader to [1]

for some observations on why this happens.

Motivated by this, our paper will primarily focus on the case where σ(·, x) vanishes sufficiently fast as

t→ +∞ uniformly in x. Additionally, we will provide some guarantees for uniformly bounded σ. Therefore,

throughout the paper, we assume that σ satisfies:
{
supt≥t0,x∈H ‖σ(t, x)‖HS < +∞,

‖σ(t, x′)− σ(t, x)‖HS ≤ L0 ‖x
′ − x‖ ,

(H)

for some L0 > 0 and for all t ≥ t0, x, x
′ ∈ H (where HS is defined in Section 2). The Lipschitz continuity

assumption is mild and required to ensure the well-posedness of (SDI) and (SDI− TA).

1.2 Contributions

This work goes well beyond that of [1] in three directions: we consider the non-smooth case, in infinite

dimensional Hilbert spaces, and with Tikhonov regularization. The latter makes it possible to pass from

weak convergence to strong convergence, and to a particular solution, that of minimal norm.

We first study the properties of the process X(t) and F (X(t)) for the stochastic differential inclusion

(SDI) on separable real Hilbert spaces from an optimization perspective, under the assumptions (H0), (H)

and (Hλ) (introduced in Section 3). When the diffusion term is uniformly bounded, we show convergence of

E[F (X(t)) −minF ] to a noise-dominated region both for the convex and strongly convex case. When the

diffusion term is square-integrable, we show in Theorem 3.6 that X(t) weakly converges almost surely to a

solution of (P), which is a new result to the best of our knowledge. Moreover, in Theorem 3.8, we provide

new ergodic and pointwise convergence rates of the objective in expectation, again, for both the convex and

strongly convex case.

Next, we consider (SDI− TA), obtained by adding a Tikhonov regularization term to (SDI). We show in

Theorem 4.1 that under certain conditions on the regularization term, X(t) strongly converges almost surely

to the minimum norm solution. Then, we show in Theorem 4.8 some practical situations where one can

obtain an explicit form of the Tikhonov regularizer. Moreover, in Theorem 4.11, we show new convergence

rates of the objective and the trajectory in expectation for the smooth case.

Tables 1 summarizes the convergence rates obtained for E[F (X(t)) − minF ]. We use the following

notation, F = f + g, σ∗ > 0 and σ∞(·) is defined as

σ∞(t)
def
= sup

x∈H
‖σ(t, x)‖HS where ‖σ(t, x)‖2HS ≤ σ2∗ , ∀t ≥ t0,∀x ∈ H. (1.1)

We also denote EBp(S) the local Error Bound Inequality defined in (4.10).

Property of F DI SDI (supt≥t0
σ∞(t) ≤ σ∗) SDI (σ∞ ∈ L2([t0,+∞[))

Convex t−1 t−1 + σ2∗ t−1

µ-Strongly Convex e−2µt e−µt + σ2∗ max{e−µt, σ2∞(t)}

Table 1: Summary of convergence rates obtained for E[F (X(t)) −minF ].
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In Table 2, we summarize the results obtained in the smooth case for the dynamics with Tikhonov regu-

larization, i.e., when g ≡ 0.

Property of f DI-TA (ε(t) = t−r, r ∈]0, 1[) SDI-TA
(
ε(t) = t−r, r ∈] 2p

2p+1 , 1[
)

Convex ∩ EBp(S) t−r t−r1

Table 2: Summary of convergence rates obtained for E[f(X(t)) −min f ] for the dynamics with Tikhonov

regularization when ε(t) = t−r.

1.3 Relation to prior work

The subgradient flow dynamic (DI), which is valid on a general real Hilbert space, is a dissipative dynamical

system, whose study dates back to Cauchy [3]. It plays a fundamental role in optimization: it transforms

the problem of minimizing F into the study of the asymptotic behavior of the trajectories of (DI). Its Euler

forward discretization (with stepsize γk > 0) is the subgradient method

xk+1 ∈ xk − γk∂F (xk). (Sub-G)

Or equivalently,

xk+1 = xk − γkgk, (1.2)

where gk ∈ ∂F (xk) for every k ∈ N.

Let us focus on the finite-dimensional case (H = Rd). In [4, 5] they give conditions on the function and

the stepsize to converge to within some range of the optimal value and to the optimal value. Despite (Sub-G)

being a classical algorithm to solve the non-smooth convex minimization problem, it is not recommended for

general use, as discussed in [6, 7]. Moreover, with the need to handle large-scale problems (such as in various

areas of data science and machine learning), it has become necessary to find ways to get around the high

computational cost per iteration that these problems entail. The Robbins-Monro stochastic approximation

algorithm [8] is at the heart of Stochastic Gradient Descent methods, which, roughly speaking, consists in

cheaply and randomly approximating the gradient at the price of obtaining a random noise in the solutions.

In [9] they propose the natural generalization to the non-smooth setting, the stochastic subgradient method

(S-Sub-G) that updates the iterates according to

xk+1 ∈ xk − γk(∂F (xk) + ξk), (S-Sub-G)

where ξk denotes the (random) noise term on the subgradient at the k-th iteration, and E[ξk] = 0.

The SDI continuous-time approach is motivated by its relations to (S-Sub-G), where the latter can be

viewed as an Euler forward time discretization, and the noise ξk ∼ N (0, σkId) (hence not necessarily

bounded). The advantage of the continuous-time perspective is that it offers a deep insight and unveils the

key properties of the dynamic, without being tied to a specific discretization.

We extend the work of [1] to the case where the objective is “smooth+non-smooth”, being able to show

the almost sure weak convergence of the trajectory to the set of minimizers and new convergence rates for

the objective in the convex and strongly convex case.

1Whenever σ2
∞(t) = O(t−2r).
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Besides, based on the work of [10], we add a Tikhonov term that let us obtain the almost sure strong

convergence of the trajectory to the minimal norm solution. Moreover, we extend the convergence rates

shown in [10, Theorem 5] to the stochastic case.

1.4 Organization of the paper

Section 2 introduces notations and reviews some necessary material from convex and stochastic analysis.

Section 3 states our main convergence results of (SDI) in the case of a convex objective function under (H0)

and with an extra assumption on the non-smooth term. We first show the almost sure weak convergence of

the process towards the set of minimizers when the diffusion term is square-integrable, then we establish

convergence rates for the values. Section 4 introduces an extra vanishing term called Tikhonov regularizer

that let us obtain the almost sure strong convergence of (SDI− TA) to the minimal norm solution. Then we

give some practical situations where we can obtain an explicit tuning of the Tikhonov regularizer. Finally in

this section, we present convergence rates for the values and for the trajectory in the smooth case. Technical

lemmas and theorems that are needed throughout the paper will be collected in the appendix A.

2 Notation and Preliminaries

We will use the following shorthand notations: Given n ∈ N, [n]
def
= {1, . . . , n}. ConsiderH,K real separable

Hilbert spaces endowed with the inner product 〈·, ·〉H and 〈·, ·〉K, respectively, and norm ‖ · ‖H =
√

〈·, ·〉H
and ‖·‖K =

√
〈·, ·〉K, respectively (we omit the subscripts H and K for the sake of clarity). IH is the identity

operator from H to H. L(K;H) is the space of bounded linear operators from K to H, L1(K) is the space of

trace-class operators, and L2(K;H) is the space of bounded linear Hilbert-Schmidt operators from K to H.

For M ∈ L1(K), is trace is defined by

tr(M)
def
=
∑

i∈I
〈Mei, ei〉 < +∞,

where I ⊆ N and (ei)i∈I is an orthonormal basis of K. Besides, for M ∈ L(K;H), M⋆ ∈ L(H;K) is the

adjoint operator of M , and for M ∈ L2(K;H),

‖M‖HS
def
=
√

tr(MM⋆) < +∞

is its Hilbert-Schmidt norm (in the finite-dimensional case is equivalent to the Frobenius norm). We denote

by w-lim (resp. s-lim) the limit for the weak (resp. strong) topology of H. The notation A : H ⇒ H means

that A is a set-valued operator from H to H. Consider f : H → R, the sublevel of f at height r ∈ R is

denoted [f ≤ r]
def
= {x ∈ H : f(x) ≤ r}. For 1 ≤ p ≤ +∞, Lp([a, b]) is the space of measurable functions

g : R → R such that
∫ b

a
|g(t)|pdt < +∞, with the usual adaptation when p = +∞. On the probability

space (Ω,F ,P), Lp(Ω;H) denotes the (Bochner) space of H-valued random variables whose p-th moment

(with respect to the measure P) is finite. Other notations will be explained when they first appear.

Let us recall some important definitions and results from convex analysis; for a comprehensive coverage,

we refer the reader to [11].

We denote by Γ0(H) the class of proper lsc and convex functions on H taking values in R ∪ {+∞}. For

µ > 0, Γµ(H) ⊂ Γ0(H) is the class of µ-strongly convex functions, roughly speaking, this means that there

exists a quadratic lower bound on the growth of these functions. We denote by Cs(H) the class of s-times

continuously differentiable functions on H. For L ≥ 0, C1,1
L (H) ⊂ C1(H) is the set of functions on H
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whose gradient is L-Lipschitz continuous, and C2
L(H) is the subset of C1,1

L (H) whose functions are twice

differentiable.

The subdifferential of a function f ∈ Γ0(H) is the set-valued operator ∂f : H ⇒ H such that, for every

x in H,

∂f(x) = {u ∈ H : f(y) ≥ f(x) + 〈u, y − x〉 ∀y ∈ H}.

When f is continuous, ∂f(x) is a non-empty convex and compact set for every x ∈ H. If f is differentiable,

then ∂f(x) = {∇f(x)}. For every x ∈ H such that ∂f(x) 6= ∅, the minimum norm selection of ∂f(x) is

the unique element {∂0f(x)}
def
= argminu∈∂f(x) ‖u‖.

The projection of a point x ∈ H onto a closed convex set C ⊆ H is denoted by PC(x).

2.1 Deterministic results on the subgradient flow with Tikhonov regularization

Let us first recall some basic facts about the deterministic case. To solve (P), a fundamental dynamic to

consider is the subgradient flow of F , i.e. the following differential inclusion:

ẋ(t) ∈ −∂F (x(t)). (DI)

It is well known since the founding papers of Brezis, Baillon, and Bruck in the 1970s that, if the solution set

argmin(F ) of (P) is non-empty and F is convex, lower semicontinuous (lsc) and proper, then each solution

trajectory of (DI) converges weakly, and its weak limit belongs to argmin(F ).
In general, the limit solution depends on the initial data and is a priori difficult to specify when one has

a set of solutions not reduced to only one element. To remedy this difficulty we consider the differential

inclusion with vanishing Tikhonov regularization, ε(t) → 0 (denoted (DI-TA)) which gives

ẋ(t) + ∂F (x(t)) + ε(t)x(t) ∋ 0. (DI−TA)

To analyze the convergence properties of this dynamic, let us recall basic facts concerning the Tikhonov

approximation (1963). It consists in approximating the convex minimization problem (possibly ill-posed)

(P) min {F (x) : x ∈ H} ,

by the strongly convex minimization problem (ε > 0)

(P)ε min
{
F (x) +

ε

2
‖x‖2 : x ∈ H

}

whose unique solution is denoted by xε. The following result was first obtained by Browder in 1966 [12, 13].

Theorem 2.1. (Hierarchical minimization). Suppose that SF = argmin(F ) 6= ∅. Then,

(i) limε→0 ‖xε − x⋆‖ = 0 where x⋆ = PSF
(0).

(ii) ‖xε‖ ≤ ‖x⋆‖ for all ε > 0.

The system (DI− TA) is a special case of the general dynamic model

ẋ(t) +∇F (x(t)) + ε(t)∇Ψ(x(t)) ∋ 0 (2.1)

which involves two functions F and Ψ intervening with different time scale. When ε(·) tends to zero moder-

ately slowly, it was shown in [14] that the trajectories of (2.1) converge asymptotically to equilibria that are

solutions of the following hierarchical problem: they minimize the function Ψ on the set of minimizers of F .
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The continuous and discrete-time versions of these systems have a natural connection to the best response

dynamics for potential games, domain decomposition for PDE’s, optimal transport, and coupled wave equa-

tions. In the case of the Tikhonov approximation, a natural choice is to take Ψ(x) = ‖x− xd‖
2 where xd is

a desired state. By doing so, we obtain asymptotically the closest possible solution to xd. By translation, we

can immediately reduce ourselves to the case xd = 0, as considered in this article.

The following theorem establishes the convergence of the trajectories of (DI− TA) towards the minimum

norm solution under minimal assumptions on the parameter ε(t).

Theorem 2.2. (Cominetti-Peypouquet-Sorin, [2])

Suppose that ε : [t0,+∞[→ R+ is a measurable function that satisfies:

(i) ε(t) → 0 as t→ +∞;

(ii)

∫ +∞

t0

ε(t)dt = +∞.

Let x(·) be a solution trajectory of the continuous dynamic (DI−TA). Then, s-limt→+∞ x(t) = x⋆
def
=

PSF
(0).

Proof. Set Fε(x) := F (x) + ε
2‖x‖

2. Then (DI− TA) can be written equivalently in a denser form as

ẋ(t) + ∂Fε(t)(x(t)) ∋ 0.

Set h(t) := 1
2‖x(t) − x⋆‖2 where x⋆ = PSF

(0). Derivation of f and constitutive equation (DI− TA) give

ḣ(t) + 〈−ẋ(t), x(t) − x⋆〉 = 0, (2.2)

where −ẋ(t) ∈ ∂Fε(t)(x(t)). By strong convexity of Fε(t), we get

Fε(t)(x
⋆) ≥ Fε(t)(x(t)) + 〈y(t), x⋆ − x(t)〉+

ε(t)

2
‖x(t)− x⋆‖2,

for every y(t) ∈ ∂Fε(t)(x(t)).
Using that Fε(t)(x(t)) ≥ Fε(t)(xε(t)), we get

F (x⋆) +
ε(t)

2
‖x⋆‖2 ≥ F (xε(t)) +

ε(t)

2
‖xε(t)‖

2 + 〈y(t), x⋆ − x(t)〉+
ε(t)

2
‖x(t)− x⋆‖2,

for every y(t) ∈ ∂Fε(t)(x(t)) .

From F (x⋆) ≤ F (xε(t)) we deduce

〈y(t), x(t)− x⋆〉 ≥ ε(t)h(t) +
ε(t)

2

(
‖xε(t)‖

2 − ‖x⋆‖2
)
, (2.3)

for every y(t) ∈ ∂Fε(t)(x(t)).

Combining (2.2) with (2.3) we obtain

ḣ(t) + ε(t)h(t) ≤ 1
2ε(t)

(
‖x⋆‖2 − ‖xε(t)‖

2
)
.
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Integrate the above inequality from t0 to t. With m(t) := exp
∫ t

t0
ε(s)ds we get

h(t) ≤
h(t0)

m(t)
+

1

2m(t)

∫ t

t0

m′(s)
(
‖x⋆‖2 − ‖xε(s)‖

2
)
ds. (2.4)

According to hypothesis (i) and the classical property of the Tikhonov approximation we have

xε(t) → x⋆, and hence ‖x⋆‖2−‖xε(s)‖
2 → 0. To pass to the limit on (2.4) we use hypothesis (ii) which tells

us that m(t) → +∞. Let us complete the argument by using that convergence implies ergodic convergence.

Precisely, given δ > 0, let tδ > t0 such that |‖x⋆‖2 − ‖xε(s)‖
2| ≤ δ for s ≥ tδ. Then split the integral as

follows

h(t) ≤
h(t0)

m(t)
+

1

2m(t)

∫ tδ

t0

m′(s)
(
‖x⋆‖2 − ‖xε(s)‖

2
)
ds+ δ

1

2m(t)

∫ t

tδ

m′(s)ds (2.5)

≤
h(t0)

m(t)
+

1

2m(t)

∫ tδ

t0

m′(s)
(
‖x⋆‖2 − ‖xε(s)‖

2
)
ds+

δ

2
. (2.6)

Then let t tend to infinity, to get lim supt→+∞ h(t) ≤ δ
2 . This being true for any δ > 0 gives the result.

2.2 Stochastic differential equations

As said before, in many cases, the drift term is subject to noise. In such a scenario, one can model these

errors using a stochastic integral with respect to the measure defined by a continuous Itô martingale. In

the smooth case without Tikhonov regularization, this approach has been well documented in Maulen-Soto,

Fadili, Attouch [1]. This concerns the following stochastic differential equation as the stochastic counterpart

of the gradient flow, let t0 ≥ 0 and initial data X0 ∈ Lν(Ω;H) (for some ν ≥ 2):
{
dX(t) = −∇f(X(t))dt+ σ(t,X(t))dW (t), t > t0

X(t0) = X0.
(SDE)

Let us make precise the ingredients of this stochastic differential equation. It is defined over a filtered prob-

ability space (Ω,F , {Ft}t≥0,P), where the diffusion (volatility) term σ : [t0,+∞[×H → L2(K;H) is a

measurable function, and W is a K-valued Brownian motion.

Throughout this article, the diffusion term σ is assumed to satisfy (H). In connection with this assumption,

let us define σ∗ > 0 and σ∞(·) by

‖σ(t, x)‖2HS ≤ σ2∗ , ∀t ≥ 0,∀x ∈ H, σ∞(t)
def
= sup

x∈H
‖σ(t, x)‖HS , (2.7)

and σ∞(·) is a decreasing function.

Concerning the study of (SDI) and (SDI− TA), let us recall the following result of [1, Theorem 3.4] on

which we will build our study. It establishes almost sure weak convergence of X(t) to an S-valued random

variable as t→ +∞.

Theorem 2.3. Consider the dynamic (SDE) where f and σ satisfy the assumptions (H0) and (H). Let ν ≥ 2,

and its initial dataX0 ∈ Lν(Ω;H). Then, there exists a unique solution X ∈ Sν
H[t0] of (SDE). Additionally,

if σ∞ ∈ L2([t0,+∞[), then:

(i) supt≥0 E[‖X(t)‖2] < +∞.

(ii) ∀x⋆ ∈ S , limt→+∞ ‖X(t)− x⋆‖ exists a.s. and supt≥0 ‖X(t)‖ < +∞ a.s.

(iii) limt→∞ ‖∇f(X(t))‖ = 0 a.s. As a result, limt→∞ f(X(t)) = min f a.s.

(iv) There exists an S-valued random variable X⋆ such that w-limt→+∞X(t) = X⋆ a.s.
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3 Stochastic differential inclusions

In this section, we will work with stochastic differential inclusions. For the history of this concept, we refer

the reader to [15, Preface]. We will start by showing a general version of the (SDI) dynamic, formally

describing what it means to be a solution of that dynamic, and then we will move on to show the conditions

under which you can have the existence and uniqueness of a solution. Existence is due to [16] and uniqueness

is proven here. Then we will focus on (SDI) and study the conditions on the diffusion term in order to ensure

the almost sure weak convergence of the trajectory towards the set of minimizers. Finally, we will show some

convergence rates of the objective under the hypothesis of convexity or strong convexity.

3.1 Existence and uniqueness of solution

Let A : H ⇒ H, b : [t0,+∞[×H → H and σ : [t0,+∞[×H → L2(K;H). Let t0 ≥ 0 and consider the

general stochastic differential inclusion:

{
dX(t) ∈ b(t,X(t))dt −A(X(t))dt + σ(t,X(t))dW (t), t > 0

X(t0) = X0,
(SDI0)

defined over a complete filtered probability space (Ω,F , {Ft}t≥t0 ,P), where the diffusion (volatility) term

σ : [t0,+∞[×H → L2(K;H) is a measurable function; W is a Ft-adapted K-valued Brownian motion; and

the initial data X0 is an F0-measurable H-valued random variable.

Definition 3.1. A solution of (SDI0) is a couple (X, η) of Ft-adapted processes such that almost surely:

(i) X is continuous with sample paths in the domain of A;

(ii) η is absolutely continuous, such that η(t0) = 0, and ∀T > t0, η
′ ∈ L2([t0, T ];H), η′(t) ∈ A(X(t))

for almost all t ≥ t0;
(iii) For t > t0,

{
X(t) = X0 +

∫ t

t0
b(s,X(s))ds − η(t) +

∫ t

t0
σ(s,X(s))dW (s),

X(t0) = X0.
(3.1)

For brevity, we sometimes omit the process η and say that X is a solution of (SDI0), meaning that, there

exists a process η such that (X, η) satisfies the previous definition.

The definition of uniqueness for the process X will be presented in Section A.2.1.

Throughout the paper it will be assumed:

{
A is a maximal monotone operator with closed domain;

S
def
= A−1(0) 6= ∅.

(H0(A))

{
∃L > 0, ‖b(t, x) − b(t, y)‖ ∨ ‖σ(t, x) − σ(t, y)‖HS ≤ L‖x− y‖,∀t ≥ t0,∀x, y ∈ H;

supt≥t0
(‖b(t, 0)‖ ∨ ‖σ(t, 0)‖HS) < +∞.

(H0(b, σ))

The Lipschitz continuity assumption is mild and required to ensure the well-posedness of (SDI0).

We are interested in ensuring the existence and uniqueness of a solution for (SDI0). Although there are

several works that deal with the subject of stochastic differential inclusions (see [15, 17, 18, 19, 16, 20]), those
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of [16, 20] are the closest to our setting and define a solution in the sense of Definition 3.1, thus generalizing

the work of Brezis [21] in the deterministic case to the stochastic setting. In this paper, we consider the

sequence of solutions {Xλ}λ>0 of the stochastic differential equations

{
dXλ(t) = b(t,X(t))dt −Aλ(Xλ(t))dt+ σ(t,Xλ(t))dW (t), t > t0

Xλ(t0) = X0,
(SDEλ)

where Aλ = (I − (I + λA)−1)/λ is the Yosida approximation of A with parameter λ > 0. Under the

integrability condition

lim sup
λ↓0

∫ T

t0

E(‖Aλ(Xλ(t))‖
2)dt < +∞, (Hλ)

it was shown in [16] that there exists a couple (X, η) of stochastic processes such that for every T > t0,

lim
λ↓0

E

(
sup

t∈[t0,T ]
‖Xλ(t)−X(t)‖2

)
= 0, lim

λ↓0
E

(
sup

t∈[t0,T ]
‖ηλ − η‖2

)
= 0,

where ηλ(t) =
∫ t

t0
Aλ(Xλ(s))ds, and that (X, η) is a solution of (SDI0) in the sense of Definition 3.1.

Moreover, one can even have a.s. convergence of the processXλ when the diffusion term is state-independent;

see [16, Proposition 6.3].

Remark 3.2. Condition (Hλ) is satisfied under different conditions, some examples are mentioned in [16].

One case where this condition holds is when A is full domain and there exists C0 > 0 such that

‖A0(x)‖ ≤ C0(1 + ‖x‖) for x ∈ H, where A0(x) = argminy∈A(x) ‖y‖.

Theorem 3.3. Consider (SDI0), where A and (b, σ) satisfy the assumption (H0(A)) and (H0(b, σ)), re-

spectively. Additionally, suppose that A satisfy (Hλ) and let ν ≥ 2 such that X0 ∈ Lν(Ω;H) and is F0-

measurable. Then, there exists a unique solution (X, η) ∈ Sν
H[t0]× C1([t0,+∞[;H) of (SDI0).

Proof. The existence of a solution (X, η) in the sense of Definition 3.1 comes from [16, Theorem 3.5]. We

now turn to uniqueness. Let (X1, η1) and (X2, η2) be two solutions of (SDI0). By Itô’s formula, we have

‖X1(t)−X2(t)‖
2 = 2

∫ t

t0

〈b(s,X1(s))− b(s,X2(s)),X1(s)−X2(s)〉ds

− 2

∫ t

t0

〈η′1(s)− η′2(s),X1(s)−X2(s)〉ds+

∫ t

t0

‖σ(s,X1(s))− σ(s,X2(s))‖
2
HSds

+

∫ t

t0

〈X1(s)−X2(s), [σ(s,X1(s))− σ(s,X2(s))]dW (s)〉.

Since for almost all t ≥ 0, η′i(t) ∈ A(Xi(t)), i = {1, 2}, by monotonicity of A, we have that for almost all

t ≥ t0,

〈η′1(t)− η′2(t),X1(t)−X2(t)〉 ≥ 0,

and thus the second term on the right-hand side is non-positive. Now, let n ∈ N arbitrary and consider the

stopping time τn = inf{t ≥ t0 : ‖X1(t) − X2(t)‖ ≥ n} and evaluate the previous equation at t ∧ τn,
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denoting Xn
i (t) = Xi(t ∧ τn) (i = {1, 2}), we have

‖Xn
1 (t)−Xn

2 (t)‖
2 ≤ 2

∫ t∧τn

t0

〈b(s,X1(s))− b(s,X2(s)),X1(s)−X2(s)〉ds

+

∫ t∧τn

t0

‖σ(s,X1(s))− σ(s,X2(s))‖
2
HSds

+

∫ t∧τn

t0

〈X1(s)−X2(s), [σ(s,X1(s))− σ(s,X2(s))]dW (s)〉

≤ L(L+ 2)

∫ t∧τn

t0

‖X1(s)−X2(s)‖
2ds

+

∫ t∧τn

t0

〈X1(s)−X2(s), [σ(s,X1(s))− σ(s,X2(s))]dW (s)〉

≤ L(L+ 2)

∫ t

t0

‖Xn
1 (s)−Xn

2 (s)‖
2ds

+

∫ t∧τn

t0

〈X1(s)−X2(s), [σ(s,X1(s))− σ(s,X2(s))]dW (s)〉.

Note that we have used Cauchy-Schwarz inequality and the Lipschitz assumption on (b, σ) in the second

inequality. Taking expectation of both sides and using the properties of Itô’s integral we obtain

E(‖Xn
1 (t)−Xn

2 (t)‖
2) ≤ L(L+ 2)

∫ t

t0

E(‖Xn
1 (s)−Xn

2 (s)‖
2)ds.

By Grönwall’s inequality, we obtain that

E(‖Xn
1 (t)−Xn

2 (t)‖
2) = 0,∀t ≥ t0,∀n ∈ N.

On the other hand, we have that limn→+∞ t ∧ τn = t. Therefore, taking lim infn→+∞ in the previous

expression, using Fatou’s Lemma and the fact that X1,X2 are a.s. continuous processes, we conclude that

E(‖X1(t)−X2(t)‖
2) = 0, consequently

P(X1(t) = X2(t),∀t ∈ [t0, T ]) = 1, for every T > t0.

Let T > t0 arbitrary, let us prove that E
(
supt∈[t0,T ] ‖X(t)‖ν

)
< +∞. Using Itô’s formula with the solution

process X and the anchor function φ(x) = ‖x− x⋆‖2 for x⋆ ∈ A−1(0), we obtain for every t ∈ [t0, T ]:

‖X(t)− x⋆‖2 = ‖X0 − x⋆‖2 + 2

∫ t

t0

〈b(s,X(s)),X(s) − x⋆〉ds − 2

∫ t

t0

〈η′(s),X(s) − x⋆〉ds

+

∫ t

t0

‖σ(s,X(s))‖2HSds+ 2

∫ t

t0

〈X(s) − x⋆, σ(s,X(s))dW (s)〉.

Since η′(t) ∈ A(X(t)) for almost all t ≥ 0, and 0 ∈ A(x⋆), by monotonicity of A we have that for every

t ∈ [t0, T ],

〈η′(t),X(t) − x⋆〉 ≥ 0, for almost all t ≥ 0.
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Thus the second integral is nonnegative, which implies

‖X(t)− x⋆‖2 ≤ ‖X0 − x⋆‖2 + 2

∫ t

t0

〈b(s,X(s)),X(s) − x⋆〉ds +

∫ t

t0

‖σ(s,X(s))‖2HSds

+ 2

∫ t

t0

〈X(s)− x⋆, σ(s,X(s))dW (s)〉.

(3.2)

Moreover, we have

2〈b(t, x), x−x⋆〉+‖σ(t, x)‖2HS ≤ 2‖b(t, x)‖‖x−x⋆‖+‖σ(t, x)‖2HS ≤ C(1+‖x−x⋆‖2), ∀t ≥ t0,∀x ∈ H.

We now proceed as in the proof of [22, Lemma 3.2] to conclude that X ∈ Sν
H[t0]. In fact, we take power ν

2

at both sides of (3.2), then using that (a+ b+ c)
ν
2 ≤ 3

ν−2

2 (a
ν
2 + b

ν
2 + c

ν
2 ) we have

‖X(t) − x⋆‖ν ≤ 3
ν−2

2

(
‖X0 − x⋆‖ν + C

ν
2

(∫ t

t0

1 + ‖X(s)− x⋆‖2ds

)ν
2

)

+ 3
ν−2

2 2
ν
2

(∫ t

t0

〈X(s)− x⋆, σ(s,X(s))dW (s)〉

) ν
2

.

Now taking supremum t ∈ [t0, T ] and then expectation at both sides, we have that there exists K = K(ν, T )
such that:

E

(
sup

t∈[t0,T ]
‖X(t) − x⋆‖ν

)
≤ K

(
1 + E (‖X0 − x⋆‖ν) +

∫ T

t0

E(‖X(s) − x⋆‖ν)ds

)

+KE

(
sup

t∈[t0,T ]

∣∣∣
∫ t

t0

〈X(s)− x⋆, σ(s,X(s))dW (s)〉
∣∣∣
ν
2

)
.

By Proposition A.5, we get that, for a redefined K = K(ν, T ),

E

(
sup

t∈[t0,T ]
‖X(t) − x⋆‖ν

)
≤ K

(
1 + E (‖X0 − x⋆‖ν) +

∫ T

t0

E(‖X(s) − x⋆‖ν)ds

)

+KE

(∣∣∣
∫ T

t0

‖X(s)− x⋆‖2‖σ(s,X(s))‖2HSds
∣∣∣
ν
4

)
.

(3.3)

Note that by Cauchy-Schwarz and Young’s inequality,

E

(∣∣∣
∫ T

t0

‖X(s) − x⋆‖2‖σ(s,X(s))‖2HSds
∣∣∣
ν
4

)

≤ E

(
sup

t∈[t0,T ]
‖X(t)− x⋆‖

ν
2

(∫ T

t0

‖σ(s,X(s))‖2HS

) ν
4

)

≤
1

2K
E

(
sup

t∈[t0,T ]
‖X(t)− x⋆‖ν

)
+
K

2
E

[(∫ T

t0

‖σ(s,X(s))‖2HS

) ν
2

]

≤
1

2K
E

(
sup

t∈[t0,T ]
‖X(t)− x⋆‖ν

)
+
KC

ν
2

2
E

[(∫ T

t0

1 + ‖X(s) − x⋆‖2ds

) ν
2

]

≤
1

2K
E

(
sup

t∈[t0,T ]
‖X(t)− x⋆‖ν

)
+
KC

ν
2

2
T

ν−2

2 E

[(∫ T

t0

(1 + ‖X(s) − x⋆‖2)
ν
2 ds

)]
.
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Substituting this into (3.3), we have, for a possibly different K = K(ν, T ),

E

(
sup

t∈[t0,T ]
‖X(t) − x⋆‖ν

)
≤ K

(
1 + E (‖X0 − x⋆‖ν) +

∫ T

t0

E

(
sup
t∈[0,s]

‖X(t) − x⋆‖ν

)
ds

)
.

By Grönwall’s inequality, we obtain

E

(
sup

t∈[t0,T ]
‖X(t) − x⋆‖ν

)
≤ K (1 + E (‖X0 − x⋆‖ν)) eKT < +∞.

Since T > t0 is arbitrary, we conclude that X ∈ Sν
H[t0].

Corollary 3.4. Consider (SDEλ), where A and (b, σ) satisfy the assumption (H0(A)) and (H0(b, σ)), re-

spectively. Additionally, let us consider that A satisfy (Hλ) and let ν ≥ 2 such that X0 ∈ Lν(Ω;H) and is

F0-measurable. Then,

sup
λ>0

E

(
sup

t∈[t0,T ]
‖Xλ(t)‖

ν

)
< +∞.

Proof. SinceA−1(0) = A−1
λ (0) andAλ is monotone, we replace η′ byAλ(Xλ) in the proof of Theorem 3.3,

then we realize that the constant that bounds E
(
supt∈[t0,T ] ‖Xλ(t)‖

ν
)

is independent from λ to conclude.

Let us present our extension of Itô’s formula for a multi-valued drift, which plays a central role in the study

of SDI’s.

Proposition 3.5. Consider (SDI0) under the assumptions of Theorem (3.3). Let (X, η) ∈ Sν
H[t0]×C

1([t0,+∞[;H)
be the unique solution of (SDI0), and let φ : [t0,+∞[×H → R be such that φ(·, x) ∈ C1([t0,+∞[) for

every x ∈ H and φ(t, ·) ∈ C2(H) for every t ≥ t0. Then the process

Y (t) = φ(t,X(t)),

is an Itô Process such that for all t ≥ 0

Y (t) = Y (t0) +

∫ t

t0

∂φ

∂t
(s,X(s))ds +

∫ t

t0

〈
∇φ(s,X(s)), b(s,X(s)) − η′(s)

〉
ds

+

∫ t

t0

〈σ⋆(s,X(s))∇φ(s,X(s)), dW (s)〉 +
1

2

∫ t

t0

tr
(
σ(s,X(s))σ⋆(s,X(s))∇2φ(s,X(s))

)
ds, (3.4)

where η′(t) ∈ A(X(t)) a.s. for almost all t ≥ t0. Moreover, if E[Y (t0)] < +∞, and if for all T > t0

E

(∫ T

t0

‖σ⋆(s,X(s))∇φ(s,X(s))‖2 ds

)
< +∞,

then

∫ t

t0

〈σ⋆(s,X(s))∇φ(s,X(s)), dW (s)〉 is a square-integrable continuous martingale and

E[Y (t)] = E[Y (t0)] + E

(∫ t

t0

∂φ

∂t
(s,X(s))ds

)
+ E

(∫ t

t0

〈
∇φ(s,X(s)), b(s,X(s)) − η′(s)

〉
ds

)

+
1

2
E

(∫ t

t0

tr
(
G(s,X(s))G⋆(s,X(s))∇2φ(s,X(s))

)
ds

)
. (3.5)
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Proof. The unique solution (X, η) ∈ Sν
H[t0] × C1([t0,+∞[;H) of (SDI0) satisfies (by definition) the fol-

lowing equation:

{
X(t) = X0 +

∫ t

t0
[b(s,X(s)) − η′(s)]ds+

∫ t

t0
σ(s,X(s))dW (s), t > t0,

X(t0) = X0.
(3.6)

and η′(s) ∈ A(X(s)) for almost all t ≥ 0 a.s.. Then, (3.6) is an Itô process with drift s 7→ b(s,X(s))−η′(s)
and diffusion s 7→ σ(s,X(s)). Consequently, we can apply the classical Itô’s formula (see [23, Section 2.3])

to obtain the desired.

3.2 Almost sure weak convergence of the trajectory

We consider f + g (called the potential) and study the dynamic (SDI) under the hypotheses (H0) (i.e. f ∈
C1,1
L (H) ∩ Γ0(H), g ∈ Γ0(H)) and (H). Recall the definitions of σ∗ and σ∞(t) from (1.1). Throughout the

rest of the paper, we use the notation

F (x)
def
= f(x) + g(x)

Σ(t, x)
def
= σ(t, x)σ(t, x)⋆

SF
def
= argmin(F ).

Our first main result establish almost sure weak convergence of X(t) to a point that belongs in SF . It is

based on Itô’s formula, and on Barbalat’s and Opial’s Lemma. It follows the same ideas as in [1, Theorem

3.1].

Theorem 3.6. Consider F = f + g and σ satisfying (H0) and (H) respectively. Suppose further that ∂g
verifies (Hλ). Let ν ≥ 2, t0 ≥ 0 , and consider the dynamic (SDI) with initial data X0 ∈ Lν(Ω;H), i.e.:

dX(t) ∈ −∂F (X(t))dt + σ(t,X(t))dW (t)

X(t0) = X0,
(3.7)

where W is a K-valued Brownian motion. Then, there exists a unique solution (in the sense of Theorem 3.3)

(X, η) ∈ Sν
H[t0]×C1([t0,+∞[;H).

Moreover, if σ∞ ∈ L2([t0,+∞[), then the following holds:

(i) E[supt≥t0
‖X(t)‖ν ] < +∞.

(ii) ∀x⋆ ∈ SF , limt→+∞ ‖X(t)− x⋆‖ exists a.s. and supt≥t0 ‖X(t)‖ < +∞ a.s..

(iii) If g is continuous , then ∀x⋆ ∈ SF , ∇f(x⋆) is constant, limt→∞ ‖∇f(X(t))−∇f(x⋆)‖ = 0 a.s..

and ∫ +∞

t0

F (X(t)) −minF dt < +∞.

(iv) If (iii) holds, then there exists an SF -valued random variable X⋆ such that w-limt→+∞X(t) = X⋆.

Remark 3.7. By classical properties of the Yosida approximation

(∂g(x))λ = ∇gλ(x) =
1

λ
(x− proxλg(x)),
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where gλ is the Moreau envelope of g with parameter λ > 0. If there exists C > 0, such that

‖x− proxλg(x)‖ ≤ λC,

the assumption (Hλ) is satisfied by ∂g. As mentioned in Remark 3.2, if g is continuous and ‖∂0g(x)‖ ≤
C0(1 + ‖x‖) for some C0 > 0, then ∂g also satisfies (Hλ).

Proof. (i) Directly from Theorem 3.3.

(ii) Since F is convex, we first notice that SF = (∂F )−1(0).

Now let us consider (X, η) ∈ Sν
H[t0] × C1([t0,+∞[;H) be the unique solution of (SDI0) given by

Theorem 3.3, and φ(x) = ‖x−x⋆‖2
2 , where x⋆ ∈ SF . Then by Itô’s formula

φ(X(t)) =
‖X0 − x⋆‖2

2︸ ︷︷ ︸
ξ=φ(X0)

+
1

2

∫ t

t0

tr (Σ(s,X(s))) ds

︸ ︷︷ ︸
At

−

∫ t

t0

〈
η′(s) +∇f(X(s)),X(s) − x⋆

〉
ds

︸ ︷︷ ︸
Ut

+

∫ t

t0

〈σ⋆(s,X(s)) (X(s)− x⋆) , dW (s)〉

︸ ︷︷ ︸
Mt

. (3.8)

Let us observe that, since ν ≥ 2, we have that E(supt≥t0 ‖X(t)‖2) < +∞. Moreover, since σ∞ ∈
L2([t0,+∞[) we have

E

(∫ +∞

t0

‖σ⋆(s,X(s)) (X(s)− x⋆)‖2 ds

)
≤ E

(
sup
t≥t0

‖X(t)− x⋆‖2
)∫ +∞

t0

σ2∞(s)ds < +∞.

Therefore Mt is a square-integrable continuous martingale. It is also a continuous local martingale

(see [24, Theorem 1.3.3]), which implies that E(Mt) = 0.

Moreover, since F is a convex function, then ∂F is a monotone operator. On the other hand η′(t) ∈
∂g(X(t)) a.s. for almost all t ≥ t0, so

〈
η′(t) +∇f(X(t)),X(t) − x⋆

〉
≥ 0, a.s.for almost all t ≥ t0.

We have that At and Ut defined as in (3.8) are two continuously adapted increasing processes with

A0 = U0 = 0 a.s.. Since φ(X(t)) is nonnegative and supx∈H ‖σ(·, x)‖HS ∈ L2([t0,+∞[), we

deduce that limt→+∞At < +∞. Then, we can use Theorem A.7 to conclude that

∫ +∞

t0

〈η′(t) +∇f(X(t)),X(t) − x⋆〉dt < +∞ a.s. (3.9)

and

∀x⋆ ∈ SF ,∃Ωx⋆ ∈ F , such that P(Ωx⋆) = 1 and lim
t→+∞

‖X(ω, t) − x⋆‖ exists ∀ω ∈ Ωx⋆ . (3.10)

Since H is separable, there exists a countable set Z ⊆ SF , such that cl(Z) = SF (where cl stands for

the closure of the set). Let Ω̃ =
⋂

z∈Z Ωz . Since Z is countable, a union bound shows

P(Ω̃) = 1− P

(
⋃

z∈Z
Ωc
z

)
≥ 1−

∑

z∈Z
P(Ωc

z) = 1.
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For arbitrary x⋆ ∈ SF , there exists a sequence (zk)k∈N ⊆ Z such that limk→∞ zk = x⋆. In view of

(3.10), for every k ∈ N there exists τk : Ωzk → R+ such that

lim
t→+∞

‖X(ω, t) − zk‖ = τk(ω), ∀ω ∈ Ωzk . (3.11)

Now, let ω ∈ Ω̃. Since Ω̃ ⊂ Ωzk for any k ∈ N, and using the triangle inequality and (3.11), we obtain

that

τk(ω)− ‖zk − x⋆‖ ≤ lim inf
t→+∞

‖X(ω, t)− x⋆‖ ≤ lim sup
t→+∞

‖X(ω, t)− x⋆‖ ≤ τk(ω) + ‖zk − x⋆‖ .

Now, passing to k → +∞, we deduce

lim sup
k→+∞

τk(ω) ≤ lim inf
t→+∞

‖X(ω, t) − x⋆‖ ≤ lim sup
t→+∞

‖X(ω, t)− x⋆‖ ≤ lim inf
k→+∞

τk(ω),

whence we deduce that limk→+∞ τk(ω) exists on the set Ω̃ of probability 1, and in turn

lim
t→+∞

‖X(ω, t)− x⋆‖ = lim
k→+∞

τk(ω).

Let us recall that there exists Ωcont ∈ F such that P(Ωcont) = 1 and X(ω, ·) is continuous for every

ω ∈ Ωcont. Now let x⋆ ∈ SF arbitrary, since the limit exists, for every ω ∈ Ω̃ ∩ Ωcont there exists

T (ω) such that ‖X(ω, t)− x⋆‖ ≤ 1 + limk→+∞ τk(ω) for every t ≥ T (ω). Besides, since X(ω, ·) is

continuous, by Bolzano’s theorem

sup
t∈[0,T (ω)]

‖X(ω, t)‖ = max
t∈[0,T (ω)]

‖X(ω, t)‖
def
= h(ω) < +∞.

Therefore, supt≥t0
‖X(ω, t)‖ ≤ max{h(ω), 1 + limk→+∞ τk(ω) + ‖x⋆‖} < +∞.

(iii) Let Nt =

∫ t

t0

σ(s,X(s))dW (s). This is a continuous martingale (w.r.t. the filtration Ft), which

verifies

E(‖Nt‖
2) = E

(∫ t

t0

‖σ(s,X(s))‖2HS ds

)
≤ E

(∫ +∞

t0

σ2∞(s)ds

)
< +∞,∀t ≥ t0.

According to Theorem A.6, we deduce that there exists a H−valued random variable N∞ w.r.t. F∞,

and which verifies: E(‖N∞‖2) < +∞, and there exists ΩN ∈ F such that P(ΩN ) = 1 and

lim
t→+∞

Nt(ω) = N∞(ω) for every ω ∈ ΩN .

On the other hand, since x⋆ ∈ (∂F )−1(0) = (∇f + ∂g)−1(0), then −∇f(x⋆) ∈ ∂g(x⋆). Let T > t0
such that η′(t) ∈ ∂g(X(t)) a.s., consequently,

〈η′(t) +∇f(X(t)),X(t) − x⋆〉 = 〈η′(t)− (−∇f(x⋆)),X(t) − x⋆〉︸ ︷︷ ︸
≥0

+ 〈∇f(X(t))−∇f(x⋆),X(t) − x⋆〉

≥ 〈∇f(X(t))−∇f(x⋆),X(t) − x⋆〉

≥
1

L
‖∇f(X(t))−∇f(x⋆)‖2 ,
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where 〈η′(t)− (−∇f(x⋆)),X(t) − x⋆〉 ≥ 0 by monotonicity of ∂g. Then by (3.9) we obtain

∫ +∞

t0

‖∇f(X(t))−∇f(x⋆)‖2 dt < +∞ a.s.. (3.12)

Let ΩHS ∈ F be the event where (3.9) (and consequently (3.12)) is satisfied ( P(ΩHS) = 1). Let

Ωη ∈ F be the event where η′(t) ∈ ∂g(X(t)) for almost all T > t0 (P(Ωη) = 1). Finally, let

Ωconv
def
= Ω̃ ∩ Ωcont ∩ ΩHS ∩ ΩM ∩ Ωη, hence P(Ωconv) = 1. Let also ω ∈ Ωconv ⊆ ΩHS arbitrary,

then

lim inf
t→+∞

‖∇f(X(ω, t))−∇f(x⋆)‖ = 0.

If also

lim sup
t→+∞

‖∇f(X(ω, t))−∇f(x⋆)‖ = 0

then we conclude with the proof. Suppose by contradiction that there exists ω0 ∈ Ωconv such that

lim sup
t→+∞

‖∇f(X(ω0, t)) −∇f(x⋆)‖ > 0.

Then, by Lemma A.3, there exists δ(ω0) > 0 satisfying

0 = lim inf
t→+∞

‖∇f(X(ω0, t)) −∇f(x⋆)‖ < δ(ω0) < lim sup
t→+∞

‖∇f(X(ω0, t))−∇f(x⋆)‖ ,

and there exists (tk)k∈N ⊂ R+ such that limk→+∞ tk = +∞,

‖∇f(X(ω0, tk))−∇f(x⋆)‖ > δ(ω0) and tk+1 − tk > 1, ∀k ∈ N.

Additionally, consider η′(ω0, t) ∈ ∂g(X(ω0, t)) for almost all T > t0. Since

supt≥t0
‖X(ω0, t)‖ < +∞, ∂g is full domain, and the fact that ∂g maps bounded sets onto bounded

sets, we have that there exists Cη(ω0) ≥ 0 such that ‖η′(ω0, t)‖
2 ≤ Cη(ω0) for almost all T > t0.

We allow ourselves the abuse of notation X(t)
def
= X(ω0, t), η

′(t)
def
= η′(ω0, t), Cη

def
= Cη(ω0) and

δ
def
= δ(ω0) during the rest of the proof from this point.

Let

• C0
def
= Cη + ‖∇f(x⋆)‖2;

• C1
def
= (2C0+1)2−1

C0
> 0;

• ε ∈
]
0,min{ δ2

4L2 , C1}
[
;

• and C(ε)
def
=

√
C0ε+1−1
4C0

∈]0, 12 ].
Note that this choice entails that the intervals ([tk, tk + C(ε)])k∈N are disjoint. On the other hand, ac-

cording to the convergence property of Mt and the fact that ‖∇f(X(t))−∇f(x⋆)‖ ∈ L2([t0,+∞[),
there exists k′ > 0 such that for every k ≥ k′

sup
t≥tk

‖Nt −Ntk‖
2 <

ε

4
and

∫ +∞

tk

‖∇f(X(t)) −∇f(x⋆)‖2dt < 1.

Also, we compute

∫ t

tk

∥∥η′(s) +∇f(X(s))
∥∥2 ds ≤ 2

∫ t

tk

‖∇f(X(s))−∇f(x⋆)‖2 ds + 2

∫ t

tk

∥∥η′(s) +∇f(x⋆)
∥∥2 ds

≤ 2 + 4C0(t− tk).
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Furthermore, C(ε) was chosen such that C(ε) + 2C0C(ε)2 ≤ ε
8 . Besides for every k ≥ k′, t ∈

[tk, tk + C(ε)],

‖X(t) −X(tk)‖
2 ≤ 2(t− tk)

∫ t

tk

∥∥η′(s) +∇f(X(s))
∥∥2 ds+ 2‖Nt −Ntk‖

2

≤ 4(t− tk) + 8C0(t− tk)
2 +

ε

2
≤ ε.

Since ∇f is L-Lipschitz and L2ε ≤
(
δ
2

)2
by assumption on ε, we have that for every k ≥ k′ and

t ∈ [tk, tk + C(ε)]

‖∇f(X(t))−∇f(X(tk))‖
2 ≤ L2 ‖X(t)−X(tk)‖

2 ≤

(
δ

2

)2

.

Therefore, for every k ≥ k′, t ∈ [tk, tk + C(ε)]

‖∇f(X(t))−∇f(x⋆)‖ ≥ ‖∇f(X(tk))−∇f(x⋆)‖ − ‖∇f(X(t))−∇f(X(tk))‖︸ ︷︷ ︸
≤ δ

2

≥
δ

2
.

Finally,

∫ +∞

t0

‖∇f(X(s))−∇f(x⋆)‖2 ds ≥
∑

k≥k′

∫ tk+C(ε)

tk

‖∇f(X(s))−∇f(x⋆)‖2 ds

≥
∑

k≥k′

δ2C(ε)

4
= +∞,

which contradicts ‖∇f(X(·))−∇f(x⋆)‖ ∈ L2([t0,+∞[). So, for every ω ∈ Ωconv,

lim sup
t→+∞

‖∇f(X(ω, t))−∇f(x⋆)‖ = lim inf
t→+∞

‖∇f(X(ω, t))−∇f(x⋆)‖

= lim
t→+∞

‖∇f(X(ω, t))−∇f(x⋆)‖ = 0.

On the other hand, since F is convex, by (3.9), we obtain

∫ +∞

t0

F (X(t)) −minF dt < +∞, a.s.. (3.13)

Since supt≥t0
‖X(t)‖ < +∞ a.s., and (∂F ) maps bounded sets onto bounded sets (since g is convex

and continuous), we can show that there exists L̃ > 0 such that

|F (X(t1))− F (X(t2))| ≤ L̃‖X(t1)−X(t2)‖, ∀t1, t2 ≥ t0, a.s..

Using the same technique as before, we can conclude that limt→+∞ F (X(t)) = minF a.s..

(iv) Let ω ∈ Ωconv and X̃(ω) be a weak sequential limit point of X(ω, t). Equivalently, there exists an

increasing sequence (tk)k∈N ⊂ R+ such that limk→+∞ tk = +∞ and

w-lim
k→+∞

X(ω, tk) = X̃(ω).
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Since limt→+∞ F (X(ω, t)) = minF and the fact that f is weakly lower semicontinuous (since it is

convex and continuous), we obtain directly that X̃(ω) ∈ SF . Finally, by Opial’s Lemma (see [25]) we

conclude that there exists X⋆(ω) ∈ SF such that

w-lim
t→+∞

X(ω, t) = X⋆(ω).

In other words, since ω ∈ Ωconv was arbitrary, there exists an SF -valued random variable X⋆ such

that w-limt→+∞X(t) = X⋆ a.s..

3.3 Convergence rates of the objective

Our first result, stated below, summarizes the global convergence rates in expectation satisfied by the trajec-

tories of (SDI).

Theorem 3.8. Consider the dynamic (SDI) where F = f + g and σ satisfy the assumptions (H0) and

(H), furthermore assume that ∂g satisfies (Hλ). Additionally, X0 ∈ L2(Ω;H) and is F0-measurable. The

following statements are satisfied by the unique solution trajectory X ∈ S2
H[t0] of (SDI):

(i) Let F ◦X(t)
def
= t−1

∫ t

t0

F (X(s))ds and X(t) = t−1

∫ t

t0

X(s)ds. Then

E
(
F (X(t))−minF

)
≤ E

(
F ◦X(t)−minF

)
≤

E
(
dist(X0,SF )

2
)

2t
+
σ2∗
2
, ∀t > t0. (3.14)

Besides, if σ∞ is L2([t0,+∞[), then

E
(
F (X(t))−minF

)
≤ E

(
F ◦X(t)−minF

)
= O

(
1

t

)
. (3.15)

(ii) Moreover, if F ∈ Γµ(H) with µ > 0, then SF = {x⋆} and

E

(
‖X(t)− x⋆‖2

)
≤ E

(
‖X0 − x⋆‖2

)
e−µt +

σ2∗
µ
, ∀t > t0. (3.16)

Besides, if σ∞ is non-increasing and vanishes at infinity, then:

E

(
‖X(t)− x⋆‖2

)
≤ E

(
‖X0 − x⋆‖2

)
e−µt +

σ2∗
µ
e

µt0
2 e−

µt
2 + σ2∞

(
t0 + t

2

)
, ∀t > t0. (3.17)

Proof. Using that F (x) −minF ≤ 〈y, x− x⋆〉 for every y ∈ ∂F (x), x⋆ ∈ SF , and Itô’s formula with the

anchor function φ(x) = ‖x−x⋆‖2
2 (for x⋆ ∈ SF ), the proof is analogous to [1, Theorem 3.2].

4 Tikhonov regularization: Convergence properties for convex functions

It is important to provide insight into the technique of Tikhonov regularization. This allows us to pass from

the almost sure weak convergence towards the set of minimizers of the trajectory generated by (SDI0) to

achieving almost sure strong convergence of the trajectory generated by (SDI− TA), not only towards the

set of minimizers but to the minimal norm solution. The price to pay in order to achieve this is the proper

tuning of the Tikhonov parameter that depends on a local constant that could be hard to compute, besides

that, we obtain slower convergence rates of the objective, passing from O(t−1) to O(t−r + R(t)), where

r < 1 and R(t) → 0 (defined below in (4.12)).
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4.1 Almost sure convergence of the trajectory to the minimal norm solution

Our second main result establish almost sure convergence of X(t) to x⋆ = PSF
(0) as t → +∞. It is based

on a subtle tuning of the Tikhonov parameter ε(t) formulated as conditions (T1), (T2), and (T3) below. We

know that ‖x⋆‖2 − ‖xε(t)‖
2 tends to zero as t→ +∞. We shall see that the conditions (T1), (T2), and (T3)

are compatible for tame functions (i.e. which satisfy a Kurdyka-Lojasiewicz property).

Theorem 4.1. Consider the dynamic (SDI− TA) where F = f + g and σ satisfy the assumptions (H0)

and (H), respectively, furthermore assume that ∂g satisfy (Hλ). Let ν ≥ 2, and its initial data X0 ∈

Lν(Ω;H). Then, there exists a unique solutionX ∈ Sν
H[t0] of (SDI− TA). Let x⋆

def
= PSF

(0) be the minimum

norm solution, and for ε > 0 let xε be the unique minimizer of Fε(x)
def
= F (x) + ε

2‖x‖
2. Suppose that

σ∞ ∈ L2(R+), and that ε : [t0,+∞[→ R+ satisfies the conditions:

(T1) ε(t) → 0 as t→ +∞;

(T2)

∫ +∞

t0

ε(t)dt = +∞;

(T3)

∫ +∞

t0

ε(t)
(
‖x⋆‖2 − ‖xε(t)‖

2
)
dt < +∞.

Then we have

(i)

∫ +∞

t0

ε(t)E[‖X(t) − x⋆‖2]dt < +∞.

(ii) limt→+∞ ‖X(t)− x⋆‖ exists a.s. and supt≥t0
‖X(t)‖ < +∞ a.s..

(iii)

∫ +∞

t0

ε(t) ‖X(t) − x⋆‖2 dt < +∞ a.s..

(iv) s-limt→+∞X(t) = x⋆ a.s.

Proof. The existence and uniqueness of a solution X ∈ Sν
H[t0] follow directly from the fact that the condi-

tions of Theorem 3.3 are satisfied under (H0) and (H). The only subtlety to check is that supt≥t0
|ε(t)| < +∞,

but this can be assumed without loss of generality since ε(t) → 0 as t → +∞ (it might be necessary a re-

definition of t0).

Our stochastic dynamic (SDI− TA) can be written equivalently as follows

{
dX(t) ∈ −∂Fε(t)(X(t))dt + σ(t,X(t))dW (t), t ≥ t0;

X(t0) = X0,
(SDIT)

(i) Let us define the anchor function φ(x) = ‖x−x⋆‖2
2 . Since ∂g satisfy (Hλ), there exists a stochastic

process η̃ : Ω × [t0,+∞[→ H such that η̃(t) ∈ ∂Fε(t)(X(t)) a.s. for almost all t ≥ t0. Using Itô’s

formula we obtain

φ(X(t)) =
‖X0 − x⋆‖2

2︸ ︷︷ ︸
ξ

+
1

2

∫ t

t0

tr (Σ(s,X(s))) ds

︸ ︷︷ ︸
At

−

∫ t

t0

〈η̃(s),X(s)− x⋆〉 ds

︸ ︷︷ ︸
Ut

+

∫ t

t0

〈σ⋆(s,X(s)) (X(s)− x⋆) , dW (s)〉

︸ ︷︷ ︸
Mt

. (4.1)
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Since X ∈ S2
H[t0] by Proposition 3.5, we have for every T > t0, that

E

(∫ T

t0

‖σ⋆(s,X(s)) (X(s)− x⋆)‖2 ds

)
≤ E

(
sup

t∈[t0,T ]
‖X(t)− x⋆‖2

)∫ +∞

t0

σ2∞(s)ds < +∞.

Therefore Mt is a square-integrable continuous martingale. It is also a continuous local martingale,

which implies that E(Mt) = 0.

Let us now take the expectation of (4.1). Using that

0 ≤ tr (Σ(s,X(s))) ≤ σ2∞(s)

and (2.3) that we recall below

〈y(t),X(t) − x⋆〉 ≥ ε(t)φ(X(t)) +
ε(t)

2

(
‖xε(t)‖

2 − ‖x⋆‖2
)
, (4.2)

where y : Ω× [t0,+∞[→ H is such that y(t) ∈ ∂Fε(t)(X(t)) a.s., we obtain that

E (φ(X(t))) +

∫ t

t0

ε(s)E (φ(X(s))) ds

≤ E

(
‖X0 − x⋆‖2

2

)
+

1

2

∫ t

t0

σ2∞(s)ds+
1

2

∫ t

t0

ε(s)
(
‖x⋆‖2 − ‖xε(s)‖

2
)
ds.

According to our assumptions, we can write briefly the above relation as

E (φ(X(t))) +

∫ t

t0

ε(s)E (φ(X(s))) ds ≤ g(t), (4.3)

with g a nonnegative function defined by

g(t) := E

(
‖X0 − x⋆‖2

2

)
+

1

2

∫ t

t0

σ2∞(s)ds+
1

2

∫ t

t0

ε(s)
(
‖x⋆‖2 − ‖xε(s)‖

2
)
ds

which satisfies limt→+∞ g(t) = g∞ < +∞.

Let us integrate the above relation (4.3). We set

θ(t) :=

∫ t

t0

E (φ(X(s))) ds.

We have θ̇(t) = E (φ(X(t))) and (4.3) is written equivalently as

θ̇(t) +

∫ t

t0

ε(s)θ̇(s)ds ≤ g(t). (4.4)

Equivalently

1

ε(t)

d

dt

∫ t

t0

ε(s)θ̇(s)ds +

∫ t

t0

ε(s)θ̇(s)ds ≤ g(t), (4.5)
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that is
d

dt

∫ t

t0

ε(s)θ̇(s)ds+ ε(t)

∫ t

t0

ε(s)θ̇(s)ds ≤ ε(t)g(t). (4.6)

With m(t) := exp
∫ t

t0
ε(s)ds we get

d

dt

(
m(t)

∫ t

t0

ε(s)θ̇(s)ds

)
≤ ε(t)m(t)g(t). (4.7)

After integration we get ∫ t

t0

ε(s)θ̇(s)ds ≤
1

m(t)

∫ t

t0

m′(s)g(s)ds. (4.8)

Since g is bounded by assumption (T2), we get

sup
t≥t0

E

[∫ t

t0

ε(s)‖X(s) − x⋆‖2
]
ds < +∞.

Equivalently ∫ +∞

t0

E

[
‖X(t) − x⋆‖2

]
ε(t)dt < +∞.

The assumption (T2) guarantees that the above inequality forces E
[
‖X(t) − x⋆‖2

]
to tend to zero.

(ii) Consider (4.1), we define

Ãt
def
= At +

∫ t

t0

ε(s)

2
(‖x⋆‖2 − ‖xε(s)‖

2)ds, and Ũt
def
= Ut +

∫ t

t0

ε(s)

2
(‖x⋆‖2 − ‖xε(s)‖

2)ds.

By (4.2) we have that Ũt ≥
∫ t

t0
ε(s)φ(X(s))ds ≥ 0. We can rewrite (4.1) as

φ(X(t)) = ξ + Ãt − Ũt +Mt.

Since σ∞ ∈ L2([t0,+∞[) and (T3), then limt→+∞ Ãt < +∞. Let us observe that, since X ∈ S2
H[t0]

by Proposition 3.5, we have for every T > t0 that

E

(∫ T

t0

‖σ⋆(s,X(s)) (X(s)− x⋆)‖2 ds

)
≤ E

(
sup

t∈[t0,T ]
‖X(t)− x⋆‖2

)∫ +∞

t0

σ2∞(s)ds < +∞.

Therefore Mt is a square-integrable continuous martingale. It is also a continuous local martingale

(see [24, Theorem 1.3.3]), which implies that E(Mt) = 0.

By Theorem A.7, we get that limt→+∞ ‖X(t) − x⋆‖ exists a.s. and that limt→+∞ Ũt < +∞ a.s..

(iii) Using the lower bound we had on Ũt, we obtain

∫ +∞

t0

ε(t) ‖X(t) − x⋆‖2 dt < +∞.

(iv) By the previous item, (T2), and Lemma A.1 we conclude that limt→+∞X(t) = x⋆ a.s..

This completes the proof.
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4.2 Practical situations

We will consider situations where the three conditions (T1), (T2) and (T3) are satisfied simultaneously. These

are properties of the viscosity curve that we will now study. The difficulty comes from (T2) and (T3) which

are a priori not compatible. Indeed, (T2) requires the parameter ε(t) to converge slowly towards zero for

the Tikhonov regularization to be effective. On the other hand in (T3) the parameter ε(t) must converge

sufficiently quickly towards zero so that the term
(
‖x⋆‖2 − ‖xε(t)‖

2
)

converges to zero fairly quickly, and

thus corrects the infinite value of the integral of ε(t).

4.2.1 Łojasiewicz property

Our first objective is to evaluate the rate of convergence towards zero of
(
‖x⋆‖2 − ‖xε‖

2
)

as ε → 0. Using

the differentiability properties of the viscosity curve is not a good idea, because the viscosity curve can

be of infinite length in the case of a general differentiable convex function, see [26]. To overcome this

difficulty, we assume that F = f + g satisfies the Łojasiewicz property. This basic property has its roots in

algebraic geometry, and it essentially describes a relationship between the objective value and its gradient

(or subgradient).

Definition 4.2 (Łojasiewicz inequality). Let f : H → R be a convex function with S 6= ∅ and q ∈ [0, 1[. f
satisfies the Łojasiewicz inequality on S with exponent q if there exists r > min f and µ > 0 such that

µ(f(x)−min f)q ≤
∥∥∂0f(x)

∥∥ , ∀x ∈ [min f < f < r], (4.9)

and we will write f ∈ Łq(S).

Error bounds have also been successfully applied to various branches of optimization, and in particular to

complexity analysis. Of particular interest in our setting is the Hölderian error bound.

Definition 4.3 (Hölderian error bound). Let f : H → R be a proper function such that S 6= ∅. Then f
satisfies a Hölderian (or power-type) error bound inequality on S with exponent p ≥ 1, if there exists γ > 0
and r > min f such that:

f(x)−min f ≥ γdist(x,S)p, ∀x ∈ [min f ≤ f ≤ r], (4.10)

and we will write f ∈ EBp(S),

A deep result due to Łojasiewicz states that for arbitrary continuous semi-algebraic functions, the H"olderian

error bound inequality holds on any compact set, and the Łojasiewicz inequality holds at each point. In fact,

for convex functions, the Łojasiewicz property and Hölderian error bound are actually equivalent.

Proposition 4.4. Assume that f ∈ Γ0(H) with S 6= ∅. Let q ∈ [0, 1[, p
def
= 1

1−q
≥ 1 and r > min f . Then f

verifies the Łojasiewicz inequality with exponent q (see (4.9)) at [min f < f < r] if and only if the Hölderian

error bound with exponent p (see (4.10)) holds on [min f < f < r].

4.2.2 Quantitative stability of variational systems

Let us recall the following two results that have been obtained in the following papers:

[AW1] H. Attouch, R. Wets, Quantitative stability of variational systems: I, The epigraphical distance,

Transactions of the American Mathematical Society, 328 (1991), No. 2, pp. 695–729.
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[AMR] H. Attouch, A. Moudafi, H. Riahi, Quantitative stability analysis for maximal monotone operators

and semi-groups of contractions, Nonlinear Analysis, TMA, 21 (1993), No. 9, pp. 697–723.

Consider H a Hilbert space.

Proposition 4.5. Let A,B : H ⇒ H be two maximal monotone operators, then

‖(I +A)−1(0)− ‖(I +B)−1(0)‖ ≤ 3haus‖(I+A)−1(0)‖(A,B).

Theorem 4.6. Let f and g be convex lower semicontinuous proper functions from H into R. To any ρ >
max[dist(0, epi(f)),dist(0, epi(g))] there correspond some constants κ and ρ0 (that depend on ρ) such that

hausρ(∂f, ∂g) ≤ κ[hausρ0(f, g)]
1

2 .

The second abstract result is the equivalence of the uniform structure on the class of subdifferentials of

convex lsc. functions between the bounded Hausdorff distance and the uniform convergence on bounded sets

of resolvents.

The following Proposition is new and is a consequence of the previous two results, since this is not obvious,

we are going to present the whole proof.

Proposition 4.7. Let f ∈ Γ0(H) be a function such that S 6= ∅, and that f ∈ EBp(S). Let also x⋆ = PS(0)
and for ε > 0, let xε be the unique minimizer of fε(x) = f(x) + ε

2‖x‖
2. Then there exists C0, ε

⋆ > 0 such

that

‖xε − x⋆‖ ≤ C0ε
1

2p , ∀ε ∈]0, ε⋆].

Consequently, there exists C > 0 such that

‖x⋆‖2 − ‖xε‖
2 ≤ Cε

1

2p , ∀ε ∈]0, ε⋆].

Proof. We have that

xε +
1

ε
∂f(xε) ∋ 0,

that is

xε = (I + ∂ϕε)
−1 (0)

where

ϕε
def
=

1

ε
(f −min f) .

We have that ϕε increases to δS as ε decreases to zero, and

x⋆ = PS(0) = (I + ∂δS)
−1 (0),

where δS is the characteristic function (0−+∞) of S . So

‖xε − x⋆‖ = ‖ (I + ∂ϕε)
−1 (0)− (I + ∂δS)

−1 (0)‖.

By Theorem 4.5 with A = ∂ϕε, and B = ∂δS , we have that

‖xε − x⋆‖ ≤ 3hausρ(∂ϕε, ∂δS),
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for ρ > ‖x⋆‖. Now, since max[dist(0, epi(ϕε)),dist(0, epi(δS))] ≤ ‖x⋆‖, let ρ > ‖x⋆‖, by Proposition 4.6

we obtain that there exists κ, ρ0 > 0 constants (depending on ρ) such that

‖xε − x⋆‖ ≤ 3κ[hausρ0(ϕε, δS)]
1

2 .

To complete our proof we just need to bound

hausρ0(ϕε, δS).

To that end, we use the EBp(S) assumption. Since f ∈ EBp(S), there exists γ > 0, r > min f such that

f(x)−min f ≥ γdist(x,S)p, ∀x ∈ [min f ≤ f ≤ r].

Since δS ≥ ϕε we just need to compute the bounded Hausdorff excess of the epigraph of ϕε over

S × {+∞}. We have

δS(x) ≥ ϕε(x) ≥
γ

ε
dist(x,S)p, ∀x ∈ [min f ≤ f ≤ r].

By definition

hausρ0(ϕε, δS) = sup
(x1,r1)∈epi(ϕε)∩ρ0B

inf
(x2,r2)∈epi(δS )

max[dist(x1, x2),dist(r1, r2)],

where B is the unit ball of H× R. Besides,

sup
(x1,r1)∈epi(ϕε)∩ρ0B

inf
(x2,r2)∈epi(δS)

max[dist(x1, x2),dist(r1, r2)] ≤
r2=r1;x2∈S

sup
(x1,r1)∈epi(ϕε)∩ρ0B

dist(x1,S).

Now let ε0
def
= r−min f

ρ0
> 0 and consider ε ∈]0, ε0], then

sup
(x1,r1)∈epi(ϕε)∩ρ0B

dist(x1,S) ≤ sup
x1∈[f≤ρ0ε+min f ]

dist(x1,S) ≤

(
ρ0
γ

) 1

p

ε
1

p ,

where we have used that ρ0ε+min f ≤ r and the hypothesis EBp(S) in the last inequality.

Let C0
def
= 3κ

(
ρ0
γ

) 1

2p
, then for ε ∈]0, ε0],

‖xε − x⋆‖ ≤ C0ε
1

2p .

On the other hand, since limε→0+ xε = x⋆, then there exists ε1 > 0 such that ‖xε‖ ≤ 1+ ‖x⋆‖, for every

ε ≤ ε1. Let C1
def
= 1 + 2‖x⋆‖, from

‖x⋆‖2 − ‖xε‖
2 ≤ C1‖xε − x⋆‖, ∀ε ∈]0, ε1].

And letting ε⋆
def
= min ε0, ε1, and C

def
= C0C1, then we get

‖x⋆‖2 − ‖xε‖
2 ≤ Cε

1

2p ,∀ε ∈]0, ε⋆].
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Theorem 4.8. Consider the setting of Theorem 4.1 and suppose that F = f + g ∈ EBp(SF ). Then taking

the Tikhonov parameter ε(t) = 1
tr

with

1 ≥ r >
2p

2p + 1
,

then the three conditions (T1), (T2), and (T3) of Theorem 4.1 are satisfied simultaneously. In particular, the

solution X ∈ Sν
H[t0] of (SDI− TA) is unique and we get almost sure (strong) convergence of X(t) to the

minimal norm solution named x⋆ = PSF
(0).

Proof. It is direct to check (T1) and (T2). In order to check (T3), let ε⋆ > 0 from Proposition 4.7 and

T ⋆ = max[t0,
(

1
ε⋆

) 1

r ], then we have

‖x⋆‖2 − ‖xε(t)‖
2 ≤ C

1

t
r
2p

, ∀t ≥ T ⋆.

So ∫ +∞

t0

‖x⋆‖2 − ‖xε(t)‖
2

tr
dt =

∫ T ⋆

t0

‖x⋆‖2 − ‖xε(t)‖
2

tr
dt

︸ ︷︷ ︸
I1

+

∫ +∞

T ⋆

‖x⋆‖2 − ‖xε(t)‖
2

tr
dt

︸ ︷︷ ︸
I2

.

Is clear that I1 is bounded (by T ⋆t−r
0 ‖x⋆‖2 for instance), hence (T3) holds under the condition that

∫ +∞

T ⋆

1

tr
C

t
r
2p

dt < +∞

which is true when r + r
2p > 1, which gives the condition 1 ≥ r > 2p

2p+1 .

4.3 Convergence rates of the objective in the smooth case

We are going to show global convergence rates in expectation in the smooth convex case, in order to do that,

it is worth citing a result from [10], where they deal with the deterministic case.

Take ε(t) =
1

tr
, 0 < r < 1, t0 > 0. The convergence rate of the values and the strong convergence to the

minimum norm solution is described below, see Attouch, Chbani, Riahi [10, Theorem 5].

Theorem 4.9. Take ε(t) =
1

tr
and 0 < r < 1. Let us consider (DI− TA) in the case where g ≡ 0, i.e.

ẋ(t) +∇f (x(t)) +
1

tr
x(t) = 0. (4.11)

Let x : [t0,+∞[→ H be a solution trajectory of (DI− TA). For ε > 0 define fε(x)
def
= f(x) + ε

2‖x‖
2,

let xε be the unique minimizer of fε, and consider the Lyapunov function

E(t)
def
= fε(t)(x(t))− fε(t)(xε(t)) +

ε(t)

2
‖x(t)− xε(t)‖

2.

Then, we have

(i) E(t) = O

(
1

t

)
as t→ +∞;

26



(ii) f(x(t))−min(f) = O

(
1

tr

)
as t→ +∞;

(iii) ‖x(t)− xε(t)‖
2 = O

(
1

t1−r

)
as t→ +∞.

In addition, we have strong convergence of x(t) to the minimum norm solution, named x⋆ = PS(0). More-

over, if f ∈ EBp(S)

(iv) ‖x(t)− x⋆‖2 =





O

(
1

t
r
p

)
, if r ∈

]
0, p

p+1

[
;

O

(
1

t1−r

)
, if r ∈

[
p

p+1 , 1
[ as t→ +∞.

Remark 4.10. The last item of this already known Theorem is new and direct from our Proposition 4.7.

Now we have the necessary tools in order to show our first result in this sense, this one summarizes the

global convergence rates in expectation satisfied by the trajectories of (SDI− TA) in the case where g ≡ 0.

Theorem 4.11. Let ν ≥ 2, f ∈ Γ0(H) ∩ C2
L(H) such that S

def
= argmin(f) is nonempty, and also f ∈

EBp(S), σ satisfying (H), and σ∞ ∈ L2([t0,+∞[) and is non-increasing. Let us consider ε(t) = 1
tr

where

0 < r < 1, then we evaluate (SDI− TA) in the case where g ≡ 0, and with initial data X0 ∈ Lν(Ω;H), i.e.



dX(t) = −∇f(X(t))dt−

1

tr
X(t)dt+ σ(t,X(t))dW (t), t ≥ t0;

X(t0) = X0.
(SDE−TA)

For ε > 0, let us define fε(x)
def
= f(x) + ε

2‖x‖
2, xε be the unique minimizer of fε, consider the Lyapunuov

function

E(t, x)
def
= fε(t)(x)− fε(t)(xε(t)) +

ε(t)

2
‖x− xε(t)‖

2,

and for t1 > t0,

R(t)
def
= e−

t1−r

1−r

∫ t

t1

e
s1−r

1−r σ2∞(s)ds. (4.12)

Consider x⋆
def
= PS(0). Then, the solution trajectory X ∈ Sν

H[t0] is unique, and we have that:

(i) R(t) → 0 as t→ +∞;

(ii) Furthermore, we can obtain a convergence rate for R,

R(t) = O

(
exp(−tr(1− 2−r)) + trσ2∞

(
t1 + t

2

))
.

Moreover, if σ2∞(t) = O(t−α) for α > 1, then R(t) = O(tr−α).

(iii) E[E(t,X(t))] = O

(
1

t
+R(t)

)

(iv) E[f(X(t))−min(f)] = O

(
1

tr
+R(t)

)
. Moreover if σ2∞(t) = O(t−α) for α > 1, then

E[f(X(t))−min(f)] =





O

(
1

tα−r

)
, if α ∈]1, 2r[;

O

(
1

tr

)
, if α ≥ 2r;
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(v) E[‖X(t) − xε(t)‖
2] = O

(
1

t1−r
+ trR(t)

)
, which goes to 0 as t → +∞ if r ∈]0, 12 ] . Moreover, if

σ2∞(t) = O(t−α) for α > max{2r, 1}, then

E[‖X(t)− xε(t)‖
2] =





O

(
1

tα−2r

)
, if α ∈]max{1, 2r}, r + 1[;

O

(
1

t1−r

)
, if α ≥ r + 1.

.

(vi) E[‖X(t) − x⋆‖2] = O

(
1

t1−r
+

1

t
r
p

+ trR(t)

)
, which goes to 0 as t → +∞ if r ∈]0, 12 ]. Moreover,

if σ2∞(t) = O(t−α) for α > max{2r, 1}, then

E[‖X(t)− x⋆‖2] = O

(
1

t1−r
+

1

t
r
p

+
1

tα−2r

)
.

In particular,

E[‖X(t)−x⋆‖2] =





O

(
1

t1−r

)
, if r ∈

]
p

p+1 , 1
[
, α > r + 1;

O

(
1

t
r
p

)
, if r ∈

]
0, p

p+1

[
, α > max{1, r(2p+1)

p
};

O

(
1

tα−2r

)
, if r ∈

]
p

2p+1 , 1
[
, α ∈

(
max{2r, 1},min{r + 1, r(2p+1)

p
}
)
.

Remark 4.12. The expression in (ii) goes to 0 as t→ +∞ since limt→∞ tσ2∞(t) = 0 and r < 1.

Proof. The existence and uniqueness of a solution was already stated in Theorem 4.1.

The first item is a direct consequence of Lemma A.4, for the second one we recall that σ∞ ∈ L2([t0,+∞[)
and is non-increasing, and we proceed as follows:

R(t) = e−
t1−r

1−r

∫ t1+t

2

t1

e
s1−r

1−r σ2∞(s)ds+ e−
t1−r

1−r

∫ t

t1+t

2

e
s1−r

1−r σ2∞(s)ds

≤ e(
t0
2 )

r

e−tr(1−2−r)
∫ +∞

t1

σ2∞(s)ds + σ2∞

(
t1 + t

2

)
D 1

1−r
,1−r (t) ,

where

Da,b (t) = e−atb
∫ t

0
eas

b

ds.

As a corollary of an upper bound of the Dawson integral shown in [27, Section 7.8], we have that

Da,b(t) ≤
2

ab
t1−b, 0 < b ≤ 2, a > 0, t > 0,

thus we obtain

R(t) = O

(
exp(−tr(1− 2−r)) + trσ2∞

(
t1 + t

2

))
,
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and limt→∞ trσ2∞(t) = 0, to show this, we recall that σ2∞ is non-increasing, then

0 ≤ tσ2∞(t) ≤ 2

∫ t

t
2

σ2∞(u)du,

and the right hand side goes to 0 as t→ +∞ since σ∞ ∈ L2([t0,+∞[), thus we obtain that limt→∞ tσ2∞(t) =
0 (as mentioned in Remark 4.12), and this directly implies the desired.

The rest of the proof follows by using Itô’s formula with φ(t, x) = e
∫ t

t1

ds
sr E(t, x), taking expectation

and following the calculus done in [10, Theorem 5], we obtain the same results as in Theorem 4.9 (or [10,

Theorem 5]) up to the term R(t), therefore, this result could be seen as the stochastic counterpart of the

mentioned Theorem.

Remark 4.13. Tikhonov regularization implies strong convergence of the trajectory to the minimal norm

solution, therefore, in the stochastic case you have to be careful in the tuning of the noise in order to not

break this convergence. In the almost sure sense, you can tune appropriately the Tikhonov parameter without

assuming more than σ∞ ∈ L2([t0,+∞[), nevertheless, in expectation, you may require a stronger assumption

in general on the noise σ2∞ in order to obtain a useful convergence rate, this is reflected in items (v) and (vi)

of Theorem 4.11.

Remark 4.14. In the finite-dimensional case, i.e., H = Rd (not necessarily K), we can loosen the assumption

f ∈ C2
L(H) to f ∈ C1,1

L (H) due to [1, Proposition 2.2].

5 Conclusion, Perspectives

The purpose of this work was to study the convergence properties of trajectories of subgradient-like flows

under stochastic errors in infinite dimensions. The aim is to solve non-smooth convex optimization problems

with noisy subgradient input with vanishing variance. In this regard, we have shown important properties of

these trajectories, such as the almost sure behavior in the long run with and without Tikhonov regularization.

This work let us study important extensions, among them, we mention the following ones:

• Extend Theorem 3.6 to the case of maximal monotone operators, i.e., replace ∇f by A (a maximal

monotone operator) and ∂g byB (a set-valued maximal monotone operator) in the dynamic and prove

the almost sure weak convergence to a zero of A+B.

• Investigate the transition to second-order dynamics via time-scaling and averaging, and analyzing its

corresponding convergence properties.

• Study second-order dynamics with inertia in view of understanding the behavior of accelerated dy-

namics in the presence of stochastic errors. This investigation will involve an independent Lyapunov

analysis.

A Auxiliary results

A.1 Deterministic results

Lemma A.1. Let t0 ≥ 0 and a, b : [t0,+∞[→ R+. If limt→∞ a(t) exists, b /∈ L1([t0,+∞[) and∫∞
t0
a(s)b(s)ds < +∞, then limt→∞ a(t) = 0.
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Lemma A.2 (Comparison Lemma). Let t0 ≥ 0 and T > t0. Assume that h : [t0,+∞[→ R+ is measurable

with h ∈ L1([t0, T ]) , thatψ : R+ → R+ is continuous and non-decreasing, ϕ0 > 0 and the Cauchy problem

{
ϕ′(t) = −ψ(ϕ(t)) + h(t) for almost all t ∈ [t0, T ]

ϕ(t0) = ϕ0

has an absolutely continuous solution ϕ : [t0, T ] → R+. If a bounded from below lower semicontinuous

function ω : [t0, T ] → R+ satisfies

ω(t) ≤ ω(s)−

∫ t

s

ψ(ω(τ))dτ +

∫ t

s

h(τ)dτ

for t0 ≤ s < t ≤ T and ω(t0) = ϕ0, then

ω(t) ≤ ϕ(t) for t ∈ [t0, T ].

Lemma A.3. Let f : R+ → R and lim inft→∞ f(t) 6= lim supt→∞ f(t). Then there exists a constant α,

satisfying lim inft→∞ f(t) < α < lim supt→∞ f(t), such that for every β > 0, we can define a sequence

(tk)k∈N ⊂ R such that

f(tk) > α, tk+1 > tk + β ∀k ∈ N.

Proof. See proof in [1, Lemma A.3].

Lemma A.4. Take t0 > 0, and let f ∈ L1([t0,+∞[) be continuous. Consider a non-decreasing function

ϕ : [t0,+∞[→ R+ such that limt→+∞ ϕ(t) = +∞. Then limt→+∞
1

ϕ(t)

∫ t

t0
ϕ(s)f(s)ds = 0.

Proof. See proof in [28, Lemma A.5]

A.2 Stochastic results

A.2.1 On stochastic processes

Let us recall some elements of stochastic analysis. Throughout the paper, (Ω,F ,P) is a probability space

and {Ft|t ≥ 0} is a filtration of the σ−algebra F . Given C ∈ P(Ω), we will denote σ(C) the σ−algebra

generated by C. We denote F∞
def
= σ

(⋃
t≥0 Ft

)
∈ F .

The expectation of a random variable ξ : Ω → H is denoted by

E(ξ)
def
=

∫

Ω
ξ(ω)dP(ω).

An event E ∈ F happens almost surely if P(E) = 1, and it will be denoted as "E, P-a.s." or simply "E,

a.s.". The indicator function of an event E ∈ F is denoted by

1E(ω)
def
=

{
1 if ω ∈ E,

0 otherwise.

An H-valued stochastic process starting at t0 ≥ 0 is a function X : Ω × [t0,+∞[→ H. It is said to be

continuous ifX(ω, ·) ∈ C([t0,+∞[;H) for almost all ω ∈ Ω. We will denoteX(t)
def
= X(·, t). We are going

to study SDE’s, and in order to ensure the uniqueness of a solution, we introduce a relation over stochastic
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processes. Two stochastic processes X,Y : Ω × [t0, T ] → H are said to be equivalent if X(t) = Y (t),
∀t ∈ [t0, T ], P-a.s. This leads us to define the equivalence relation R, which associates the equivalent

stochastic processes in the same class.

Furthermore, we will need some properties about the measurability of these processes. A stochastic pro-

cess X : Ω× [t0,+∞[→ H is progressively measurable if for every t ≥ t0, the map Ω× [t0, t] → H defined

by (ω, s) → X(ω, s) is Ft ⊗ B([t0, t])-measurable, where ⊗ is the product σ-algebra and B is the Borel

σ-algebra. On the other hand, X is Ft-adapted if X(t) is Ft-measurable for every t ≥ t0. It is a direct

consequence of the definition that if X is progressively measurable, then X is Ft-adapted.

Let us define the quotient space:

S0
H[t0, T ]

def
= {X : Ω× [t0, T ] → H, X is a prog. measurable cont. stochastic process}

/
R.

Set S0
H[t0]

def
=
⋂

T≥t0
S0
H[t0, T ]. For ν > 0, we define Sν

H[t0, T ] as the subset of processes X(t) in S0
H[t0, T ]

such that

Sν
H[t0, T ]

def
=

{
X ∈ S0

H[t0, T ] : E

(
sup

t∈[t0,T ]
‖Xt‖

ν

)
< +∞

}
.

We define Sν
H[t0]

def
=
⋂

T≥t0
Sν
H[t0, T ].

Let I ⊆ N be a numerable set such that {ei}i∈I is an orthonormal basis of K, and {wi(t)}i∈I,t≥0 be a

sequence of independent Brownian motions defined on the filtered space (Ω,F ,Ft,P). The process

W (t) =
∑

i∈I
wi(t)ei

is well-defined (independent from the election of {ei}i∈I ) and is called a K-valued Brownian motion. Be-

sides, letG : Ω×R+ → L2(K;H) be a measurable andFt-adapted process, then we can define
∫ t

0 G(s)dW (s)
which is the stochastic integral of G, and we have that G →

∫ ·
0 G(s)dW (s) is an isometry between the

measurable and Ft−adapted L2(K;H)−valued processes and the space of H-valued continuous square-

integrable martingales (see [23, Theorem 2.3]).

Proposition A.5. (see [29] and [30, Section 1.2]) (Burkholder-Davis-Gundy Inequality) Let p > 0, W be a

K-valued Brownian motion defined over a filtered probability space (Ω,F , {Ft}t≥0,P) and g : Ω×R+ → K

a progressively measurable process (with our usual notation g(t)
def
= g(·, t)) such that

E

[(∫ T

0
‖g(s)‖2ds

) p
2

]
< +∞, ∀T > 0.

Then, there exists Cp > 0 (only depending on p) for every T > 0 such that:

E

[
sup

t∈[0,T ]

∣∣∣∣∣

∫ t

0
〈g(s), dW (s)〉

∣∣∣∣∣

p]
≤ CpE

[(∫ T

0
‖g(s)‖2ds

)p
2

]
.

Theorem A.6. Let H be a real separable Hilbert space and (Mt)t≥0 : Ω → H be a continuous martingale

such that supt≥0 E
(
‖Mt‖

2
)
< +∞. Then there exists a H−valued random variable M∞ ∈ L2(Ω;H) such

that s-limt→∞Mt =M∞ a.s..
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Proof. Consider (Mk)k∈N to be the embedded discrete parameter martingale. Since

supk∈N E‖Mk‖
2 < +∞, then (Mk)k∈N is uniformly integrable and by [31, Theorem 3], there exists a mea-

surable H-valued random variable M∞ ∈ L2(Ω;H) such that limk→∞ ‖Mk −M∞‖ = 0 a.s.. In turn, using

the dominated convergence theorem (see [32, Theorem 1.34]), we also have

lim
k→∞

E(‖Mk −M∞‖2) = 0. (A.1)

The rest of the proof is inspired by the arguments in the proof of [33, Theorem 2.2].

We consider an arbitrary k ∈ N∗ and δ > 0. Since (Mt+k −Mk)t≥0 is also a H−valued martingale, we

can use Doob’s maximal inequalities for H−valued martingales shown in [23, Theorem 2.2], which gives us

δ2P

(
sup
s∈[0,t]

‖Ms+k −Mk‖ > δ

)
≤ E(‖Mt+k −Mk‖

2). (A.2)

Let n ∈ N∗ be arbitrary. We have

P

(
sup

s∈Q∩[0,n]
‖Ms+k −M∞‖ > δ

)
≤ P

(
sup

s∈Q∩[0,n]
‖Ms+k −Mk‖ >

δ

2

)
+ P

(
‖Mk −M∞‖ >

δ

2

)
.

Using (A.2) and Markov’s inequality, we get the bound

δ2P

(
sup

s∈Q∩[0,n]
‖Ms+k −M∞‖ > δ

)
≤ 4E(‖Mn+k −Mk‖

2) + 4E(‖Mk −M∞‖2)

≤ 8E(‖Mn+k −M∞‖2) + 12E(‖Mk −M∞‖2).

(A.3)

In turn, we get

δ2P

(
sup

s∈Q,s≥k

‖Ms −M∞‖ > δ

)
≤ δ2P

(
⋃

n∈N∗

{
sup

s∈Q∩[0,n]
‖Ms+k −M∞‖ > δ

})

≤ δ2 lim inf
n→∞

P

(
sup

s∈Q∩[0,n]
‖Ms+k −M∞‖ > δ

)

≤ 12E
(
‖Mk −M∞‖2

)
,

where we have used (A.3) and in the last inequality, that limn→∞ E(‖Mn+k −M∞‖2) = 0 by (A.1). Taking

k → ∞, and using again (A.1), we conclude that for all δ > 0

lim
k→∞

P

(
sup

s∈Q,s≥k

‖Ms −M∞‖ > δ

)
= 0.

For k ∈ N∗, we define Ak
def
= {ω ∈ Ω : sups∈Q,s≥k ‖Ms(ω) − M∞(ω)‖ > δ}, since (Ak)k∈N∗ is a

non-increasing sequence of sets:

0 = lim
k→∞

P (Ak) = P

(
⋂

k∈N∗

Ak

)
.
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Defining for l ≥ 0, Dl = {ω ∈ Ω : ‖Ml(ω) −M∞(ω)‖ > δ}, it is direct to check that
⋃

l≥k,l∈QDl ⊆ Ak

for every k ∈ N∗. Therefore, we obtain that

P



⋂

k∈N∗

⋃

l≥k,l∈Q
Dl


 = 0,

which is equivalent to s-lims→∞,s∈QMt = M∞ a.s.. The result follows from classical arguments of conti-

nuity of the martingale.

Theorem A.7. [24, Theorem 1.3.9] Let {At}t≥0 and {Ut}t≥0 be two continuous adapted increasing pro-

cesses with A0 = U0 = 0 a.s.. Let {Mt}t≥0 be a real-valued continuous local martingale with M0 = 0 a.s..

Let ξ be a nonnegative F0-measurable random variable. Define

Xt = ξ +At − Ut +Mt for t ≥ 0.

If Xt is nonnegative and limt→∞At <∞, then limt→∞Xt exists and is finite, and limt→∞ Ut <∞.
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