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Abstract. In this paper, we aim to study non-convex minimization problems via second-order (in-time) dynamics,
including a non-vanishing viscous damping and a geometric Hessian-driven damping. Second-order systems that only
rely on a viscous damping may suffer from oscillation problems towards the minima, while the inclusion of a Hessian-
driven damping term is known to reduce this effect without explicit construction of the Hessian in practice. There are
essentially two ways to introduce the Hessian-driven damping term: explicitly or implicitly. For each setting, we provide
conditions on the damping coefficients to ensure convergence of the gradient towards zero. Moreover, if the objective
function is definable, we show global convergence of the trajectory towards a critical point as well as convergence
rates. Besides, in the autonomous case, if the objective function is Morse, we conclude that the trajectory converges to
a local minimum of the objective for almost all initializations. We also study algorithmic schemes for both dynamics
and prove all the previous properties in the discrete setting under proper choice of the stepsize.
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1 Introduction

1.1 Problem statement

Let us consider the minimization problem
min
x∈Rd

f(x), (P)

where the objective function f : Rd → R satisfies the following standing assumptions:{
f ∈ C2(Rd);

inf f > −∞.
(H0)

Since the objective function is potentially non-convex, the problem (P) is NP-Hard. However, there are
tractable methods to ensure theoretical convergence to a critical point, or even to a local minimizer. In this
regard, a fundamental dynamic to consider is the gradient flow system:

∗The insight and motivation for the study of inertial methods with viscous and Hessian driven damping came from the inspiring
collaboration with our beloved friend and colleague Hedy Attouch before his unfortunate recent departure. We hope this paper is a
valuable step in honoring his legacy.
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{
ẋ(t) +∇f(x(t)) = 0, t > 0;

x(0) = x0.
(GF)

For any bounded solution of (GF), using LaSalle’s invariance principle, we check that limt→+∞∇f(x(t)) =
0. If d = 1, any bounded solution of (GF) tends to a critical point. For d ≥ 2 this becomes false in general, as
shown in the counterexample by [1]. In order to avoid such behaviors, it is necessary to work with functions
that present a certain structure. An assumption that will be central in our paper for the study of our dynam-
ics and algorithms is that the function f satisfies the Kurdyka-Łojasiewicz (KŁ) inequality [2, 3, 4], which
means, roughly speaking, that f is sharp up to a reparametrization. The KŁ inequality, including in its nons-
mooth version, has been successfully used to analyze the asymptotic behavior of various types of dynamical
systems [5, 6, 7, 8] and algorithms [9, 10, 11, 12, 13, 14, 15, 16, 17]1. The importance of the KŁ inequal-
ity comes from the fact that many problems encountered in optimization involve functions satisfying such
an inequality, and it is often elementary to check that the latter is satisfied; e.g. real semialgebraic/analytic
functions [2, 3], functions definable in an o-minimal structure and more generally tame functions [4, 18].

The dynamic (GF) is known to yield a convergence rate of O(t−1) of the values in the convex setting (in
fact even o(t−1)). Second-order inertial dynamical systems have been introduced to provably accelerate the
convergence behavior in the convex case. They typically take the form

ẍ(t) + γ(t)ẋ(t) +∇f(x(t)) = 0, t > t0, (IGSγ)

where t0 > 0, γ : [t0,+∞[→ R+ is a time-dependent viscosity coefficient. An abundant literature has been
devoted to the study of the inertial dynamics (IGSγ). The importance of working with a time-dependent
viscosity coefficient to obtain acceleration was stressed by several authors; see e.g. [19]. In particular,
the case γ(t) = α

t was considered by Su, Boyd, and Candès [20], who were the first to show the rate of
convergence O(t−2) of the values in the convex setting for α ≥ 3, thus making the link with the accelerated
gradient method of Nesterov [21]. For α > 3, an even better rate of convergence with little-o instead of big-
O can be obtained together with global convergence of the trajectory; see [22, 23] and [24] for the discrete
algorithmic case.

Another remarkable instance of (IGSγ) corresponds to the well-known Heavy Ball with Friction (HBF)
method, where γ(t) is a constant, first introduced (in its discrete and continuous form) by Polyak in [25].
When f is strongly convex, it was shown that the trajectory converges exponentially with an optimal con-
vergence rate if γ is properly chosen as a function of the strong convexity modulus. The convex case was
later studied in [26] with a convergence rate on the values of only O(t−1). When f is non-convex, HBF was
investigated both for the continuous dynamics [27, 28, 29, 30] and discrete algorithms [31, 17, 32].

However, because of the inertial aspects, (IGSγ) may exhibit many small oscillations which are not de-
sirable from an optimization point of view. To remedy this, a powerful tool consists in introducing into
the dynamic a geometric damping driven by the Hessian of f . This gives the Inertial System with Explicit
Hessian Damping which reads{

ẍ(t) + γ(t)ẋ(t) + β(t)∇2f(x(t))ẋ(t) +∇f(x(t)) = 0, t > t0;

x(t0) = x0, ẋ(t0) = v0,
(ISEHD)

1This list is by no means exhaustive.
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where γ, β : [t0,+∞[→ R+. (ISEHD) was proposed in [33] (see also [34]). The second system we consider,
inspired by [35] (see also [36] for a related autonomous system) is{

ẍ(t) + γ(t)ẋ(t) +∇f(x(t) + β(t)ẋ(t)) = 0, t > t0;

x(t0) = x0, ẋ(t0) = v0.
(ISIHD)

(ISIHD) stands for Inertial System with Implicit Hessian Damping. The rationale behind the use of the term
“implicit” comes from a Taylor expansion of the gradient term (as t → +∞ we expect ẋ(t) → 0) around
x(t), which makes the Hessian damping appear indirectly in (ISIHD). Following the physical interpretation of
these two ODEs, we call the non-negative parameters γ and β the viscous and geometric damping coefficients,
respectively. The two ODEs (ISEHD) and (ISIHD) were found to have a smoothing effect on the energy error
and oscillations [35, 37, 38]. Moreover, in [39] they obtain fast convergence rates for the values for the two
ODEs when γ(t) = α

t (α > 3) and β(t) = β > 0. However, the previous results are exclusive to the convex
case. Nevertheless, in [40], the authors analyzes (ISEHD) with constant viscous and geometric damping in
a non-convex setting, concluding that the bounded solution trajectories converges to a critical point of the
objective under Łojasiewicz inequality and giving sublinear convergence rates. Moreover, in [41] the author
shows that the previous dynamic avoids strict saddle points when the objective is Morse. In these two works
they propose a discretization called INNA, where the conditions on the stepsize are more stringent than ours
but let them consider arbitrary values for the geometric damping. To the best of our knowledge, there is no
further analysis of (ISEHD) and (ISIHD) when the objective is non-convex and definable. In this work, our
goal is to fill this gap.

1.2 Contributions

In this paper, we analyze the convergence properties of (ISEHD) and (ISIHD) when f is non-convex, and
when the time-dependent viscosity coefficient γ is non-vanishing and the geometric damping is constant,
i.e. β(t) ≡ β ≥ 0. We will also propose appropriate discretizations of these dynamics and establish
the corresponding convergence guarantees for the resulting discrete algorithms. More precisely, our main
contributions can be summarized as follows:

• We provide a Lyapunov analysis of (ISEHD) and (ISIHD) and show convergence of the gradient to
zero and convergence of the values. Moreover, assuming that the objective function is definable, we
prove the convergence of the trajectory to a critical point (see Theorem 3.1 and 4.1). Furthermore,
when f is also Morse, using the center stable manifold theorem, we establish a generic convergence
of the trajectory to a local minimum of f (see Theorem 3.3 and 4.2).

• We provide convergence rates of (ISEHD) and (ISIHD) and show that they depend on the desingular-
izing function of the Lyapunov energy (see Theorems 3.4 and 4.3).

• By appropriately discretizing (ISEHD) and (ISIHD), we propose algorithmic schemes and prove the
corresponding convergence properties, which are the counterparts of the ones shown for the continuous-
time dynamics. In particular, assuming that the objective function is definable, we show global con-
vergence of the iterates of both schemes to a critical point of f . Furthermore, a generic strict saddle
points (see Definition 2.3) avoidance result will also be proved (see Theorem 3.7 and 4.5).

• Convergence rates for the discrete schemes will also be established under the Łojasiewicz property
where the convergence rate will be shown to depend on the exponent of the desingularizing function
(see Theorem 3.9 and 4.6).

We will report a few numerical experiments to support the above findings.
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1.3 Relation to prior work

Continuous-time dynamics. There is abundant literature regarding the dynamics (ISEHD) and (ISIHD),
either in the exact case or with deterministic errors, but solely in the convex case; see [35, 39, 27, 42, 43, 44,
45, 46, 47, 48, 49, 50]). Nevertheless, to the best of our knowledge, the non-convex setting was still open
until now.

Heavy ball-like methods. As mentioned before, the HBF method, was first introduced by Polyak in [25]
where linear convergence was shown for f strongly convex. Convergence rates of HBF taking into account
the geometry of the objective can be found in [12] for the convex case and [32] for the non-convex case.

In [51], the authors study the system

ẍ(t) +G(ẋ(t)) +∇f(x(t)) = 0,

where G : Rd → Rd is such that ⟨G(v), v⟩ ≥ c∥v∥2 and ∥G(v)∥ ≤ C∥v∥, ∀v ∈ Rd, for some 0 < c ≤ C.
They show that when f is real analytic (hence verifies the Łojasiewicz inequality), the trajectory converges to
a critical point. To put it in our terms, the analysis is equivalent to study (IGSγ) in the case where there exists
c, C > 0 such that 0 < c ≤ γ(t) ≤ C for every t ≥ 0 (see assumption (Hγ)), letting us to conclude as in
[51]. We will extend this result to the systems (ISEHD) and (ISIHD) which will necessitate new arguments.

HBF was also studied in the non-convex case by [8] where it was shown that it can be viewed as a quasi-
gradient system. They also proved that a desingularizing function of the objective desingularizes the total
energy and its deformed versions. They used this to establish the convergence of the trajectory for instance
in the definable case. Global convergence of the HBF trajectory was also shown in [28] when f is a Morse
function 2.

Inertial algorithms. In the literature regarding algorithmic schemes that include inertia in the non-convex
setting, we can mention: [53] which proposes a multi-step inertial algorithm using Forward-Backward for
non-convex optimization. In [29] they study quasiconvex functions and use an implicit discretization of HBF
to derive a proximal algorithm. In [17], they introduce an inertial Forward-Backward splitting method, called
iPiano-a generalization of HBF, they show convergence of the values and a convergence rate of the algorithm.
Besides, in [32], the author presents local convergence results for iPiano. Then, in [54, 55] several abstract
convergence theorems are presented to apply them to different versions of iPiano. In [56, 57] they propose
inertial algorithms of different nature (Tseng’s type and Forward-Backward, respectively) for non-convex
and non-smooth optimization. In the previous works, they assume KŁ-like inequality to conclude with some
type of convergence (weak or strong) towards a critical point of the objective.

In this sense, the closest work to ours is [40], where they study (ISEHD) when the viscous and geomet-
ric dampings are positive constants, and a discretization of this dynamic called INNA. Assuming that the
objective function is semi-algebraic and the solution trajectories (resp. iterations) are bounded, their main
results are that: both the dynamic and the discretization converge to critical points of the objective (using
approximation theory), and that the continuous dynamic exhibits a sublinear convergence rate. Our work
extends beyond this, it considers not only the explicit version (ISEHD) but also the implicit one (ISIHD).
Even though the choice of the value of the geometric damping is less general than the one presented in [40],
we allow for variable viscous damping, propose a less stringent discretization regarding the stepsize, and
conclude with the convergence of the dynamic to a critical point under general KŁ property on the objective,

2It turns out that a Morse function satisfies the Łojasiewicz inequality with exponent 1/2; see [52].
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which includes semi-algebraic functions as a special case. Additionally, we show convergence rates under
KŁ inequality. Moreover, we propose new algorithms and an independent analysis for the discrete setting,
showing convergence of the proposed algorithms to critical points under KŁ-inequality, and we also exhibit
convergence rates of the proposed algorithms under Łojasiewicz inequality.

Trap avoidance. In the non-convex setting, generic strict saddle point avoidance of descent-like algorithms
has been studied by several authors building on the (center) stable manifold theorem [58, Theorem III.7]
which finds its roots in the work of Poincaré. Genericity is in general either with respect to initialization or
with respect to random perturbation. Note that genericity results for quite general systems, even in infinite
dimensional spaces, is an important topic in the dynamical system theory; see e.g. [59] and references therein.

First-order descent methods can circumvent strict saddle points provided that they are augmented with
unbiased noise whose variance is sufficiently large in each direction. Here, the seminal works of [60] and
[61] allow to establish that the stochastic gradient descent (and more generally the Robbins-Monro stochas-
tic approximation algorithm) avoids strict saddle points almost surely. Those results were extended to the
discrete version of HBF by [62] who showed that perturbation allows to escape strict saddle points, and it
does so faster than gradient descent. In [63] and [64], the authors analyze a stochastic version of HBF (in
continuous-time), showing convergence towards a local minimum under different conditions on the noise. In
this paper, we only study genericity of trap avoidance with respect to initialization.

Recently, there has been active research on how gradient-type descent algorithms escape strict saddle
points generically on initialization; see e.g. [65, 66, 67, 68] and references therein. In [29], the authors were
concerned with HBF and showed that if the objective function is C2, coercive and Morse, then generically
on initialization, the solution trajectory converges to a local minimum of f . A similar result is also stated in
[28]. The algorithmic counterpart of this result was established in [69] who proved that the discrete version
of HBF escapes strict saddles points for almost all initializations.

We have to mention that the closest work in this regard is [41], where the author studies (ISEHD) when
the viscous and geometric dampings are positive constants and the discretization INNA proposed in [40].
Using the continuous and discrete version of the global stable manifold theorem, the author shows that both
the continuous-time dynamic (when the objective is Morse) and the INNA algorithm almost always avoids
strict saddle points.

Our goal in this paper is to establish the same kind of results for (ISEHD) and (ISIHD) with variable,
non-vanishing viscous damping and constant geometric damping, as well as for the proposed algorithms
((ISEHD-Disc), (ISIHD-Disc)). We would like to point out that the proof for the continuous-time case will
necessitate (as in [41]) a more stringent assumption on the class of functions, for instance, that f is Morse,
while this is not necessary for the discrete algorithms.

1.4 Organization of the paper

Section 2 introduces notations and recalls some preliminaries that are essential to our exposition. Sections 3
and 4 include the main contributions of our paper, establishing convergence of the trajectory and of the iterates
under KŁ inequality, convergence rates and trap avoidance results. Section 5 is devoted to the numerical
experiments.
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2 Notation and preliminaries

We denote by R+ the set [0,+∞[. Moreover, we denote R∗
+ and N∗ to refer to R+ \ {0} and N \ {0},

respectively. The finite-dimensional space Rd (d ∈ N∗) is endowed with the canonical scalar product ⟨·, ·⟩
whose norm is denoted by ∥ · ∥. We denote Rn×d (n, d ∈ N∗) the space of real matrices of dimension n× d.
We denote by Cn(Rd) the class of n-times continuously differentiable functions on Rd. For a function g :
Rd → R and a, b ∈ R such that a < b, we denote [a < f < b] to the sublevel set {x ∈ Rd : a < f(x) < b}.
For a differentiable function g : Rd → R, we will denote its gradient as ∇g, the set of its critical points as:

crit(g)
def
= {u : ∇g(u) = 0},

and when g is twice differentiable, we will denote its Hessian as ∇2g. For a differentiable function G :
Rd → Rn we will denote its Jacobian matrix as JG ∈ Rn×d. Let A ∈ Rd×d, then we denote λi(A) ∈ C the
i−th eigenvalue of A, when A is symmetric then the eigenvalues are real and we denote λmin(A), λmax(A)
to be the minimum and maximum eigenvalue of A, respectively. If every eigenvalue of A is positive (resp.
negative), we will say that A is positive (resp. negative) definite. We denote by Id the identity matrix of
dimensions d × d and 0n×d the null matrix of dimensions n × d, respectively. The following lemma is
essential to some arguments presented in this work:

Lemma 2.1. [70, Theorem 3] Consider A,B,C,D ∈ Rd×d and such that AC = CA. Then

det

((
A B
C D

))
= det(AD − CB).

And the following definitions will be important throughout the paper:

Definition 2.2 (Local extrema and saddle points). Consider a function f ∈ C2(Rd). We will say that x̂ is
a local minimum (resp. maximum) of f if x̂ ∈ crit(f), ∇2f(x̂) is positive (resp. negative) definite. If x̂ is a
critical point that is neither a local minimum nor a local maximum, we will say that x̂ is a saddle point of f .

Definition 2.3 (Strict saddle point). Consider a function f ∈ C2(Rd), we will say that x̂ is a strict saddle
point of f if x̂ ∈ crit(f) and λmin(∇2f(x̂)) < 0.

Remark 2.4. According to this definition, local maximum points are strict saddles.

Definition 2.5 (Strict saddle property). A function f ∈ C2(Rd) will satisfy the strict saddle property if
every critical point is either a local minimum or a strict saddle.

This property is a reasonable assumption for smooth minimization. In practice, it holds for specific prob-
lems of interest, such as low-rank matrix recovery and phase retrieval. Moreover, as a consequence of Sard’s
theorem, for a full measure set of linear perturbations of a function f , the linearly perturbed function satisfies
the strict saddle property. Consequently, in this sense, the strict saddle property holds generically in smooth
optimization. We also refer to the discussion in [66, Conclusion].

Definition 2.6 (Morse function). A function f ∈ C2(Rd) will be Morse if it satisfies the following condi-
tions:

(i) For each critical point x̂, ∇2f(x̂) is nonsingular.
(ii) There exists a nonempty set I ⊆ N and (x̂k)k∈I such that crit(f) =

⋃
k∈I{x̂k}.

Remark 2.7. By definition, a Morse function satisfies the strict saddle property.
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Remark 2.8. Morse functions can be shown to be generic in the Baire sense in the space of C2 functions;
see [71].

Definition 2.9 (Desingularizing function). For η > 0, we consider

κ(0, η)
def
= {ψ : C0([0, η[) ∩ C1(]0, η[) → R+, ψ

′ > 0 on ]0, η[, ψ(0) = 0, and ψ concave}.

Remark 2.10. The concavity property of the functions in κ(0, η) is only required in the discrete setting.

Definition 2.11. If f : Rd → R is differentiable and satisfies the KŁ inequality at x̄ ∈ Rd, then there exists
r, η > 0 and ψ ∈ κ(0, η), such that

ψ′(f(x)− f(x̄))∥∇f(x)−∇f(x̄)∥ ≥ 1, ∀x ∈ B(x̄, r) ∩ [f(x̄) < f < f(x̄) + η]. (2.1)

Definition 2.12. A function f : Rd → R will satisfy the Łojasiewicz inequality with exponent q ∈]0, 1] if f
satisfies the KŁ inequality with ψ(s) = c0s

1−q for some c0 > 0.

It remains now to identify a broad class of functions f that verifies the KŁ inequality. A rich family is
provided by semi-algebraic functions, i.e., functions whose graph is defined by some Boolean combination
of real polynomial equations and inequalities [72]. Such functions satisfy the Łojasiewicz property with
q ∈ [0, 1[∩Q; see [2, 3]. An even more general family is that of definable functions on an o-minimal structure
over R, which corresponds in some sense to an axiomatization of some of the prominent geometrical and
stability properties of semi-algebraic geometry [73, 74]. An important result by Kurdyka in [4] showed that
definable functions satisfy the KŁ inequality at every x̄ ∈ Rd.

Remark 2.13. Morse functions verify the Łojasiewicz inequality with exponent q = 1/2; see [52].

3 Inertial System with Explicit Hessian Damping

Throughout the paper we will consider (ISEHD) and (ISIHD) with t0 = 0. Also we will assume that the
viscous damping γ : R+ → R+ is such that ∃c, C > 0, c ≤ C, and

c ≤ γ(t) ≤ C, ∀t ≥ 0. (Hγ)

Moreover, throughout this work, we consider a constant geometric damping, i.e. β(t) ≡ β > 0.

3.1 Continuous-time dynamics

Let us consider (ISEHD), as in [39], we will say that x : R+ → Rd is a solution trajectory of (ISEHD) with
initial conditions x(0) = x0, ẋ(0) = v0, if and only if, x ∈ C2(R+;Rd) and there exists y ∈ C1(R+;Rd)
such that (x, y) satisfies: ẋ(t) + β∇f(x(t))−

(
1
β − γ(t)

)
x(t) + 1

β y(t) = 0,

ẏ(t)−
(

1
β − γ(t)− βγ′(t)

)
x(t) + 1

β y(t) = 0,
(3.1)

with initial conditions x(0) = x0, y(0) = y0
def
= −β(v0 + β∇f(x0)) + (1− βγ(0))x0.

7



3.1.1 Global convergence of the trajectory

Our first main result is the following theorem.

Theorem 3.1. Assume that 0 < β < 2c
C2 , f : Rd → R satisfies (H0), and γ ∈ C1(R+;R+) obeys (Hγ).

Consider (ISEHD) in this setting, then the following holds:
(i) There exists a global solution trajectory x : R+ → Rd of (ISEHD).
(ii) We have that ∇f ◦ x ∈ L2(R+;Rd), and ẋ ∈ L2(R+;Rd).
(iii) If we suppose that the solution trajectory x is bounded over R+, then

lim
t→+∞

∥∇f(x(t))∥ = lim
t→+∞

∥ẋ(t)∥ = 0,

and limt→+∞ f(x(t)) exists.
(iv) In addition to (iii), if we also assume that f is definable, then ẋ ∈ L1(R+;Rd) and x(t) converges (as

t→ +∞) to a critical point of f .

Remark 3.2. The boundedness assumption in assertion (ii) can be dropped if ∇f is supposed to be globally
Lipschitz continuous.

Proof. (i) We will start by showing the existence of a solution. Setting Z = (x, y), (3.1) can be equiva-
lently written as

Ż(t) +∇G(Z(t)) +D(t, Z(t)) = 0, Z(0) = (x0, y0), (3.2)

where G(Z) : Rd × Rd → R is the function defined by G(Z) = βf(x) and the time-dependent
operator D : R+ × Rd × Rd → Rd × Rd is given by:

D(t, Z)
def
=

(
−
(
1

β
− γ(t)

)
x+

1

β
y,−

(
1

β
− γ(t)− βγ′(t)

)
x+

1

β
y

)
.

Since the map (t, Z) 7→ ∇G(Z) + D(t, Z) is continuous in the first variable and locally Lipschitz in
the second (by hypothesis (H0) and the assumptions on γ), by the classical Cauchy-Lipschitz the-
orem, we have that there exists Tmax > 0 and a unique maximal solution of (3.2) denoted Z ∈
C1([0, Tmax[;Rd × Rd). Consequently, there exists a unique maximal solution of (ISEHD) x ∈
C2([0, Tmax[;Rd).

Let us consider the energy function V : [0, Tmax[→ R defined by

V (t) = f(x(t)) +
1

2
∥ẋ(t) + β∇f(x(t))∥2.

We will prove that it is indeed a Lyapunov function for (ISEHD). We see that

V ′(t) = ⟨∇f(x(t)), ẋ(t)⟩+ ⟨ẍ(t) + β
d

dt
∇f(x(t)), ẋ(t) + β∇f(x(t))⟩

= ⟨∇f(x(t)), ẋ(t)⟩+ ⟨−γ(t)ẋ(t)−∇f(x(t)), ẋ(t) + β∇f(x(t))⟩
= −⟨γ(t)ẋ(t), ẋ(t)⟩ − β⟨γ(t)ẋ(t),∇f(x(t))⟩ − β∥∇f(x(t))∥2

≤ −c∥ẋ(t)∥2 + β2∥γ(t)ẋ(t)∥2

2ε
+
ε∥∇f(x(t))∥2

2

≤ −c∥ẋ(t)∥2 + β2C2∥ẋ(t)∥2

2ε
+
ε∥∇f(x(t))∥2

2
,
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where the last bound is due to Young’s inequality with ε > 0. Now let ε = β2C2

c , then

V ′(t) ≤ − c
2
∥ẋ(t)∥2 − β

(
1− βC2

2c

)
∥∇f(x(t))∥2 − δ1(∥ẋ(t)∥2 + ∥∇f(x(t))∥2). (3.3)

For δ1
def
= min

(
c
2 , β

(
1− βC2

2c

))
> 0.

We will now show that the maximal solution Z of (3.2) is actually global. For this, we use a stan-
dard argument and argue by contradiction assuming that Tmax < +∞. It is sufficient to prove that
x and y have a limit as t → Tmax, and local existence will contradict the maximality of Tmax. In-
tegrating inequality (3.3), we obtain ẋ ∈ L2([0, Tmax[;Rd) and ∇f ◦ x ∈ L2([0, Tmax[;Rd), hence
implying that ẋ ∈ L1([0, Tmax[;Rd) and ∇f ◦ x ∈ L1([0, Tmax[;Rd), which in turn entails that
(x(t))t∈[0,Tmax[ satisfies the Cauchy property whence we get that limt→Tmax x(t) exists. Besides, by
the first equation of (3.1), we have that limt→Tmax y(t) exists if limt→Tmax x(t), limt→Tmax ∇f(x(t))
and limt→Tmax ẋ(t) exist. We have already that the first two limits exist by continuity of ∇f , and
thus we just have to check that limt→Tmax ẋ(t) exists. A sufficient condition would be to prove that
ẍ ∈ L1([0, Tmax[;Rd). By (ISEHD) this will hold if ẋ,∇f ◦ x, (∇2f ◦ x)ẋ are in L1([0, Tmax[;Rd).
We have already checked that the first two terms are in L1([0, Tmax[;Rd). To conclude, it remains to
check that ∇2f ◦ x ∈ L∞([0, Tmax[;Rd) and this is true since ∇2f is continuous, x is continuous on
[0, Tmax], and the latter is compact. Consequently, the solution Z of (3.2) is global, thus the solution
x of (ISEHD) is also global.

(ii) Integrating (3.3) and using that V is well-defined for every t > 0 and is bounded from below, we
deduce that ẋ ∈ L2(R+;Rd), and ∇f ◦ x ∈ L2(R+;Rd).

(iii) We recall that we are assuming that supt≥0 ∥x(t)∥ < +∞ and f ∈ C2(Rd), hence

sup
t≥0

∥∇2f(x(t))∥ < +∞.

In turn, ∇f is Lipschitz continuous on bounded sets. Moreover, as ẋ ∈ L2(R+;Rd) and is continuous,
then ẋ ∈ L∞(R+;Rd). The last two facts imply that t 7→ ∇f(x(t)) is uniformly continuous. In fact,
for every t, s ≥ 0, we have

∥∇f(x(t))−∇f(x(s))∥ ≤ sup
τ≥0

∥∥∇2f(x(τ))
∥∥ ∥ẋ(τ)∥ |t− s|.

This combined with ∇f ◦ x ∈ L2(R+;Rd) yields

lim
t→+∞

∥∇f(x(t))∥ = 0.

We also have that d
dt∇f(x(t)) = ∇2f(x(t))ẋ(t), and thus (∇2f ◦ x)ẋ ∈ L∞(R+;Rd). We also have

∇f ◦x ∈ L∞(R+;Rd) by continuity of ∇f and boundedness of x. It then follows from (ISEHD) that
ẍ ∈ L∞(R+;Rd). This implies that

∥ẋ(t)− ẋ(s)∥ ≤ sup
τ≥0

∥ẍ(τ)∥ |t− s|,

meaning that t 7→ ẋ(t) is uniformly continuous. Recalling that ẋ ∈ L2(R+;Rd) gives that

lim
t→+∞

∥ẋ(t)∥ = 0.
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We have from (3.3) that V is non-increasing. Since it is bounded from below, it has a limit, i.e.
limt→+∞ V (t) exists and we will denote this limit by L̃. Recall from the definition of V that

f(x(t)) = V (t)− 1

2
∥ẋ(t) + β∇f(x(t))∥2.

Using the above three limits we get

lim
t→+∞

f(x(t)) = lim
t→+∞

V (t) = L̃.

(iv) From boundedness of (x(t))t≥0, by a Lyapunov argument (see e.g. [28, Proposition 4.1], [75]), the set
of its cluster points C(x(·)) satisfies:

C(x(·)) ⊆ crit(f);

C(x(·)) is non-empty, compact and connected;
f is constant on C(x(·)).

(3.4)

We consider the function

E : (x, v, w) ∈ R3d 7→ f(x) +
1

2
∥v + w∥2. (3.5)

Since f is definable, so is E as the sum of a definable function and an algebraic one. Therefore, E
satisfies the KŁ inequality [4]. Let C1 = C(x(·)) × {0d} × {0d}. Observe that E takes the constant
value L̃ on C1 and C1 ⊂ crit(E). It then follows from the uniformized KŁ property [76, Lemma 6]
that ∃r, η > 0 and ∃ψ ∈ κ(0, η) such that for all (x, v, w) ∈ R3d verifying x ∈ C(x(·)) + Br, v ∈
Br, w ∈ Br (where Br is the Rd-ball centered at 0d with radius r) and 0 < E(x, v, w)− L̃ < η, one
has

ψ′(E(x, v, w)− L̃)∥∇E(x, v, w)∥ ≥ 1. (3.6)

It is clear that V (t) = E(x(t), ẋ(t), β∇f(x(t))), and that x⋆ ∈ crit(f) if and only if (x⋆, 0, 0) ∈
crit(E).

Let us define the translated Lyapunov function Ṽ (t) = V (t)−L̃. By the properties of V proved above,
we have limt→+∞ Ṽ (t) = 0 and Ṽ is non-increasing, and we can conclude that Ṽ (t) ≥ 0 for every
t > 0. Without loss of generality, we may assume that Ṽ (t) > 0 for every t > 0 (since otherwise
Ṽ (t) is eventually zero and thus ẋ(t) is eventually zero in view of (3.3), meaning that x(·) has finite
length). This in turn implies that limt→+∞ ψ(Ṽ (t)) = 0. Define the constants δ2 = max

(
4, 1 + 4β2

)
and δ3 = δ1√

δ2
. We have from (3.4) that limt→+∞ dist(x(t),C(x(·))) = 0. This together with the

convergence claims on ẋ, ∇f(x) and Ṽ imply that there exists T > 0 large enough such that for all
t ≥ T 

x(t) ∈ C(x(·)) +Br,

∥ẋ(t)∥ < r,

β∥∇f(x(t))∥ < r,

0 < Ṽ (t) < η,
1
δ3
ψ(Ṽ (t)) < r

2
√
2
.

(3.7)
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We are now in position to apply (3.6) to obtain

ψ′(Ṽ (t))∥∇E(x(t), ẋ(t), β∇f(x(t)))∥ ≥ 1, ∀t ≥ T. (3.8)

On the other hand, for every t ≥ T :

− d

dt
ψ(Ṽ (t)) = ψ′(Ṽ (t))(−Ṽ ′(t)) ≥ − Ṽ ′(t)

∥∇E(x(t), ẋ(t), β∇f(x(t)))∥
. (3.9)

Additionally, for every t > 0 we have the bounds

−Ṽ ′(t) ≥ δ1(∥ẋ(t)∥2 + ∥∇f(x(t))∥2),
∥∇E(x(t), ẋ(t), β∇f(x(t)))∥2 ≤ δ2(∥ẋ(t)∥2 + ∥∇f(x(t))∥2).

(3.10)

Combining the two previous bounds, then for every t > 0:

∥∇E(x(t), ẋ(t), β∇f(x(t)))∥ ≤
√
δ2
δ1

√
−Ṽ ′(t). (3.11)

By (3.9), for every t ∈ [T,+∞[

− d

dt
ψ(Ṽ (t)) ≥

√
δ1
δ2

−Ṽ ′(t)√
−Ṽ ′(t)

=

√
δ1
δ2

√
−Ṽ ′(t) ≥ δ3

√
∥ẋ(t)∥2 + ∥∇f(x(t))∥2. (3.12)

Integrating from T to +∞, we obtain∫ +∞

T

√
∥ẋ(t)∥2 + ∥∇f(x(t))∥2dt ≤ 1

δ3
ψ(V (T )) <

r

2
√
2
. (3.13)

Thus ∫ +∞

T
∥ẋ(t)∥dt ≤

∫ +∞

T

√
∥ẋ(t)∥2 + ∥∇f(x(t))∥2dt < r

2
√
2
,

this implies that ẋ ∈ L1(R+;Rd). Therefore x(t) has the Cauchy property and this in turn implies that
limt→+∞ x(t) exists, and is a critical point of f since limt→+∞ ∥∇f(x(t))∥ = 0.

3.1.2 Trap avoidance

In the previous section, we have seen the convergence of the trajectory to a critical point of the objective,
which includes strict saddle points. We will call trap avoidance the effect of avoiding such points at the limit.
If the objective function satisfies the strict saddle property (recall Definition 2.5) as is the case for a Morse
function, this would imply convergence to a local minimum of the objective. The following theorem gives
conditions to obtain such an effect.

Theorem 3.3. Let c > 0, assume that 0 < β < 2
c and take γ ≡ c. Suppose that f : Rd → R satisfies

(H0) and is a Morse function. Consider (ISEHD) in this setting. If the solution trajectory x is bounded over
R+, then the conclusions of Theorem 3.1 hold. If, moreover, β ̸= 1

c , then for Lebesgue almost all initial
conditions x0, v0 ∈ Rd, x(t) converges (as t→ +∞) to a local minimum of f .
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Proof. Since Morse functions are C2 and satisfy the KŁ inequality (see Remark 2.13), then all the claims of
Theorem 3.1, and in particular (iv)3, hold.

As in [29, Theorem 4], we will use the global stable manifold theorem [77, page 223] to get the last claim.
We recall that (ISEHD) is equivalent to (3.1), and that we are in the case γ(t) = c for all t, i.e., ẋ(t) + β∇f(x(t))−

(
1
β − c

)
x(t) + 1

β y(t) = 0,

ẏ(t)−
(

1
β − c

)
x(t) + 1

β y(t) = 0,
(3.14)

with initial conditions x(0) = x0, y(0) = y0
def
= −β(v0 + β∇f(x0)) + (1 − βc)x0. Let us consider

F : Rd × Rd → Rd × Rd defined by

F (x, y) =

(
−β∇f(x) +

(
1

β
− c

)
x− 1

β
y,

(
1

β
− c

)
x− 1

β
y

)
.

Defining z(t) = (x(t), y(t)) and z0 = (x0, v0) ∈ R2d , then (3.14) is equivalent to the Cauchy problem{
ż(t) = F (z(t)),

z(0) = z0.
(3.15)

We stated that when 0 < β < 2
c and f is definable (see the first claim above), then the solution trajectory z(t)

converges (as t → +∞) to an equilibrium point of F . Let us denote Φ(z0, t), the value at t of the solution
(3.15) with initial condition z0. Assume that ẑ is a hyperbolic equilibrium point of F (to be shown below),
meaning that F (ẑ) = 0 and that no eigenvalue of JF (ẑ) has zero real part. Consider the invariant set

W s(ẑ) = {z0 ∈ R2d : lim
t→+∞

Φ(z0, t) = ẑ}.

The global stable manifold theorem [77, page 223] asserts that W s(ẑ) is an immersed submanifold of R2d,
whose dimension equals the number of eigenvalues of JF (ẑ) with negative real part.

First, we will prove that each equilibrium point of F is hyperbolic. We notice that the set of equilibrium
points of F is {(x̂, (1− βc)x̂) : x̂ ∈ crit(f)}. On the other hand, we compute

JF (x, y) =

−β∇2f(x) +
(

1
β − c

)
Id − 1

β Id(
1
β − c

)
Id − 1

β Id

 .

Let ẑ = (x̂, (1− βc)x̂), where x̂ ∈ crit(f). Then the eigenvalues of JF (ẑ) are characterized by the roots in
λ ∈ C of

det

−β∇2f(x̂) +
(

1
β − c− λ

)
Id − 1

β Id(
1
β − c

)
Id −

(
λ+ 1

β

)
Id

 = 0. (3.16)

By Lemma 2.1, we have that (3.16) is equivalent to

det((1 + λβ)∇2f(x̂) + (λ2 + λc)Id) = 0. (3.17)
3In fact, the proof is even more straightforward since the set of cluster points C(x(·)) satisfies (3.4) and the critical points are

isolated; see the proof of [28, Theorem 4.1].
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If λ = − 1
β , then by (3.17), βc = 1, which is excluded by hypothesis. Therefore, − 1

β cannot be an eigenvalue,
i.e. λ ̸= − 1

β . We then obtain that (3.17) is equivalent to

det

(
∇2f(x̂) +

λ2 + λc

(1 + λβ)
Id

)
= 0. (3.18)

It follows that λ satisfies (3.18) if and only if

λ2 + λc

(1 + λβ)
= −η

where η ∈ R is an eigenvalue of ∇2f(x̂). Equivalently,

λ2 + (c+ ηβ)λ+ η = 0. (3.19)

Let ∆λ
def
= (c+ ηβ)2 − 4η. We distinguish two cases.

• ∆λ ≥ 0: then the roots of (3.19) are real and we rewrite (3.19) as

λ(λ+ (c+ ηβ)) = −η,

since η ̸= 0 (because f is a Morse function), then λ ̸= 0.
• ∆λ < 0: then (3.19) has a pair of complex conjugate roots whose real part is − c+ηβ

2 . Besides,
∆λ = c2+2βηc+η2β2−4η can be seen as a quadratic on cwhose discriminant is given by∆c = 16η.
The fact that ∆λ < 0 implies ∆c > 0, and thus η > 0, therefore − c+ηβ

2 < 0.
Overall, this shows that every equilibrium point of F is hyperbolic.

Let us recall that crit(f) =
⋃

k∈I{x̂k}. Thus, the set of equilibria of F is also finite and each one takes
the form ẑk = (x̂k, (1 − βc)x̂k). Since we have already shown that each solution trajectory x of (ISEHD)
converges towards some x̂k, the following partition then holds

Rd × Rd =
⋃
k∈I

W s(ẑk).

Let
I− = {k ∈ I : each eigenvalue of JF (ẑk) has negative real part.},

and J def
= I \ I−. Now, the global stable manifold theorem [77, page 223] allows to claim that W s(ẑk) is an

immersed submanifold of R2d whose dimension is 2d when k ∈ I− and at most 2d− 1 when k ∈ J .

Let k ∈ I−, we claim that ∇2f(x̂k) has only positive eigenvalues. By contradiction, let us assume that
η0 < 0 is an eigenvalue of ∇2f(x̂k) (η0 = 0 is not possible due to the Morse hypothesis). Each solution λ
of (3.19) is an eigenvalue of JF (ẑk) and one of these solutions is

−(c+ ηβ) +
√
(c+ ηβ)2 − 4η0
2

which is positive since η0 < 0. We then have

−(c+ η0β) +
√

(c+ η0β)2 − 4η0
2

>
−(c+ η0β) + |c+ η0β|

2
≥ 0,
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hence contradicting the assumption that k ∈ I−. In conclusion, the set of initial conditions z0 such that
Φ(z0, t) converges to (xb, (1−βc)xb) (as t→ +∞), where xb is not a local minimum of f is

⋃
k∈J W

s(ẑk)
which has Lebesgue measure zero. Therefore, due to the equivalence between (3.1) and (ISEHD) and that
Morse functions satisfy the strict saddle property (see Remark 2.7), we indeed have that for almost all initial
conditions x0, v0 ∈ Rd, the solution trajectory of (ISEHD) will converge to a local minimum of f .

3.1.3 Convergence rate

When the objective function is definable, we now provide the convergence rate on the Lyapunov function E
in (3.5), hence f , and on the solution trajectory x.

Theorem 3.4. Consider the setting of Theorem 3.1 with f being also definable and the solution trajectory
x is bounded. Recall the function E from (3.5), which is also definable, and denote ψ its desingularizing
function and Ψ any primitive of −ψ′2. Then, x(t) converges (as t → +∞) to x∞ ∈ crit(f). Denote
Ṽ (t)

def
= E(x(t), ẋ(t), β∇f(x(t)))− f(x∞). The following rates of convergence hold:

• If limt→0Ψ(t) ∈ R, we have E(x(t), ẋ(t), β∇f(x(t))) converges to f(x∞) in finite time.
• If limt→0Ψ(t) = +∞, there exists some t1 ≥ 0 such that

Ṽ (t) = O(Ψ−1(t− t1)). (3.20)

Moreover,
∥x(t)− x∞∥ = O(ψ ◦Ψ−1(t− t1)). (3.21)

Proof. This proof is a generalization of [5, Theorem 2.7] to the dynamics (ISEHD). Let δ0
def
= δ2

δ1
, δ3 > 0 and

T > 0 for δ1, δ2, δ3, T defined in the proof of Theorem 3.1. Using (3.10) then (3.9), we have for t > T

d

dt
Ψ(Ṽ (t)) = Ψ′(Ṽ (t))Ṽ ′(t)

= −ψ′2(Ṽ (t))Ṽ ′(t)

≥ δ0ψ
′2(Ṽ (t))∥∇E(x(t), ẋ(t), β∇f(x(t))∥2

≥ δ0. (3.22)

Integrating on both sides from T to t we obtain that for every t > T

Ψ(Ṽ (t)) ≥ δ0(t− T ) + Ψ(Ṽ (T )).

Following the arguments shown in [78, Theorem 3.1.12], if limt→0Ψ(t) ∈ R, then Ṽ (t) converges to 0 in
finite time. Otherwise, we take the inverse of Ψ, which is non-increasing, on both sides of (3.22) to obtain
the desired bound. Finally, using (3.13) we also have for every t > T

∥x(t)− x∞∥ ≤
∫ +∞

t
∥ẋ(s)∥ds ≤ 1

δ3
ψ(Ṽ (t)) ≤ 1

δ3
ψ ◦Ψ−1(δ0(t− T ) + Ψ(Ṽ (T ))). (3.23)

Remark 3.5. Observe that the convergence rate (3.20) holds also on f(x(t))−f(x∞) and ∥ẋ(t) +∇f(x(t))∥2.

We now specialize this to the Łojasiewicz case.
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Corollary 3.6. Consider the setting of Theorem 3.4 where now f satisfies the Łojasiewicz inequality with
desingularizing function ψf (s) = cfs

1−q, q ∈ [0, 1[, cf > 0. Then there exists some t1 > 0 such that the
the following convergence rates hold:

• If q ∈ [0, 12 ], then

Ṽ (t) = O (exp(−(t− t1))) and ∥x(t)− x∞∥ = O
(
exp

(
t− t1
2

))
. (3.24)

• If q ∈]12 , 1[, then

Ṽ (t) = O
(
(t− t1)

−1
2q−1

)
and ∥x(t)− x∞∥ = O

(
(t− t1)

− 1−q
2q−1

)
. (3.25)

Proof. E is a separable quadratic perturbation of f . But a quadratic function is Łojasiewicz with exponent
1/2. It then follows from the Łojasiewicz exponent calculus rule in [79, Theorem 3.3] that the desingularizing
function of E is ψE(s) = cEs

1−qE for some cE > 0 and qE = max
(
q, 12
)
. Then,

• If q ∈ [0, 12 ] then qE = 1
2 and Ψ(s) =

c21
4 ln

(
1
s

)
. This implies that Ψ−1(s) = 4

c21
exp(−s).

• If q ∈]12 , 1[ then qE = q and Ψ(s) =
c21

4(2q−1)s
1−2q. This implies that Ψ−1(s) = 4(2q−1)

c21
s

−1
2q−1 .

We conclude in both cases by using Theorem 3.4.

3.2 Algorithmic scheme

Now we will consider the following finite differences explicit discretization of (ISEHD) with step-size h > 0
and for k ≥ 1:

xk+1 − 2xk + xk−1

h2
+ γ(kh)

xk+1 − xk
h

+ β
∇f(xk)−∇f(xk−1)

h
+∇f(xk) = 0.

Rearranging, this equivalently reads{
yk = xk + αk(xk − xk−1)− βk(∇f(xk)−∇f(xk−1)),

xk+1 = yk − sk∇f(xk),
(ISEHD-Disc)

with initial conditions x0, x1 ∈ Rd, where αk
def
= 1

1+γkh
, γk

def
= γ(kh), βk

def
= βhαk, sk

def
= h2αk

3.2.1 Global convergence and trap avoidance

The following theorem summarizes our main results on the behavior of (ISEHD-Disc). Observe that as the
discretization is explicit, we will need ∇f to be globally Lipschitz continuous.

Theorem 3.7. Let f : Rd → R be satisfying (H0) with ∇f being globally L-Lipschitz-continuous. Consider
the scheme (ISEHD-Disc) with h > 0, β ≥ 0 and c ≤ γk ≤ C for some c, C > 0 and all k ∈ N. Then the
following holds:

(i) If β + h
2 <

c
L , then (∥∇f(xk)∥)k∈N ∈ ℓ2(N), and (∥xk+1 − xk∥)k∈N ∈ ℓ2(N), in particular

lim
k→+∞

∥∇f(xk)∥ = 0.

(ii) Moreover, if (xk)k∈N is bounded and f is definable, then (∥xk+1−xk∥)k∈N ∈ ℓ1(N) and xk converges
(as k → +∞) to a critical point of f .
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(iii) Furthermore, if γk ≡ c > 0, 0 < β < c
L , β ̸= 1

c , and h < min(2
(
c
L − β

)
, 1
Lβ ), then for almost

all x0, x1 ∈ Rd, xk converges (as k → +∞) to a critical point of f that is not a strict saddle.
Consequently, if f satisfies the strict saddle property then for almost all x0, x1 ∈ Rd, xk converges (as
k → +∞) to a local minimum of f .

Remark 3.8. When β = 0, we recover the HBF method and the condition h < min(2
(
c
L − β

)
, 1
Lβ )

becomes h < 2c
L .

Proof. (i) By definition of xk+1 in (ISEHD-Disc), for k ∈ N∗

xk+1 = argmin
x∈Rd

1

2
∥x− (yk − sk∇f(xk))∥2. (3.26)

1−strong convexity of x 7→ 1
2∥x− (yk − sk∇f(xk))∥2 then yields

1

2
∥xk+1 − (yk − sk∇f(xk))∥2 ≤

1

2
∥xk − (yk − sk∇f(xk))∥2 −

1

2
∥xk+1 − xk∥2. (3.27)

Let
¯
α = 1

1+Ch , ᾱ = 1
1+ch ,¯

s = h2
¯
α, s̄ = h2ᾱ, and thus for every k ∈ N,

¯
α ≤ αk ≤ ᾱ and

¯
s ≤ sk ≤ s̄.

Let also vk
def
= xk−xk−1, zk

def
= αkvk−βk(∇f(xk)−∇f(xk−1)), then yk = xk+zk. After expanding

the terms of (3.27) we have that

⟨∇f(xk), vk+1⟩ ≤ −∥vk+1∥2

sk
+

1

sk
⟨vk+1, zk⟩

≤ −∥vk+1∥2

s̄
+

1

h2
⟨vk+1, vk⟩ −

β

h
⟨vk+1,∇f(xk)−∇f(xk−1)⟩.

(3.28)

By the descent lemma for L-smooth functions, we obtain

f(xk+1) ≤ f(xk) + ⟨∇f(xk), vk+1⟩+
L

2
∥vk+1∥2. (3.29)

Using the bound in (3.28), we get

f(xk+1) ≤ f(xk) +
1

h2
⟨vk+1, vk⟩ −

β

h
⟨vk+1,∇f(xk)−∇f(xk−1)⟩ −

(
1

s̄
− L

2

)
∥vk+1∥2. (3.30)

According to our hypothesis h < 2c
L , so h < c+

√
c2+2L
L and this implies that s̄ < 2

L . Using Young’s
inequality twice, for ε, ε′ > 0, the fact that ∇f is L−Lipschitz, and adding ε+ε′

2 ∥vk+1∥2 at both sides,
then

f(xk+1) +
ε+ ε′

2
∥vk+1∥2 ≤ f(xk) +

ε+ ε′

2
∥vk∥2

+

(
1

2

[
1

h4ε
+ ε+

β2L2

h2ε′
+ ε′

]
−
(
1

s̄
− L

2

))
∥vk+1∥2.

(3.31)

In order to make the last term negative, we want to impose

1

2

[
1

h4ε
+ ε+

β2L2

h2ε′
+ ε′

]
<

(
1

s̄
− L

2

)
. (3.32)
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Minimizing the left-hand side with respect to ε, ε′ > 0 we get ε = 1
h2 , ε

′ = βL
h , and one can check that

in this case, the condition (3.32) becomes equivalent to β+ h
2 <

c
L which is assumed in the hypothesis.

Setting C1
def
= 1

h2 +
βL
h , δ

def
= 1

s̄ −
L
2 − 1

h2 − βL
h > 0, and defining Vk

def
= f(xk) +

C1
2 ∥vk∥2, we have for

any k ∈ N∗

Vk+1 ≤ Vk − δ∥vk+1∥2. (3.33)
Clearly, Vk is non-increasing and bounded from below, hence limk→+∞ Vk exists (say L̃). Summing
this inequality over k, we have that (∥vk+1∥)k∈N ∈ ℓ2(N) entailing that limk→+∞ ∥vk∥ = 0. In
turn,we have that limk→+∞ f(xk) = L̃. Embarking again from the update in (ISEHD-Disc), we have

sk∥∇f(xk)∥ = ∥xk+1 − yk∥ ≤ ∥xk+1 − xk∥+ ∥xk − yk∥
≤ ∥vk+1∥+ (αk + βkL)∥vk∥
≤ ∥vk+1∥+ ∥vk∥,

since ᾱ(1 + βhL) < 1 by hypothesis. Therefore

∥∇f(xk)∥2 ≤ δ2(∥vk+1∥2 + ∥vk∥2),

where δ2 = 2

¯
s2

. Consequently (∥∇f(xk)∥)k∈N ∈ ℓ2(N), which implies that limk→+∞ ∥∇f(xk)∥ =
0.

(ii) If, moreover, (xk)k∈N is bounded, then the set of its cluster points C((xk)k∈N) satisfies (see e.g. [76,
Lemma 5]): 

C((xk)k∈N) ⊆ crit(f);

C((xk)k∈N) is non-empty, compact and connected;
f is constant on C((xk)k∈N).

(3.34)

Define
E : (x, v) ∈ R2d 7→ f(x) +

C1

2
∥v∥2. (3.35)

Since f is definable, so isE as the sum of a definable function and an algebraic one, whenceE satisfies
the KŁ inequality. Let C1 = C((xk)k∈N) × {0d}. Since E

∣∣
C1

= L̃,∇E
∣∣
C1

= 0, ∃r, η > 0, ∃ψ ∈
κ(0, η) such that for every (x, v) such that x ∈ C((xk)k∈N) + Br, v ∈ Br, (where Br is the Rd-ball
centred at 0d with radius r) and 0 < E(x, v)− L̃ < η, one has

ψ′(E(x, v)− L̃)∥∇E(x, v)∥ ≥ 1. (3.36)

Let us define Ṽk = Vk − L̃, or equivalently Ṽk = E (xk, vk) − L̃. From (3.33),
(
Ṽk

)
k∈N

is a non-

increasing sequence and its limit is 0 by definition of L̃. This implies that that Ṽk ≥ 0 for all k ∈ N∗.
We may assume without loss of generality that Ṽk > 0. Indeed, suppose there exists K ∈ N such that
ṼK = 0, then the decreasing property (3.33) implies that Ṽk = 0 holds for all k ≥ K. Thus vk+1 = 0,
or equivalently xk = xK , for all k ≥ K, hence (xk)k∈N has finite length.
Since limk→+∞ dist(xk,C((xk)k∈N)) = 0, limk→+∞ ∥vk∥ = 0, and limk→+∞ Ṽk = 0, there exists
K̃ ∈ N such that for all k ≥ K̃, 

xk ∈ C((xk)k∈N) +Br;

∥vk∥ < r;

0 < Ṽk < η.
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Then, by (3.36), we have
ψ′(Ṽk)∥∇E (xk, vk) ∥ ≥ 1, ∀k ≥ K̃. (3.37)

By concavity of ψ and (3.37), we have

ψ(Ṽk)− ψ(Ṽk+1) ≥ −ψ′(Ṽk)(Ṽk+1 − Ṽk)

≥ δψ′(Ṽk)∥vk+1∥2

≥ δ
∥vk+1∥2

∥∇E (xk, vk) ∥
.

On the other hand,
∥∇E (xk, vk) ∥ ≤ δ3(∥vk+1∥+ ∥vk∥) (3.38)

where δ3 =
√
C2
1 + δ2. Let us define for k ∈ N∗, (∆ψ)k

def
= ψ(Ṽk)− ψ(Ṽk+1) and δ4 = δ3

δ . We then
have for all k ≥ K̃,

∥vk+1∥2 ≤ δ4(∆ψ)k(∥vk∥+ ∥vk+1∥).

Using Young’s inequality and concavity of
√
·, this implies that for every ε > 0

∥vk+1∥ ≤ δ4
(∆ψ)k√

2ε
+ ε

∥vk+1∥+ ∥vk∥√
2

.

Rearranging the terms and imposing 0 < ε <
√
2 gives(

1− ε√
2

)
∥vk+1∥ ≤ δ4

(∆ψ)k√
2ε

+ ε
∥vk∥√

2
.

Dividing by
(
1− ε√

2

)
on both sides, we get

∥vk+1∥ ≤ δ4
(∆ψ)k

ε(
√
2− ε)

+ ε
∥vk∥√
2− ε

. (3.39)

Choosing now ε such that 0 < ε <
√
2
2 , we get that 0 < ε√

2−ε
< 1. Since (∆ψ)k ∈ ℓ1(N∗) as a

telescopic sum, we conclude that (∥vk∥)k∈N ∈ ℓ1(N∗). This means that (xk)k∈N has finite length,
hence is a Cauchy sequence, entailing that xk has a limit (as k → +∞) denoted x∞ which is a critical
point of f since limk→+∞ ∥∇f(xk)∥ = 0.

(iii) If γk ≡ c, we denote αk ≡ α = 1
1+ch , βk ≡ β̃ = βhα, sk ≡ s = h2α. Let zk = (xk, xk−1) for k ≥ 1,

and g : Rd × Rd → Rd × Rd defined by

g : (x+, x−) 7→ [(1 + α)x+ − αx− − (β̃ + s)∇f(x+) + β̃∇f(x−), x+].

(ISEHD-Disc) is then equivalent to
zk+1 = g(zk). (3.40)

To complete the proof, we will capitalize on [66, Corollary 1] which builds on the center stable mani-
fold theorem [58, Theorem III.7]. For this, one needs to check two conditions:

(a) det(Jg(x+, x−)) ̸= 0 for every x+, x− ∈ Rd.
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(b) Let A⋆
g

def
= {(x, x) ∈ R2d : x ∈ crit(f),maxi |λi(Jg(x, x))| > 1}, X ⋆ be the set of strict saddle

points of f , and X̂ def
= {(x, x) ∈ R2d : x ∈ X ⋆}. One needs to check that X̂ ⊂ A⋆

g.
A⋆

g is the set of unstable fixed points. Indeed, the fixed points of g are of the form (x⋆, x⋆) where
x⋆ ∈ crit(f).

We first compute Jg(x+, x−), given by(
(1 + α)Id − (β̃ + s)∇2f(x+) −αId + β̃∇2f(x−)

Id 0d×d

)
(3.41)

This is a block matrix that comes in a form amenable to applying Lemma 2.1. We then have

det(Jg(x+, x−)) = det(αId − β̃∇2f(x−)).

Since the eigenvalues of ∇2f(x−) are contained in [−L,L], if α > Lβ̃, then α − β̃η ̸= 0 for every
eigenvalue η ∈ R of∇2f(x−). This implies that the first condition is satisfied, i.e. det(Jg(x+, x−)) ̸=
0 for every x+, x− ∈ Rd. The condition α > Lβ̃ in terms of h reads h < 1

Lβ , since we already needed
h < 2

(
c
L − β

)
, we just ask h to be less than the minimum of the two quantities.

To check the second condition, let us take x a strict saddle point of f , i.e. x ∈ crit(f) and
λmin(∇2f(x)) = −η < 0. To compute the eigenvalues of Jg(x, x) we consider

det

((
(1 + α− λ)Id − (β̃ + s)∇2f(x) −αId + β̃∇2f(x)

Id −λId

))
= 0.

Again by Lemma 2.1, we get that

det

((
(1 + α− λ)Id − (β̃ + s)∇2f(x) −αId + β̃∇2f(x)

Id −λId

))
=

det[(−λ(1 + α) + λ2)Id + λ(β̃ + s)∇2f(x) + αId − β̃∇2f(x)] =

det[(λ(β̃ + s)− β̃)∇2f(x) + (λ2 − λ(1 + α) + α)Id].

We then need to solve for λ

det[(λ(β̃ + s)− β̃)∇2f(x) + (λ2 − λ(1 + α) + α)Id] = 0. (3.42)

If λ = β̃

β̃+s
, then (3.42) becomes

(
β̃

β̃ + s

)2

−

(
β̃

β̃ + s

)
(1 + α) + α = 0.

This implies that α = β̃

β̃+s
, which in terms of β and c is equivalent to βc = 1. But this case is excluded

by hypothesis. Now we can focus on the case where λ ̸= β̃

β̃+s
and we can rewrite (3.42) as

det

(
∇2f(x)− λ2 − λ(1 + α) + α

β̃ − λ(β̃ + s)
Id

)
= 0. (3.43)
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Therefore, as argued for the time-continuous dynamic, for every eigenvalue η′ ∈ R of ∇2f(x), λ
satisfies (3.43) if and only if

λ2 − λ(1 + α) + α

β̃ − λ(β̃ + s)
= η′.

where η′ ∈ R is an eigenvalue of ∇2f(x̂). Thus if η′ = −η is negative, we have

λ2 − λ((1 + α) + η(β̃ + s)) + α+ ηβ̃ = 0. (3.44)

We analyze its discriminant ∆λ = ((1 + α) + η(β̃ + s))2 − 4(α + ηβ̃). After developing the terms
we get that

∆λ = α2 + 2α(η(β̃ + s)− 1) + (η(β̃ + s) + 1)2 − 4ηβ̃,

which can be seen as a quadratic equation on α. We get that its discriminant ∆α is −16ηs, which is
negative (since η, s are positive), thus the quadratic equation on α does not have real roots, implying
that ∆λ > 0. We can write the solutions of (3.44),

λ =
((1 + α) + η(β̃ + s))±

√
∆λ

2
.

Let us consider the biggest solution (the one with the plus sign) and let us see that λ > 1, this is
equivalent to

((1 + α) + η(β̃ + s)) +
√
∆λ

2
> 1,

which in turn is equivalent to √
∆λ > 2− (1 + α)− η(β̃ + s).

Squaring both sides of this inequality, we have

[(1− α)− η(β̃ + s)]2 < ∆λ

= [(1 + α) + η(β̃ + s)]2 − 4(α+ ηβ̃).

After expanding the terms, we see that the inequality is equivalent to 0 < 4ηs, which is always true as
η > 0. Consequently, λ > 1 and in turn X̂ ⊂ A⋆

g.
We have then checked the two conditions (a)-(b) above. This entails that the invariant set {z1 ∈
R2d : limk→+∞ gk(z1) ∈ X̂} has Lebesgue measure zero. Equivalently, the set of initializations
x0, x1 ∈ Rd for which xk converges to a strict saddle point of f has Lebesgue measure zero.

3.2.2 Convergence rate

The following result provides the convergence rates for algorithm (ISEHD-Disc) in the case where f has the
Łojasiewicz property. The original idea of proof for descent-like algorithms can be found in [80, Theorem 5].

Theorem 3.9. Consider the setting of Theorem 3.7, where f also satisfies the Łojasiewicz property with
exponent q ∈ [0, 1[. Then xk → x∞ ∈ crit(f) as k → +∞ at the rates:

• If q ∈ [0, 12 ] then there exists ρ ∈]0, 1[ such that

∥xk − x∞∥ = O(ρk). (3.45)
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• If q ∈]12 , 1[ then

∥xk − x∞∥ = O
(
k
− 1−q

2q−1

)
. (3.46)

Proof. Recall the functionE from (3.35). Since f satisfies the Łojasiewicz property with exponent q ∈ [0, 1[,
andE is a separable quadratic perturbation of f , it follows from [79, Theorem 3.3] thatE has the Łojasiewicz
property with exponent qE = max (q, 1/2) ∈ [1/2, 1[, i.e. there exists cE > 0 such that the desingularizing
function of E is ψE(s) = cEs

1−qE .
Let vk = xk − xk−1 and ∆k =

∑+∞
p=k ∥vp+1∥. The triangle inequality yields ∆k ≥ ∥xk − x∞∥ so it

suffices to analyze the behavior of ∆k to obtain convergence rates for the trajectory. Recall the constants
δ, δ3, δ4 > 0 and the sequences ((∆ψ)k)k∈N and

(
Ṽk

)
k∈N

defined in the proof of Theorem 3.7. Denote

λ = ε√
2−ε

∈ (0, 1) and M = δ4
ε(
√
2−ε)

for 0 < ε <
√
2
2 . Using (3.39), we have that there exists K̃ ∈ N large

enough such that for all k ≥ K̃

∥vk+1∥ ≤ λ∥vk∥+M(∆ψ)k.

Recall that qE ∈ [12 , 1[ (so 1−qE
qE

≤ 1) and that limk→+∞ Ṽk = 0. We obtain by induction that for all k ≥ K̃

+∞∑
p=k

∥vp+1∥ ≤ λ

1− λ
∥vk∥+

McE
1− λ

Ṽ 1−qE
k . (3.47)

Or equivalently,

∆k ≤ λ

1− λ
(∆k−1 −∆k) +

McE
1− λ

Ṽ 1−qE
k . (3.48)

Denoting c2 = (cE(1− qE))
1−qE
qE , then by (3.37) and (3.38)

Ṽ 1−qE
k ≤ c2 ∥∇E (xk, vk)∥

1−qE
qE

≤ c2δ
1−qE
qE

3 (∥vk∥+ ∥vk+1∥)
1−qE
qE

≤ c2δ
1−qE
qE

3 (∆k−1 −∆k +∆k −∆k+1)
1−qE
qE

= c2δ
1−qE
qE

3 (∆k−1 −∆k+1)
1−qE
qE .

Plugging this into (3.48), and using that ∆k → 0 and 1−qE
qE

≤ 1, then there exists and integer K̃1 ≥ K̃ such
that for all k ≥ K̃1

∆k ≤ λ

1− λ
(∆k−1 −∆k)

1−qE
qE +

M1

1− λ
(∆k−1 −∆k+1)

1−qE
qE ,

where M1 = cEc2δ
1−qE
qE

3 M . Taking the power qE
1−qE

≥ 1 on both sides and using the fact that ∆k+1 ≤ ∆k,
we have for all k ≥ K̃1

∆
qE

1−qE
k ≤M2(∆k−1 −∆k+1), (3.49)

where we set M2 = (1− λ)
− qE

1−qE max(λ,M1)
qE

1−qE , We now distinguish two cases:
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• q ∈ [0, 1/2], hence qE = 1
2 : (3.49) then becomes

∆k ≤M2(∆k−1 −∆k+1),

withM2 = (1−λ)−1max(λ,M1) andM1 =
c2E
2

δ23
δ . Using again that ∆k+1 ≤ ∆k, we obtain that for

k ≥ K̃1

∆k ≤ M2

1 +M2
∆k−2,

which implies

∆k ≤
(

M2

1 +M2

) k−K̃1
2

∆K̃1
= O(ρk),

for ρ def
=
(

M2
1+M2

) 1
2 ∈]0, 1[.

• q ∈]12 , 1[, hence qE = q: we define the function h : R∗
+ → R by h(s) = s

− q
1−q . Let R > 1. Assume

first that h(∆k) ≤ Rh(∆k−1). Then from (3.49), we get

1 ≤M2(∆k−1 −∆k+1)h(∆k)

≤ RM2(∆k−1 −∆k+1)h(∆k−1)

≤ RM2

∫ ∆k−1

∆k+1

h(s)ds

≤ RM2
1− q

1− 2q

(
∆

1−2q
1−q

k−1 −∆
1−2q
1−q

k+1

)
.

Setting ν = 2q−1
1−q > 0 and M3 =

ν
RM2

> 0, one obtains

0 < M3 ≤ ∆−ν
k+1 −∆−ν

k−1. (3.50)

Now assume that h(∆k) > Rh(∆k−1). Since h is decreasing and ∆k+1 ≤ ∆k, then h(∆k+1) >

Rh(∆k−1). Set q = R
2q−1

q > 1, we directly have that

∆−ν
k+1 > q∆−ν

k−1.

Since q − 1 > 0 and ∆−ν
k → +∞ as k → +∞, there exists M4 > 0 and a large enough integer

K̃2 ≥ K̃1 such that for every k ≥ K̃2 that satisfies our assumption (h(∆k) > Rh(∆k−1)), we have

0 < M4 ≤ ∆−ν
k+1 −∆−ν

k−1. (3.51)

Taking M5 = min(M3,M4), (3.50) and (3.51) show that for all k ≥ K̃2

0 < M5 ≤ ∆−ν
k+1 −∆−ν

k−1.

Summing both sides from K̃2 up to K − 1 ≥ K̃2, we obtain

M5(K − K̃2) ≤ ∆−ν
K −∆−ν

K̃2
+∆−ν

K−1 −∆−ν
K̃2−1

≤ 2(∆−ν
K −∆−ν

K̃2−1
).
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Therefore
∆−ν

K ≥ ∆−ν
K̃2−1

+
M5

2
(K − K̃2). (3.52)

Inverting, we get

∆K ≤
[
∆−ν

K̃2−1
+
M5

2
(K − (K̃2 + 1))

]− 1
ν

= O(K− 1
ν ). (3.53)

3.2.3 General coefficients

The discrete scheme (ISEHD-Disc) opens the question of whether we can consider αk, βk, sk to be inde-
pendent. Though this would omit the fact they arise from a discretization of the continuous-time dynamic
(ISEHD), hence ignoring its physical interpretation, it will gives us a more flexible choice of these parameters
while preserving the desired convergence behavior.

Theorem 3.10. Let f : Rd → R be satisfying (H0) with∇f being globallyL-Lipschitz-continuous. Consider
(αk)k∈N, (βk)k∈N, (sk)k∈N to be three positive sequences, and the following algorithm with x0, x1 ∈ Rd:{

yk = xk + αk(xk − xk−1)− βk(∇f(xk)−∇f(xk−1)),

xk+1 = yk − sk∇f(xk).
(3.54)

If there exists s̄ > 0 such that:
• 0 < infk∈N sk ≤ supk∈N sk ≤ s̄ < 2

L ;
• supk∈N

(
αk+βkL

sk

)
< 1

s̄ −
L
2 .

Then the following holds:
(i) (∥∇f(xk)∥)k∈N ∈ ℓ2(N), and (∥xk+1 − xk∥)k∈N ∈ ℓ2(N), and thus

lim
k→+∞

∥∇f(xk)∥ = 0.

(ii) Moreover, if (xk)k∈N is bounded and f is definable, then (∥xk+1 − xk∥)k∈N ∈ ℓ1(N) and xk converges
(as k → +∞) to a critical point of f .

(iii) Furthermore, if αk ≡ α, βk ≡ β, sk ≡ s, then the previous conditions reduce to

α+ βL+
sL

2
< 1.

If, in addition, α ̸= β
β+s , and α > βL, then for almost all x0, x1 ∈ Rd, xk converges (as k → +∞)

to a critical point of f that is not a strict saddle. Consequently, if f satisfies the strict saddle property,
for almost all x0, x1 ∈ Rd, xk converges (as k → +∞) to a local minimum of f .

Remark 3.11. If αk, βk, sk are given as in (ISEHD-Disc), i.e. αk = 1
1+γkh

, βk = βhαk, sk = h2αk, then
the requirements of Theorem 3.10 reduce to β + h

2 <
c
L (recall that c is such that c ≤ γk).

Proof. Adjusting equation (3.28) to this setting, i.e. not using the dependent explicit forms of αk, βk, sk, we
get an analogous proof to the one of Theorem 3.7. We omit the details for the sake of brevity.

23



4 Inertial System with Implicit Hessian Damping

4.1 Continuous-time dynamics

We now turn to the second-order system with implicit Hessian damping as stated in (ISIHD), where we con-
sider a constant geometric damping, i.e. β(t) ≡ β > 0. We will use the following equivalent reformulation
of (ISIHD) proposed in [39]. We will say that x is a solution trajectory of (ISIHD) with initial conditions
x(0) = x0, ẋ(0) = v0, if and only if, x ∈ C2(R+;Rd) and there exists y ∈ C1(R+;Rd) such that (x, y)
satisfies: {

ẋ(t) + x(t)−y(t)
β = 0,

ẏ(t) + β∇f(y(t)) +
(

1
β − γ(t)

)
(x(t)− y(t)) = 0,

(4.1)

with initial conditions x(0) = x0, y(0) = y0
def
= x0 + βv0.

4.1.1 Global convergence of the trajectory

Our next main result is the following theorem, which is the implicit counterpart of Theorem 3.1.

Theorem 4.1. Let 0 < β < 2c
C2 , f : Rd → R satisfying (H0), γ is continuous and satisfies (Hγ).

Consider (ISIHD) in this setting, then the following holds:
(i) There exists a global solution trajectory x : R+ → Rd of (ISIHD).
(ii) We have that ẋ ∈ L2(R+;Rd), and ∇f ◦ (x+ βẋ) ∈ L2(R+;Rd).
(iii) If we suppose that the solution trajectory x is bounded over R+, then ∇f ◦ x ∈ L2(R+;Rd),

lim
t→+∞

∥∇f(x(t))∥ = lim
t→+∞

∥ẋ(t)∥ = 0,

and limt→+∞ f(x(t)) exists.
(iv) In addition to (iii), if we also assume that f is definable, then ẋ ∈ L1(R+;Rd) and x(t) converges (as

t→ +∞) to a critical point of f .

Proof. (i) We will start by showing the existence of a solution. Setting Z = (x, y), (4.1) can be equiva-
lently written as:

Ż(t) +∇G(Z(t)) +D(t, Z(t)) = 0, Z(0) = (x0, y0), (4.2)

where G(Z) : Rd×Rd → R is the function defined by G(Z) = βf(y) and the time-dependent operator
D : R+ × Rd × Rd → Rd × Rd is given by:

D(t, Z) =

(
x− y

β
,

(
1

β
− γ(t)

)
(x− y)

)
.

Since the map (t, Z) 7→ ∇G(Z) + D(t, Z) is continuous in the first variable and locally Lipschitz in
the second (by (H0) and the assumptions on γ),we get from Cauchy-Lipschitz theorem that there exists
Tmax > 0 and a unique maximal solution of (3.2) denotedZ ∈ C1([0, Tmax[;Rd×Rd). Consequently,
there exists a unique maximal solution of (ISIHD) x ∈ C2([0, Tmax[;Rd).

Let us consider the energy function V : [0, Tmax[→ R defined by

V (t) = f(x(t) + βẋ(t)) +
1

2
∥ẋ(t)∥2.
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Proceeding as in the proof of Theorem 3.1, we prove it is indeed a Lyapunov function for (ISIHD).
Denoting δ1

def
= min

(
c
2 , β

(
1− βC2

2c

))
> 0, we have

V ′(t) ≤ −δ1(∥ẋ(t)∥2 + ∥∇f(x(t) + βẋ(t))∥2). (4.3)

We will now show that the maximal solution Z of (4.2) is actually global. For this, we argue by
contradiction and assume that Tmax < +∞. It is sufficient to prove that x and y have a limit as
t → Tmax, and local existence will contradict the maximality of Tmax. Integrating (4.3), we obtain
ẋ ∈ L2([0, Tmax[;Rd) and∇f◦(x+βẋ) ∈ L2([0, Tmax[;Rd), which entails that ẋ ∈ L1([0, Tmax[;Rd)
and ∇f ◦ (x+ βẋ) ∈ L1([0, Tmax[;Rd), and in turn (x(t))t∈[0,Tmax[

satisfies the Cauchy property and
limt→Tmax x(t) exists. Besides, by the first equation of (4.1), we will have that limt→Tmax y(t) will
exist if both limt→Tmax x(t) and limt→Tmax ẋ(t) exist. So we just have to check the existence of the
second limit. A sufficient condition would be to prove that ẍ ∈ L1([0, Tmax[;Rd). By (ISIHD) this
will hold if ẋ,∇f ◦ (x+βẋ) are in L1([0, Tmax[;Rd). But we have already shown these claims. Con-
sequently, the solution Z of (4.2) is global, and thus the solution x of (ISIHD) is also global.

(ii) Integrating (4.3), using that V is well-defined and bounded from below, we get that ẋ ∈ L2(R+;Rd),
and ∇f(x(t) + βẋ(t)) ∈ L2(R+;Rd).

(iii) By assumption, supt>0 ∥x(t)∥ < +∞. Moreover, since ẋ ∈ L2(R+;Rd) and continuous, ẋ ∈
L∞(R+;Rd) and then using that ∇f is locally Lipschitz, we have∫ +∞

0
∥∇f(x(t))∥2dt ≤ 2

∫ +∞

0
∥∇f(x(t) + βẋ(t))−∇f(x(t))∥2dt

+ 2

∫ +∞

0
∥∇f(x(t) + βẋ(t))∥2dt

≤ 2β2L2
0

∫ +∞

0
∥ẋ(t)∥2dt+ 2

∫ +∞

0
∥∇f(x(t) + βẋ(t))∥2dt < +∞,

where L0 is the Lipschitz constant of ∇f on the centered ball of radius

sup
t>0

∥x(t)∥+ β sup
t>0

∥ẋ(t)∥ < +∞.

Moreover, for every t, s ≥ 0,

∥∇f(x(t))−∇f(x(s))∥ ≤ L0 sup
τ≥0

∥ẋ(τ)∥ |t− s|.

This combined with ∇f ◦ x ∈ L2(R+;Rd) yields

lim
t→+∞

∥∇f(x(t))∥ = 0.

We also have that

sup
t>0

∥∇f(x(t) + βẋ(t))∥ ≤ sup
t>0

(∥∇f(x(t) + βẋ(t))−∇f(0)∥) + ∥∇f(0)∥

≤ L0 sup
t>0

∥x(t)∥+ L0β sup
t>0

∥ẋ(t)∥+ ∥∇f(0)∥ < +∞.
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Therefore, in view of (ISIHD), we get that ẍ ∈ L∞(R+;Rd). This implies that

∥ẋ(t)− ẋ(s)∥ ≤ sup
τ≥0

∥ẍ(τ)∥ |t− s|.

Combining this with ẋ ∈ L2(R+;Rd) gives that limt→+∞ ∥ẋ(t)∥ = 0.
From (4.3), V is non-increasing, and since it is bounded from below, V (t) has a limit, say L̃. Passing to
the limit in the definition of V (t), using that the velocity vanishes, gives limt→+∞ f(x(t)+βẋ(t)) =
L̃. On the other hand, we have

|f(x(t) + βẋ(t))− f(x(t))| = β

∣∣∣∣∫ 1

0
⟨∇f(x(t) + sβẋ(t), ẋ(t)⟩ ds

∣∣∣∣
≤ β

(∫ 1

0
∥∇f(x(t) + sβẋ(t)∥ ds

)
∥ẋ(t)∥ .

Passing to the limit as t→ +∞, the right hand side goes to 0 from the above limits on ∇f(x(t)) and
ẋ(t). We deduce that limt→+∞ f(x(t)) = L̃.

(iv) As in the proof for (ISEHD), since (x(t))t≥0 is bounded, then (3.4) holds. Besides, consider the
function

E : (x, v, w) ∈ R3d 7→ f(x+ v) +
1

2
∥w∥2 . (4.4)

Since f is definable, so isE. In turn,E satisfies has the KŁ property. Let C1 = C(x(·))×{0d}×{0d}.
Since E

∣∣
C1

= L̃,∇E
∣∣
C1

= 0, ∃r, η > 0,∃ψ ∈ κ(0, η) such that for every (x, v, w) ∈ R3d such that
x ∈ C(x(·)) +Br, v ∈ Br, w ∈ Br and 0 < E(x, v, w)− L̃ < η, we have

ψ′(E(x, v, w)− L̃)∥∇E(x, v, w)∥ ≥ 1 (4.5)

By definition, we have V (t) = E(x(t), βẋ(t), ẋ(t). We also define Ṽ (t) = V (t) − L̃. By the
properties of V above, we have limt→+∞ Ṽ (t) = 0 and Ṽ is a non-increasing function. Thus Ṽ (t) ≥ 0
for every t > 0. Without loss of generality, we may assume that Ṽ (t) > 0 for every t > 0 (since
otherwise Ṽ (t) is eventually zero entailing that ẋ(t) is eventually zero in view of (4.3), meaning that
x(·) has finite length).
Define the constants δ2 = 2, δ3 = δ1√

2
. In view of the convergence claims on ẋ and Ṽ above, there

exists T > 0, such that for any t > T
x(t) ∈ C(x(·)) +Br,

0 < Ṽ (t) < η,

max (β, 1) ∥ẋ(t)∥ < r,
1
δ3
ψ(Ṽ (t)) < r

2
√
2
.

(4.6)

The rest of the proof is analogous to the one of Theorem 3.1. Since

∥∇E(x(t), βẋ(t), ẋ)∥2 ≤ δ2(∥ẋ(t)∥2 + ∥∇f(x(t) + βẋ(t))∥2), (4.7)

and
ψ′(Ṽ (t))∥∇E(x(t), βẋ(t), ẋ)∥ ≥ 1, ∀t ≥ T. (4.8)

We can lower bound the term − d
dtψ(Ṽ (t)) for t ≥ T (as in (3.12)) and conclude that ẋ ∈ L1(R+;Rd),

and that this implies that x(t) has finite length and thus has a limit as t→ +∞. This limit is necessarily
a critical point of f since limt→+∞ ∥∇f(x(t))∥ = 0.
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4.1.2 Trap avoidance

We now show that (ISIHD) provably avoids strict saddle points, hence implying convergence to a local min-
imum if the objective function is Morse.

Theorem 4.2. Let c > 0, 0 < β < 2
c and γ ≡ c. Assume that f : Rd → R satisfies (H0) and is a

Morse function. Consider (ISIHD) in this setting. If the solution trajectory x is bounded over R+, then the
conclusions of Theorem 4.1 hold. If, moreover, β ̸= 1

c , then for almost all x0, v0 ∈ Rd initial conditions,
x(t) converges (as t→ +∞) to a local minimum of f .

Proof. Since Morse functions are C2 and satisfy the KŁ inequality, and x is assumed bounded, then all the
claims of Theorem 4.1 hold.

As in the proof of Theorem 3.3, we will use again the global stable manifold theorem to prove the last
point. Since, γ(t) = c for all t, introducing the velocity variable v = ẋ, we have the equivalent phase-space
formulation of (ISIHD) {

ẋ(t) = v(t),

v̇(t) = −cv(t)−∇f(x(t) + βv(t)),
(4.9)

with initial conditions x(0) = x0, v(0) = v0. Let us consider F : Rd × Rd → Rd × Rd defined by

F (x, y) = (v,−cv −∇f(x+ βv)) .

Defining z(t) = (x(t), v(t)) and z0 = (x0, v0) ∈ R2d , then (4.9) is equivalent to{
ż(t) = F (z(t)),

z(0) = z0.
(4.10)

We know from above that under our conditions, the solution trajectory z(t) converges (as t → +∞) to an
equilibrium point of F , and the set of equilibria is {(x̂, 0) : x̂ ∈ crit(f)}. Following the same ideas as in the
proof of Theorem 3.3, first, we will prove that each equilibrium point of F is hyperbolic. We first compute
the Jacobian

JF (x, y) =

(
0d×d Id

−∇2f(x+ βv) −cId − β∇2f(x+ βv)

)
.

Let ẑ = (x̂, 0), where x̂ ∈ crit(f). Then the eigenvalues of JF (ẑ) are characterized by the solutions on
λ ∈ C of

det

((
−λId Id

−∇2f(x̂) −(λ+ c)Id − β∇2f(x̂)

))
= 0. (4.11)

By Lemma 2.1, (4.11) is equivalent to

det((1 + λβ)∇2f(x̂) + (λ2 + λc)Id) = 0. (4.12)

This is the exact same equation as (3.17). Thus the rest of the analysis goes as in the proof of Theorem 3.3.

4.1.3 Convergence rate

We now give asymptotic convergence rates on the objective and trajectory.
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Theorem 4.3. Consider the setting of Theorem 4.1 with f being also definable. Recall the function E from
(4.4), which is also definable, and denote ψ its desingularizing function and Ψ any primitive of −ψ′2. Then,
x(t) converges (as t → +∞) to x∞ ∈ crit(f). Denote Ṽ (t)

def
= E(x(t), βẋ(t), ẋ(t)) − f(x∞). Then, the

following rates of convergence hold:
• If limt→0Ψ(t) ∈ R, we have E(x(t), ẋ(t), β∇f(x(t))) converges to f(x∞) in finite time.
• If limt→0Ψ(t) = +∞, there exists some t1 ≥ 0 such that

Ṽ (t) = O(Ψ−1(t− t1)) (4.13)

Moreover,
∥x(t)− x∞∥ = O(ψ ◦Ψ−1(t− t1)) (4.14)

Proof. Analogous to Theorem 3.4.

When f has the Łojasiewicz property, we get the following corollary of Theorem 4.3.

Corollary 4.4. Consider the setting of Theorem 4.3 where now f satisfies the Łojasiewicz inequality with
desingularizing function ψf (s) = cfs

1−q, q ∈ [0, 1[, cf > 0. Then there exists some t1 > 0 such that:
• If q ∈ [0, 12 ], then

Ṽ (t) = O(exp(−(t− t1))) and ∥x(t)− x∞∥ = O
(
exp

(
t− t1
2

))
(4.15)

• If q ∈]12 , 1[, then

Ṽ (t) = O((t− t1)
−1

2q−1 ) and ∥x(t)− x∞∥ = O((t− t1)
− 1−q

2q−1 ) (4.16)

Proof. Analogous to Corollary 3.6.

4.2 Algorithmic scheme

In this section, we will study the properties of an algorithmic scheme derived from the following explicit
discretization discretization of (ISIHD) with step-size h > 0 and for k ≥ 1:

xk+1 − 2xk + xk−1

h2
+ γ(kh)

xk+1 − xk
h

+∇f
(
xk + β

xk − xk−1

h

)
= 0. (4.17)

This is equivalently written as{
yk = xk + αk(xk − xk−1),

xk+1 = yk − sk∇f(xk + β′(xk − xk−1)),
(ISIHD-Disc)

with initial conditions x0, x1 ∈ Rd, where αk
def
= 1

1+γkh
, sk

def
= h2αk and β′ def

= β
h .
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4.2.1 Global convergence and trap avoidance

We have the following result which characterizes the asymptotic behavior of algorithm (ISIHD-Disc), which
shows that the latter enjoys the same guarantees as (ISEHD-Disc) given in Theorem 3.7. We will again
require that ∇f is globally Lipschitz-continuous.

Theorem 4.5. Let f : Rd → R satisfying (H0) with ∇f being globally L-Lipschitz-continuous. Consider
algorithm (ISIHD-Disc) with h > 0, β ≥ 0 and c ≤ γk ≤ C for some c, C > 0 and for every k ∈ N. Then
the following holds:

(i) If β + h
2 <

c
L , then (∥∇f(xk)∥)k∈N ∈ ℓ2(N), and (∥xk+1 − xk∥)k∈N ∈ ℓ2(N), in particular

lim
k→+∞

∥∇f(xk)∥ = 0.

(ii) Moreover, if (xk)k∈N is bounded and f is definable, then (∥xk+1−xk∥)k∈N ∈ ℓ1(N) and xk converges
(as k → +∞) to a critical point of f .

(iii) Furthermore, if γk ≡ c > 0, 0 < β < c
L , β ̸= 1

c , and h < min
(
2
(
c
L − β

)
, 1
Lβ

)
, then for almost

all x0, x1 ∈ Rd, xk converges (as k → +∞) to a critical point of f that is not a strict saddle.
Consequently, if f satisfies the strict saddle property, for almost all x0, x1 ∈ Rd, xk converges (as
k → +∞) to a local minimum of f .

Proof. (i) Let vk
def
= xk − xk−1, ᾱ

def
= 1

1+ch ,
¯
α

def
= 1

1+Ch , s̄ = h2ᾱ,
¯
s = h2

¯
α, so

¯
α ≤ αk ≤ ᾱ and

¯
s ≤ sk ≤ s̄ for every k ∈ N. Proceeding as in the proof of Theorem 3.7, we have by definition that for
k ∈ N∗

xk+1 = argmin
x∈Rd

1

2
∥x− (yk − sk∇f(xk + β′vk))∥2, (4.18)

and 1−strong convexity of x 7→ 1
2∥x− (yk − sk∇f(xk + β′vk))∥2 then gives

1

2
∥xk+1−(yk−sk∇f(xk+β′vk))∥2 ≤

1

2
∥xk−(yk−sk∇f(xk+β′vk))∥2−

1

2
∥xk+1−xk∥2. (4.19)

Expanding and rearranging, we obtain

⟨∇f(xk + β′vk), vk+1⟩ ≤ −∥vk+1∥2

sk
+

1

h2
⟨vk, vk+1⟩. (4.20)

Combining this with the descent lemma of L-smooth functions applied to f , we arrive at

f(xk+1) ≤ f(xk) + ⟨∇f(xk), vk+1⟩+
L

2
∥vk+1∥2

= f(xk) + ⟨∇f(xk)−∇f(xk + β′vk), vk+1⟩+ ⟨∇f(xk + β′vk), vk+1⟩+
L

2
∥vk+1∥2

≤ f(xk) +

(
β′L+

1

h2

)
∥vk∥∥vk+1∥ −

(
1

s̄
− L

2

)
∥vk+1∥2.

Where we have used that the gradient of f is L−Lipschitz and Cauchy-Schwarz inequality in the last
bound. Denote α̃ = β′L+ 1

h2 . We can check that since h < 2c
L , then 0 < s̄ < 2

L and the last term of
the inequality is negative. Using Young’s inequality we have that for ε > 0 :

f(xk+1) ≤ f(xk) +
α̃2

2ε
∥vk∥2 + ε

∥vk+1∥2

2
−
(
1

s̄
− L

2

)
∥vk+1∥2.
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Or equivalently,

f(xk+1) +
α̃2

2ε
∥vk+1∥2 ≤ f(xk) +

α̃2

2ε
∥vk∥2 +

[
ε

2
+
α̃2

2ε
−
(
1

s̄
− L

2

)]
∥vk+1∥2.

In order to make the last term negative, we impose

ε

2
+
α̃2

2ε
<

1

s̄
− L

2
.

Minimizing for ε at the left-hand side we obtain ε = α̃ and the condition to satisfy is

s̄ <
2

2α̃+ L
. (4.21)

Recalling the definitions of s̄, α̃, β′, this is equivalent to

h2

1 + ch
<

2

2
(
Lβ

h + 1
h2

)
+ L

⇐⇒ 2Lβh+ 2 + Lh2 < 2 + 2ch.

Simplifying, this reads

β +
h

2
<
c

L
,

which is precisely what we have assumed. Let δ =
(
1
s̄ −

L
2

)
− α̃ > 0, then

f(xk+1) +
α̃

2
∥vk+1∥2 ≤ f(xk) +

α̃

2
∥vk∥2 − δ∥vk+1∥2. (4.22)

Toward our Lyapunov analysis, define now Vk = f(xk) +
α̃
2 ∥vk∥

2 for k ∈ N∗. In view of (4.22), Vk
obeys

Vk+1 ≤ Vk − δ∥vk+1∥2. (4.23)

and thus Vk is non-increasing. Since it is also bounded from below, Vk converges to a limit, say L̃.
Summing (4.22) over k ∈ N∗, we get that (∥vk+1∥)k∈N ∈ ℓ2(N), hence limk→+∞ ∥vk∥ = 0. Besides,
since ᾱ < 1

∥∇f(xk + β′vk)∥ =
1

sk
∥xk+1 − yk∥ ≤ 1

¯
s
(∥xk+1 − xk∥+ ∥xk − yk∥)

≤ 1

¯
s
(∥vk+1∥+ ᾱ∥vk∥)

≤ 1

¯
s
(∥vk+1∥+ ∥vk∥),

which implies
∥∇f(xk + β′vk)∥2 ≤ δ2(∥vk+1∥2 + ∥vk∥2),

where δ2 = 2

¯
s2

. Consequently (∥∇f(xk + β′vk)∥)k∈N ∈ ℓ2(N), and

∥∇f(xk)∥2 = 2(∥∇f(xk)−∇f(xk + β′vk)∥2 + ∥∇f(xk + β′vk)∥2)
≤ 2(L2β′2∥vk∥2 + ∥∇f(xk + β′vk)∥2).

Thus, (∥∇f(xk)∥)k∈N ∈ ℓ2(N), hence limk→+∞ ∥∇f(xk)∥ = 0.
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(ii) When (xk)k∈N is bounded and f is definable, we proceed analogously as in the proof of Theorem 3.7
to conclude that (∥vk∥)k∈N ∈ ℓ1(N∗), so (xk)k∈N is a Cauchy sequence which implies that it has a
limit (as k → +∞) denoted x∞, which is a critical point of f since limk→+∞ ∥∇f(xk)∥ = 0.

(iii) When γk ≡ c, we let αk ≡ α = 1
1+ch , sk ≡ s = h2α. Let zk = (xk, xk−1), and g : Rd × Rd →

Rd × Rd defined by

g : (x+, x−) 7→ [(1 + α)x+ − αx− − s∇f(x+ + β′(x+ − x−)), x+].

(ISIHD-Disc) is then equivalent to
zk+1 = g(zk). (4.24)

To conclude, we will again use [66, Corollary 1], similarly to what we did in the proof of of Theo-
rem 3.7, by checking that:

(a) det(Jg(x+, x−)) ̸= 0 for every x+, x− ∈ Rd.
(b) X̂ ⊂ A⋆

g, where A⋆
g

def
= {(x, x) ∈ R2d : x ∈ crit(f),maxi |λi(Jg(x, x))| > 1} and X̂ def

=

{(x, x) ∈ R2d : x ∈ X ⋆}, with X ⋆ the set of strict saddle points of f .
The Jacobian Jg(x+, x−) reads(

(1 + α)Id − s(1 + β′)∇2f(x+ + β′(x+ − x−)) −αId + sβ′∇2f(x+ + β′(x+ − x−))
Id 0d×d

)
.

(4.25)
This is a block matrix, where the bottom-left matrix commutes with the upper-left matrix (since is the
identity matrix), then by Lemma 2.1 det(Jg(x+, x−)) = det(αId − β′s∇2f(x+ + β′(x+ − x−))).
Since the eigenvalues of ∇2f(x+ + β′(x+ − x−)) are contained in [−L,L]. It is then sufficient that
α > β′Ls to have that η− α

β′s ̸= 0 for every eigenvalue η ̸= 0 of ∇2f(x++β′(x+−x−)). This means
that under α > β′Ls, condition (a) is in force. Requiring α > β′Ls is equivalent to h < 1

Lβ , and since
we already need h < 2

(
c
L − β

)
, we just ask h to be less than the minimum of the two quantities.

Let us check condition (b). Let x be a strict saddle point of f , i.e. x ∈ crit(f) and λmin(∇2f(x)) =
−η < 0. To characterize the eigenvalues of Jg(x, x) we could use Lemma 2.1 as before, however,
we will present an equivalent argument. Let ηi ∈ R, i = 1, . . . , d, be the eigenvalues of ∇2f(x).
By symmetry of the Hessian, it is easy to see that the 2d eigenvalues of Jg(x, x) coincide with the
eigenvalues of the 2× 2 matrices(

(1 + α)− s(1 + β′)ηi −α+ sβ′ηi
1 0

)
.

These eigenvalues are therefore the (complex) roots of

λ2 − λ
(
(1 + α)− s(1 + β′)ηi

)
+ α− sβ′ηi = 0. (4.26)

If λ = β′

β′+1 , then (4.26) becomes(
β′

β′ + 1

)2

−
(

β′

β′ + 1

)
(1 + α) + α = 0.

This implies that α = β′

β′+1 , or equivalently 1
1+ch = β

β+h . But this contradicts our assumption that
βc ̸= 1, and thus this case cannot occur. Let us now solve (4.26) for ηi = −η. Its discriminant is

∆λ = α2 + 2α(ηs(1 + β′)− 1) + (ηs(1 + β′) + 1)2 − 4ηsβ′,
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which can be seen as a quadratic equation in α whose discriminant ∆α = −16ηs. Since ∆α < 0
(recall that η, s > 0). Therefore the quadratic equation on α does not have real roots implying that
∆λ > 0. We can then write the solutions of (4.26),

λ =
((1 + α) + ηs(1 + β′))±

√
∆λ

2
.

Let us examine the largest solution (the one with the plus sign) and show that actually λ > 1. Simple
algebra shows that this is equivalent to verifying that

∆λ > (2− (1 + α)− ηs(1 + β′))2.

or, equivalently,

(1− α)2 + η2s2(1 + β′)2 − 2(1− α)ηs(1 + β′) < ∆λ

=
(
(1 + α)2 + η(s− β′)

)2 − 4(α− ηβ′).

Simple algebra again shows that this inequality is equivalent to 0 < 4ηs, which is always true as η > 0.
We have thus shown that X̂ ⊂ A⋆

g.
Overall, we have checked the two conditions (a)-(b) above. Therefore the invariant set {z1 ∈ R2d :
limk→+∞ gk(z1) ∈ X̂} has Lebesgue measure zero. This means that the set of initializations x0, x1 ∈
Rd for which xk converges to a strict saddle point of f has Lebesgue measure zero.

4.2.2 Convergence rate

The asymptotic convergence rate of algorithm (ISIHD-Disc) for Łojasiewicz functions is given in the follow-
ing theorem. This shows that (ISIHD-Disc) enjoys the same asymptotic convergence rates as (ISEHD-Disc).

Theorem 4.6. Consider the setting of Theorem 4.5, where f also satisfies the Łojasiewicz property with
exponent q ∈ [0, 1[. Then xk → x∞ ∈ crit(f) as k → +∞ at the rates:

• If q ∈ [0, 12 ] then there exists ρ ∈]0, 1[ such that

∥xk − x∞∥ = O(ρk). (4.27)

• If q ∈]12 , 1[ then

∥xk − x∞∥ = O
(
k
− 1−q

2q−1

)
. (4.28)

Proof. Since the Lyapunov analysis of (ISIHD-Disc) is analogous to that of (ISEHD-Disc) (though the Lya-
punov functions are different), the proof of this theorem is similar to the one of Theorem 3.9.

4.2.3 General coefficients

As discussed for the explicit case, the discrete scheme (ISIHD-Disc) rises from a discretization of the ODE
(ISIHD). However, the parameters αk, sk are linked to each other. We now consider (ISIHD-Disc) where
αk, sk are independent. Though this would hide somehow the physical interpretation of these parameters, it
allows for some flexibility in their choice while preserving the convergence behavior.
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Theorem 4.7. Let f : Rd → R be satisfying (H0) with ∇f being globally L-Lipschitz-continuous. Consider
(αk)k∈N, (βk)k∈N, (sk)k∈N to be three positive sequences, and the following algorithm with x0, x1 ∈ Rd:{

yk = xk + αk(xk − xk−1),

xk+1 = yk − sk∇f(xk + βk(xk − xk−1)).
(4.29)

If there exists s̄ > 0 such that:
• 0 < infk∈N sk ≤ supk∈N sk ≤ s̄ < 2

L ;
• supk∈N

(
βkL+ αk

sk

)
< 1

s̄ −
L
2 .

Then the following holds:
(i) (∥∇f(xk)∥)k∈N ∈ ℓ2(N), and (∥xk+1 − xk∥)k∈N ∈ ℓ2(N), hence

lim
k→+∞

∥∇f(xk)∥ = 0.

(ii) Moreover, if (xk)k∈N is bounded and f is definable, then (∥xk+1−xk∥)k∈N ∈ ℓ1(N) and xk converges
(as k → +∞) to a critical point of f .

(iii) Furthermore, if αk ≡ α, βk ≡ β, sk ≡ s, then the previous conditions reduce to

α+ sL

(
β +

1

2

)
< 1.

If, in addition, α ̸= β
β+1 , α > βLs, then for almost all x0, x1 ∈ Rd, xk converges (as k → +∞) to a

critical point of f that is not a strict saddle. Consequently, if f satisfies the strict saddle property, for
almost all x0, x1 ∈ Rd, xk converges (as k → +∞) to a local minimum of f .

Proof. Adjusting equation (4.20) to our setting (i.e. not using the dependency of αk, sk) we get an analogous
proof to the one of Theorem 4.5. We omit the details.

5 Numerical experiments

Before describing the numerical experiments, let us start with a few observations on the computational com-
plexity and memory storage requirement of (ISEHD-Disc) and (ISIHD-Disc). The number of gradient access
per iteration is the same for Gradient Descent (GD), discrete HBF, (ISEHD-Disc) and (ISIHD-Disc) is the
same (one per iteration). However, the faster convergence (in practice) of inertial methods comes at the
cost of storing previous information. For the memory storage requirement per iteration, GD stores only the
previous iterate, the discrete HBF and (ISIHD-Disc) store the two previous iterates, while (ISEHD-Disc)
additionally stores the previous gradient iterate as well. This has to be kept in mind when comparing these
algorithms especially for in very high dimensional settings.

We will illustrate our findings with two numerical experiments. The first one is the optimization of the
Rosenbrock function inR2, while the second one is on image deblurring. We will apply the proposed discrete
schemes (ISEHD-Disc) and (ISIHD-Disc) and compare them with gradient descent and the (discrete) HBF.
We will call ∥∇f(xk)∥ the residual.
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5.1 Rosenbrock function

We will minimize the classical Rosenbrock function, i.e.,

f : (x, y) ∈ R2 7→ (1− x)2 + 100(y − x2)2,

with global minimum at (x⋆, y⋆) = (1, 1).

We notice that its global minimum is the only critical point. Therefore this function is Morse and thus
satisfies the Łojasiewicz inequality with exponent 1

2 (see Remark 2.13). Consider (ISEHD) and (ISIHD) with
the Rosenbrock function as the objective, γ : R+ → R+ satisfying (Hγ) (i.e. 0 < c ≤ γ(t) ≤ C < +∞),
and 0 < β < 2c

C2 . By Theorems 3.1-3.9 for (ISEHD), and Theorems 4.1-4.6 for (ISIHD), we get that the
solution trajectories of these dynamics will converge to the global minimum eventually at a linear rate. Due
to the low dimensionality of this problem, we could use an ODE solver to show numerically these results.
However, we will just the iterates generated by our proposed algorithmic schemes (ISEHD-Disc) and (ISIHD-
Disc). Although the gradient of the objective is not globally Lipschitz continuous, our proposed algorithmic
schemes worked very well for h small enough. This suggests that we may relax this hypothesis in future
work, as proposed in [67, 68] for GD.

We applied (ISEHD-Disc) and (ISIHD-Disc) with β ∈ {0.02, 0.04}, γ(t) ≡ γ0 = 3, h = 10−3 and initial
conditions x0 = (−1.5, 0), x1 = x0. We compared our algorithms with GD and HBF (with the same initial
conditions) after 2 ∗ 104 iterations:

xk+1 = xk −
h2

1 + γ0h
∇f(xk), (GD)

and {
yk = xk +

1
1+γ0h

(xk − xk−1),

xk+1 = yk − h2

1+γ0h
∇f(xk).

(HBF)

The behavior of all algorithms is depicted in Figures 1 and 2.
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Figure 1: Results on the Rosenbrock function with β = 0.02.
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Figure 2: Results on the Rosenbrock function with β = 0.04.

We can notice that the iterates generated by (ISEHD-Disc) and (ISIHD-Disc) oscillate much less towards
the minimum than (HBF), and this damping effect is more notorious as β gets larger. In the case β = 0.02,
we observe there are still some oscillations, which benefit the dynamic generated by (ISEHD-Disc) more than
the one generated by (ISIHD-Disc). However, we have the opposite effect in the case β = 0.04, where the
oscillations are more damped. These three methods ((ISEHD-Disc), (ISIHD-Disc), (HBF)) share a similar
asymptotic convergence rate, which is linear as predicted (recall f is Łojasiewicz with exponent 1/2), and
they are significantly faster than (GD).

5.2 Image Deblurring

In the task of image deblurring, we are given a blurry and noisy (gray-scale) image b ∈ Rnx×ny of size
nx × ny. The blur corresponds to a convolution with a known low-pass kernel. Let A : Rnx×ny → Rnx×ny

be the blur linear operator. We aim to solve the (linear) inverse problem of reconstructing u⋆ ∈ Rnx×ny

from the relation b = Aū+ ξ, where ξ is the noise, that is additive pixel-wise, has 0−mean and is Gaussian.
Through this experiment, we used nx = ny = 256.

In order to reduce noise amplification when inverting the operator A, we solve a regularized optimization
problem to recover u⋆ as accurately as possible. As natural images can be assumed to be smooth except for
a (small) edge-set between objects in the image, we use a non-convex logarithmic regularization term that
penalizes finite forward differences in horizontal and vertical directions of the image, implemented as linear
operators Kx,Ky : Rnx×ny → Rnx×ny with Neumann boundary conditions. In summary, we aim to solve
the following:

min
u∈Rnx×ny

f(u), f(u)
def
=

1

2
∥Au− b∥2 + µ

2

nx∑
i=1

ny∑
j=1

log(ρ+ (Kxu)
2
i,j + (Kyu)

2
i,j),

where µ, ρ are positive constants for regularization and numerical stability set to 5 · 10−5 and 10−3, respec-
tively. f definable as the sum of compositions of definable mappings, and ∇f is Lipschitz continuous.

To solve the above optimization problem, we have used (ISEHD-Disc) and (ISIHD-Disc) with parameters
β = 1.3, γk ≡ 0.25, h = 0.5, and initial conditions x0 = x1 = 0nx×ny . We compared both algorithms
with the baseline algorithms (GD), (HBF) (with the same initial condition). All algorithms were run for 250
iterations. The results are shown in Figure 3 and Figure 4.

In Figure 3, the original image ū is shown on the left. In the middle, we display the blurry and noise image
b. Finally, the image recovered by (ISEHD-Disc) is shown on the right.
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Figure 3: Results of the discretization of ISEHD.

In Figure 4, see that the residual plots of (ISEHD-Disc) and (ISIHD-Disc) overlap. Again, as expected, the
trajectory of (ISEHD-Disc) and (ISIHD-Disc) has much less oscillation than (HBF) which is a very desirable
feature in practice. At the same time, (ISEHD-Disc) and (ISIHD-Disc) see to convergence faster, though
(HBF) eventually shows a similar convergence rate. Again, (GD) is the slowest. Overall, (ISEHD-Disc) and
(ISIHD-Disc) seem to take the best of both worlds: small oscillations and a faster asymptotic convergence
rate.
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Figure 4: Results on the image deblurring problem.

6 Conclusion and Perspectives

We conclude that:
• Under definability conditions on the objective and suitable conditions on γ, we obtain convergence

of the trajectory of (ISEHD) and (ISIHD). Besides, in the autonomous setting, and under a Morse
condition, the trajectory almost surely converges to a local minimum of the objective.

• We obtain analogous properties for the respective proposed algorithmic schemes (ISEHD-Disc) and
(ISIHD-Disc).
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• The inclusion of the term β helps to reduce oscillations towards critical points, and, when chosen
appropriately, without reducing substantially the speed of convergence of the case β = 0, i.e. the one
for Heavy Ball with Friction method.

• The selection of β is important. If it is chosen too close to zero, it may not significantly reduce oscil-
lations. Conversely, if it is chosen too large (even within theoretical bounds), the trade-off for reduced
oscillations might be a worse convergence rate.

Several open problems are worth investigating in the future:
• Replacing the global Lipschitz continuity assumption on the gradient in Theorems 3.7 and 4.5 with a

local Lipschitz continuity assumption as proposed in [67, 68, 81].
• Proposing discrete schemes of (ISEHD) and (ISIHD) with a variable stepsize, which can be computed,

for instance, by backtracking.
• Extending our results to (non-euclidian) Bregman geometry.
• Extending our results to the non-smooth setting as proposed in [40].
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