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Abstract

Matrix Factorization is a popular non-convex optimization problem, for which alternating
minimization schemes are mostly used. They usually suffer from the major drawback that the
solution is biased towards one of the optimization variables. A remedy is non-alternating schemes.
However, due to a lack of Lipschitz continuity of the gradient in matrix factorization problems,
convergence cannot be guaranteed. A recently developed approach relies on the concept of Bregman
distances, which generalizes the standard Euclidean distance. We exploit this theory by proposing
a novel Bregman distance for matrix factorization problems, which, at the same time, allows for
simple/closed form update steps. Therefore, for non-alternating schemes, such as the recently
introduced Bregman Proximal Gradient (BPG) method and an inertial variant Convex–Concave
Inertial BPG (CoCaIn BPG), convergence of the whole sequence to a stationary point is proved
for Matrix Factorization. In several experiments, we observe a superior performance of our non-
alternating schemes in terms of speed and objective value at the limit point.
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Keywords: Composite nonconvex nonsmooth minimization, non Euclidean distances, Bregman dis-
tance, Bregman proximal gradient method, inertial methods, matrix factorization, matrix completion.

1 Introduction

Matrix factorization has numerous applications in Machine Learning [43, 57], Computer Vision [17, 58,
62, 28], Bio-informatics [56, 12] and many others. Given a matrix A ∈ RM×N , one is interested in the
factors U ∈ RM×K and Z ∈ RK×N such that A ≈ UZ holds. This is usually cast into the following
non-convex optimization problem

min
U∈U ,Z∈Z

{
Ψ ≡ 1

2
‖A−UZ‖2F +R1(U) +R2(Z)

}
, (1.1)

where U ,Z are constraint sets and R1,R2 are regularization terms. The most frequently used techniques
for solving matrix factorization problems involve alternating updates (Gauss–Seidel type methods [26])
like PALM [8], iPALM [53], BCD [63], BC-VMFB [18], HALS [19] and many others. A common
disadvantage of these schemes is their bias towards one of the optimization variables. Such alternating
schemes involve fixing a subset of variables to do the updates. In order to guarantee convergence to
a stationary point, alternating schemes require the first term in (1.1) to have a Lipschitz continuous
gradient only with respect to each subset of variables. However, in general Lipschitz continuity of the
gradient fails to hold for all variables. The same problem appears in various practical applications
such as Quadratic Inverse Problems, Poisson Linear Inverse Problems, Cubic Regularized Non-convex
Quadratic Problems and Robust Denoising Problems with Non-convex Total Variation Regularization
[46, 9, 4]. They belong to the following broad class of non-convex additive composite minimization
problems

(P) inf
{

Ψ ≡ f (x) + g (x) : x ∈ C
}
, (1.2)

where f is potentially a non-convex extended real valued function, g is a smooth (possibly non-convex)
function and C is a nonempty, closed, convex set in Rd. In order to use non-alternating schemes for
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(1.1), the gradient Lipschitz continuity must be generalized. Such a generalization was initially proposed
by [6] and popularized by [4] in convex setting and for non-convex problems in [9]. They are based on a
generalized proximity measure known as Bregman distance and have recently led to new algorithms to
solve (1.2): Bregman Proximal Gradient (BPG) method [9] and its inertial variant Convex–Concave
Inertial BPG (CoCaIn BPG) [46].

BPG generalizes the proximal gradient method from Euclidean distances to Bregman distances as
proximity measures. Its convergence theory relies on the generalized Lipschitz assumption, discussed
above, called L-smad property [9]. It involves an upper bound and a lower bound, where the upper
bound involves a convex majorant to control the step-size of BPG. However, the significance of lower
bounds for BPG was not clear. In non-convex optimization literature, the lower bounds which involve
concave minorants were largely ignored. Recently, extending on [61, 50], CoCaIn BPG changed this
trend by justifying the usage of lower bounds to incorporate inertia for faster convergence [46]. Moreover,
the generated inertia is adaptive, in the sense that it changes according to the function behavior, i.e.,
CoCaIn BPG does not use an inertial parameter depending on the iteration counter unlike Nesterov
Accelerated Gradient (NAG) method [47] (also FISTA [5]) in the convex setting.

In this paper we ask the question: "Can we apply BPG and CoCaIn BPG efficiently for Matrix
Factorization problems?”. This question is significant, since convergence of the Bregman minimization
variants BPG and CoCaIn BPG relies on the L-smad property, which is non-trivial to verify and an open
problem for Matrix Factorization. Another crucial issue is the efficient computability of the algorithm’s
update steps, which is particularly hard due to the coupling between two subsets of variables. We
successfully solve these challenges.

Contributions. We make recently introduced powerful Bregman minimization based algorithms
BPG [9] and CoCaIn BPG [46] and the corresponding convergence results applicable to the matrix
factorization problems. Experiments show a significant advantage of BPG and CoCaIn BPG which are
non-alternating by construction, compared to popular alternating minimization schemes in particular
PALM [8] and iPALM [53]. The proposed algorithms require the following non-trivial contributions:

• We propose a novel Bregman distance for Matrix Factorization with the following auxiliary
function (called kernel generating distance) with certain c1, c2 > 0:

h(U,Z) = c1

(
‖U‖2F + ‖Z‖2F

2

)2

+ c2

(
‖U‖2F + ‖Z‖2F

2

)
.

The generated Bregman distance embeds the crucial coupling between the variables U and Z.
We prove the L-smad property with such a kernel generating distance and infer convergence of
BPG and CoCaIn BPG to a stationary point.

• We compute the analytic solution for subproblems of the proposed variants of BPG, for which
the usual analytic solutions based on Euclidean distances cannot be used.

Simple Illustration of BPG for Matrix Factorization. Consider the following simple matrix
factorization optimization problem, where we set R1 := 0 and R2 := 0 in (1.1)

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) =

1

2
‖A−UZ‖2F

}
. (1.3)

For this problem, the update steps of Bregman Proximal Gradient for Matrix Factorization
(BPG-MF) given in Section 2.1 (also see Section 2.4) with a chosen λ ∈ (0, 1) are the following:
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In each iteration, compute tk = 3(
∥∥Uk

∥∥2

F
+
∥∥Zk

∥∥2

F
) + ‖A‖F and perform the intermediary gradient

descent steps (non-alternating) for U and Z independently with step-size λ
tk
:

Pk = Uk − λ

tk

[
(UkZk −A)(Zk)T

]
, Qk = Zk − λ

tk

[
(Uk)T (UkZk −A)

]
.

Then, the additional scaling steps Uk+1 = rtkP
k and Zk+1 = rtkQ

k are required, where the scaling
factor r ≥ 0 satisfies a cubic equation: 3t2k

(∥∥Pk
∥∥2

F
+
∥∥Qk

∥∥2

F

)
r3 + ‖A‖F r − 1 = 0.

1.1 Related Work

Alternating Minimization is the go-to strategy for matrix factorization problems due to coupling
between two subsets of variables [24, 1, 64]. In the context of non-convex and non-smooth optimization,
recently PALM [8] was proposed and convergence to stationary point was proved. An inertial variant,
iPALM was proposed in [53]. However, such methods require a subset of variables to be fixed. We
remove such a restriction here and take the contrary view by proposing non-alternating schemes based
on a powerful Bregman proximal minimization framework, which we review below.

Bregman Proximal Minimization extends upon the standard proximal minimization, where Breg-
man distances are used as proximity measures. Based on initial works in [6, 4, 9], related inertial
variants were proposed in [46, 67]. Related line-search methods were proposed in [52] based on [10, 11].
More related works in convex optimization include [49, 40, 42]. Recently, the symmetric non-negative
matrix factorization problem was solved with a non-alternating Bregman proximal minimization scheme
[21] with the following kernel generating distance

h(U) =
‖U‖4F

4
+
‖U‖2F

2
.

However for the following applications, such a h is not suitable, unlike our Bregman distance.

Non-negative Matrix Factorization (NMF) is a variant of the matrix factorization problem which
requires the factors to have non-negative entries [25, 37]. Some applications are hyperspectral unmix-
ing, clustering and others [24, 22]. The non-negativity constraints pose new challenges [37] and only
convergence to a stationary point [24, 31] is guaranteed, as NMF is NP-hard in general. Under certain
restrictions, NMF can be solved exactly [2, 44] but such methods are computationally infeasible. We
give efficient algorithms for NMF and show the superior performance empirically.

Matrix Completion is another variant of Matrix Factorization arising in recommender systems [35]
and bio-informatics [39, 60], which is an active research topic due to the hard non-convex optimization
problem [15, 23]. The state-of-the-art methods were proposed in [33, 65] and other recent methods
include [66]. Here, our algorithms are either faster or competitive.

Our algorithms are also applicable to Graph Regularized NMF (GNMF) [13], Sparse NMF [8], Nuclear
Norm Regularized problems [14, 32], Symmetric NMF via non-symmetric extension [68].

2 Matrix Factorization Problem Setting and Algorithms

Notation. We refer to [55] for standard notation, unless specified otherwise.
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Formally, in a matrix factorization problem, given a matrix A ∈ RM×N , we want to obtain the factors
U ∈ RM×K and ZK×N such that A ≈ UZ, which is captured by the following non-convex problem

min
U∈U ,Z∈Z

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F +R1(U) +R2(Z)

}
, (2.1)

where R1(U) +R2(Z) is the separable regularization term, 1
2 ‖A−UZ‖2F is the data-fitting term, and

U ,Z are the constraint sets for U and Z respectively. Here, R1(U) and R2(Z) can be potentially
non-convex extended real valued functions and possibly non-smooth. In this paper, we propose to make
use of BPG and its inertial variant CoCaIn BPG to solve (2.1). The introduction of these algorithms
requires the following preliminary considerations.

Definition 2.1. (Kernel Generating Distance [9]) Let C be a nonempty, convex and open subset of Rd.
Associated with C, a function h : Rd → (−∞,+∞] is called a kernel generating distance if it satisfies:

(i) h is proper, lower semicontinuous and convex, with domh ⊂ C and dom ∂h = C .

(ii) h is C1 on int domh ≡ C.

We denote the class of kernel generating distances by G(C).

For every h ∈ G(C), the associated Bregman distance is given by Dh : domh× int domh→ R+:

Dh (x, y) := h (x)− [h (y) + 〈∇h (y) , x− y〉] .
For examples, consider the following kernel generating distances:

h0(x) =
1

2
‖x‖2 , h1(x) =

1

4
‖x‖4 +

1

2
‖x‖2 and h2(x) =

1

3
‖x‖3 +

1

2
‖x‖2 .

The Bregman distances associated with h0(x) is the Euclidean distance. The Bregman distances
associated with h1 and h2 appear in the context of non-convex quadratic inverse problems [9, 46] and
non-convex cubic regularized problems [46] respectively. For a review on the recent literature, we refer
the reader to [59] and for early work on Bregman distances to [16].
These distance measures are key for development of algorithms for the following class of non-convex
additive composite problems

(P) inf
{

Ψ ≡ f (x) + g (x) : x ∈ C
}
, (2.2)

which is assumed to satisfy the following standard assumption [9].

Assumption A. (i) h ∈ G(C) with C = domh.

(ii) f : Rd → (−∞,+∞] is a proper and lower semicontinuous function (potentially non-convex) with
dom f ∩ C 6= ∅.

(iii) g : Rd → (−∞,+∞] is a proper and lower semicontinuous function (potentially non-convex) with
domh ⊂ dom g, which is continuously differentiable on C.

(iv) v(P) := inf
{

Ψ (x) : x ∈ C
}
> −∞.

Matrix Factorization Example. A special case of (2.2) is the following problem,

inf
{

Ψ(U,Z) := f1(U) + f2(Z) + g(U,Z) : (U,Z) ∈ C
}
. (2.3)

We denote f(U,Z) = f1(U) + f2(Z). Many practical matrix factorization problems can be cast into the
form of (2.1). The choice of f and g is dependent on the problem, for which we provide some examples
in Section 3. Here f1, f2 satisfy the assumptions of f with dimensions chosen accordingly. Moreover
by definition, f is separable in U and Z, which we assume only for practical reasons. Also, the choice
of f, g may not be unique. For example, in (2.1) when R1(U) = λ0

2 ‖U‖
2
F and R2(Z) = λ0

2 ‖Z‖
2
F the

choice of f as in (2.3) can be R1 +R2 and g = 1
2 ‖A−UZ‖2F . However, the other choice is to set

g = Ψ and f := 0.
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2.1 BPG-MF: Bregman Proximal Gradient for Matrix Factorization

We require the notion of Bregman Proximal Gradient Mapping [9, Section 3.1] given by

Tλ (x) = argmin

{
f (u) + 〈∇g (x) , u− x〉+

1

λ
Dh (u, x) : u ∈ C

}
. (2.4)

Then, the update step of Bregman Proximal Gradient (BPG) [9] for solving (2.2) is xk+1 ∈ Tλ(xk), for
some λ > 0 and h ∈ G(C). Convergence of BPG relies on a generalized notion of Lipschitz continuity,
the so-called L-smad property (Defintion 2.2).

Beyond Lipschitz continuity. BPG extends upon the popular proximal gradient methods, for which
convergence relies on Lipschitz continuity of the smooth part of the objective in (2.2). However, such
a notion of Lipschitz continuity is restrictive for many practical applications such as Poisson linear
inverse problems [4], quadratic inverse problems [9, 46], cubic regularized problems [46] and robust
denoising problems with non-convex total variation regularization [46]. The extensions for generalized
notions of Lipschitz continuity of gradients is an active area of research [6, 4, 40, 9]. We consider the
following from [9].

Definition 2.2 (L-smad property). The function g is said to be L-smooth adaptable (L-smad) on C
with respect to h, if and only if Lh− g and Lh+ g are convex on C.

When h(x) = 1
2 ‖x‖

2, L-smad property is implied by Lipschitz continuous gradient. Consider the
function f(x) = x4, it is L-smad with respect to h(x) = x4 and L ≥ 1, however ∇f is not Lipschitz
continuous.

Now, we are ready to present the BPG algorithm for Matrix Factorization.

BPG-MF: BPG for Matrix Factorization.
Input. Choose h ∈ G(C) with C ≡ int domh such that g satisfies L-smad with respect to h on C.
Initialization. (U1,Z1) ∈ int domh and let λ > 0.
General Step. For k = 1, 2, . . ., compute

Pk = λ∇Ug
(
Uk,Zk

)
−∇Uh(Uk,Zk) , Qk = λ∇Zg

(
Uk,Zk

)
−∇Zh(Uk,Zk) ,

(Uk+1,Zk+1) ∈ argmin
(U,Z)∈C

{
λf(U,Z) +

〈
Pk,U

〉
+
〈
Qk,Z

〉
+ h(U,Z)

}
. (2.5)

Under Assumption A and the following one (mostly satisfied in practice), BPG is well-defined [9].

Assumption B. The range of Tλ lies in C and, for all λ > 0, the function h+ λf is supercoercive.

The update step for BPG-MF is easy to derive from BPG, however convergence of BPG also relies
on the “right” choice of kernel generating distance h and the L-smad condition. Finding h such that
L-smad holds (also see Section 2.2) and that the update step can be given in closed form (also see
Section 2.4) is our main contribution and allows us to invoke the convergence results from [9]. The
convergence result states that the whole sequence of iterates generated by BPG-MF converges to a
stationary point, precisely given in Theorem 2.2. The result depends on the non-smooth KL-property
(see [7, 3, 8]) which is a mild requirement and is satisfied by most practical objectives. We provide
below the convergence result in [9, Theorem 4.1] adapted to BPG-MF.

Theorem 2.1 (Global Convergence of BPG-MF). Let Assumptions A and B hold and let g be L-smad
with respect to h, where h is assumed to be σ-strongly convex with full domain. Assume ∇g,∇h to be
Lipschitz continuous on any bounded subset. Let

{
(Uk+1,Zk+1)

}
k∈N be a bounded sequence generated

by BPG-MF with 0 < λL < 1, and suppose Ψ satisfies the KL property, then, such a sequence has finite
length, and converges to a critical point.
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2.2 New Bregman Distance for Matrix Factorization

We prove the L-smad property for the term g(U,Z) = 1
2 ‖A−UZ‖2F of the matrix factorization problem

in (2.1). The kernel generating distance is a linear combination of

h1(U,Z) :=

(
‖U‖2F + ‖Z‖2F

2

)2

and h2(U,Z) :=
‖U‖2F + ‖Z‖2F

2
, (2.6)

and it is designed to also allow for closed form updates (see Section 2.4).

Proposition 2.1. Let g, h1, h2 be as defined above. Then, for L ≥ 1, the function g satisfies the L-smad
property with respect to the following kernel generating distance

ha(U,Z) = 3h1(U,Z) + ‖A‖F h2(U,Z) . (2.7)

The proof is given in Section G.1 in the appendix. The Bregman distances considered in previous
works [46, 9] are separable and not applicable for matrix factorization problems. The inherent coupling
between two subsets of variables U,Z is the main source of non-convexity in the objective g. The kernel
generating distance (in particular h1 in (2.7)) contains the interaction/coupling terms between U and
Z which makes it amenable for matrix factorization problems.

2.3 CoCaIn BPG-MF: An Adaptive Inertial Bregman Proximal Gradient Method

The goal of this section is to introduce an inertial variant of BPG-MF, called CoCaIn BPG-MF. The
effective step-size choice for BPG-MF can be restrictive due to large constant like ‖A‖F (see (2.7)),
for which we present a practical example in the numerical experiments. In order to allow for larger
step-sizes, one needs to adapt it locally, which is often done via a backtracking procedure. CoCaIn
BPG-MF combines inertial steps with a novel backtracking procedure proposed in [46].

Inertial algorithms often lead to better convergence [51, 53, 46]. The classical Nesterov Accelerated
Gradient (NAG) method [47] and the popular Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
[5] employ an extrapolation based inertial strategy. However, the extrapolation is governed by a
parameter which is typically scheduled to follow certain iteration-dependent scheme [47, 29]and is
restricted to the convex setting. Recently with Convex–Concave Inertial Bregman Proximal Gradient
(CoCaIn BPG) [46], it was shown that one could leverage the upper bound (convexity of Lh− g) and
lower bound (convexity of Lh+ g) to incorporate inertia in an adaptive manner.

We recall now the update steps of CoCaIn BPG [46] to solve (2.2). Let h ∈ G(C), λ > 0, and
x0 = x1 ∈ Rd be an initalization, then in each iteration the extrapolated point yk = xk + γk(xk − xk−1)
is computed followed by a BPG like update (at yk) given by xk+1 ∈ Tτk(yk), where γk is the inertial
parameter and τk is the step-size parameter. Similar conditions to BPG are required for the convergence
to a stationary point. We use CoCaIn BPG for Matrix Factorization (CoCaIn BPG-MF) and our
proposed novel kernel generating distance h from (2.7) makes the convergence results of [46] applicable.
Along with Assumption B, we require the following assumption.

Assumption C. (i) There exists α ∈ R such that f(U,Z)− α
2

(
‖U‖2F + ‖Z‖2F

)
is convex.

(ii) The kernel generating distance h is σ-strongly convex on RM×K × RK×N .

The Assumption C(i) refers to notion of semi-convexity of the function f , (see [50, 46]) and seems
to be closely connected to the inertial feature of an algorithm. For notational brevity, we use
Dg (x, y) := g (x) − [g (y) + 〈∇g (y) , x− y〉] which may also be negative if g is not a kernel gener-
ating distance. Moreover, we use Dh((X1,Y1), (X2,Y2)) as Dh(X1,Y1,X2,Y2). We provide CoCaIn
BPG-MF below.
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CoCaIn BPG-MF: Convex–Concave Inertial BPG for Matrix Factorization.
Input. Choose δ, ε > 0 with 1 > δ > ε, h ∈ G(C) with C ≡ int domh, g is L-smad on C w.r.t h.
Initialization. (U1,Z1) = (U0,Z0) ∈ int domh ∩ dom f , L̄0 >

−α
(1−δ)σ and τ0 ≤ L̄−1

0 .
General Step. For k = 1, 2, . . ., compute extrapolated points

Y k
U = Uk + γk

(
Uk −Uk−1

)
and Y k

Z = Zk + γk

(
Zk − Zk−1

)
, (2.8)

where γk ≥ 0 such that

(δ − ε)Dh

(
Uk−1,Zk−1,Uk,Zk

)
≥ (1 + Lkτk−1)Dh

(
Uk,Zk, Y k

U, Y
k
Z

)
, (2.9)

where Lk satisfies
Dg

(
Uk,Zk, Y k

U, Y
k
Z

)
≥ −LkDh

(
Uk,Zk, Y k

U, Y
k
Z

)
. (2.10)

Choose L̄k ≥ L̄k−1, and set τk ≤ min{τk−1, L̄
−1
k }. Now, compute

Pk = τk∇Ug
(
Y k

U, Y
k
Z

)
−∇Uh(Y k

U, Y
k
Z ) , Qk = τk∇Zg

(
Y k

U, Y
k
Z

)
−∇Zh(Y k

U, Y
k
Z ) ,

(Uk+1,Zk+1) ∈ argmin
(U,Z)∈C

{
τkf(U,Z) +

〈
Pk,U

〉
+
〈
Qk,Z

〉
+ h(U,Z)

}
, (2.11)

such that L̄k satisfies

Dg

(
Uk+1,Zk+1, Y k

U, Y
k
Z

)
≤ L̄kDh

(
Uk+1,Zk+1, Y k

U, Y
k
Z

)
. (2.12)

The extrapolation step is performed in (2.8), which is similar to NAG/FISTA. However, the inertia
cannot be arbitrary and the analysis from [46] requires step (2.9) which is governed by the convexity of
lower bound, Lkh+ g, however only locally as in (2.10). The update step (2.11) is similar to BPG-MF,
however the step-size is controlled via the convexity of upper bound L̄kh − g, but only locally as in
(2.12). The local adaptation of the steps (2.10) and (2.12) is performed via backtracking. Since, L̄k
can be potentially very small compared to L, hence potentially large steps can be taken. There is no
restriction on Lk in each iteration, and smaller Lk can result in high value for the inertial parameter γk.
Thus the algorithm in essence aims to detect "local convexity" of the objective. The update steps of
CoCaIn BPG-MF can be executed sequentially without any nested loops for the backtracking. One can
always find the inertial parameter γk in (2.9) due to [46, Lemma 4.1]. For certain cases, (2.9) yields an
explicit condition on γk. For example, for h(U,Z) = 1

2(‖U‖2F + ‖Z‖2F ), we have 0 ≤ γk ≤
√

δ−ε
1+τk−1Lk

.
We now provide below the convergence result from [46, Theorem 5.2] adapted to CoCaIn BPG-MF.

Theorem 2.2 (Global Convergence of CoCaIn BPG-MF). Let Assumptions A, B and C hold, let g be
L-smad with respect to h with full domain. Assume ∇g,∇h to be Lipschitz continuous on any bounded
subset. Let

{
(Uk+1,Zk+1)

}
k∈N be a bounded sequence generated by CoCaIn BPG-MF, and suppose f, g

satisfy the KL property, then, such a sequence has finite length, and converges to a critical point.

2.4 Closed Form Solutions for Update Steps of BPG-MF and CoCaIn BPG-MF

Our second significant contribution is to make BPG-MF and CoCaIn BPG-MF an efficient choice for
solving Matrix Factorization, namely closed form expressions for the main update steps (2.5), (2.11).
For the derivation, we refer to the appendix, here we just state our results.

For the L2-regularized problem

g(U,Z) =
1

2
‖A−UZ‖2F , f(U,Z) =

λ0

2

(
‖U‖2F + ‖Z‖2F

)
, h = ha
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with c1 = 3, c2 = ‖A‖F and 0 < λ < 1 the BPG-MF updates are:

Uk+1 = −rPk , Zk+1 = −rQk with r ≥ 0 , c1

( ∥∥−Pk
∥∥2

F
+
∥∥−Qk

∥∥2

F

)
r3 + (c2 + λ0)r − 1 = 0 .

For NMF with additional non-negativity constraints, we replace −Pk and −Qk by Π+(−Pk) and
Π+(−Qk) respectively where Π+(.) = max{0, .} and max is applied element wise.
Now consider the following L1-Regularized problem

g(U,Z) =
1

2
‖A−UZ‖2F , f(U,Z) = λ1 (‖U‖1 + ‖Z‖1) , h = ha . (2.13)

The soft-thresholding operator is defined for any y ∈ Rd by Sθ (y) = max {|y| − θ, 0} sgn (y) where
θ > 0. Set c1 = 3, c2 = ‖A‖F and 0 < λ < 1 the BPG-MF updates with the above given g, f, h are:

Uk+1 = rSλ1λ(−Pk), Zk+1 = rSλ1λ(−Qk) with r ≥ 0 and

c1

(∥∥∥Sλ1λ(−Pk)
∥∥∥2

F
+
∥∥∥Sλ1λ(−Qk)

∥∥∥2

F

)
r3 + c2r − 1 = 0 .

We denote a vector of ones as eD ∈ RD. For additional non-negativity constraints we need to replace
Sλ1λ(−Pk) with Π+(−

(
Pk + λ1λeMeTK

)
) and Sλ1λ

(
−Qk

)
to Π+(−

(
Qk + λ1λeKeTN

)
). Excluding the

gradient computation, the computational complexity of our updates is O(MK +NK) only, thanks to
linear operations. PALM and iPALM additionally involve calculating Lipschitz constants with at most
O(K2 max{M,N}2) computations. Examples like Graph Regularized NMF (GNMF) [13], Sparse NMF
[8], Matrix Completion [35], Nuclear Norm Regularization [14, 32], Symmetric NMF [68] and proofs are
given in the appendix.

3 Experiments

In this section, we show experiments for (2.1). Denote the regularization settings,R1: withR1 ≡ R2 ≡ 0,
R2: with L2 regularization R1(U) = λ0

2 ‖U‖
2
F and R2(Z) = λ0

2 ‖Z‖
2
F for some λ0 > 0, R3: with L1

Regularization R1(U) = λ0 ‖U‖1 and R2(Z) = λ0 ‖Z‖1 for some λ0 > 0.

Algorithms. We compare our first order optimization algorithms, BPG-MF and CoCaIn BPG-MF,
and recent state-of-the-art optimization methods iPALM [53] and PALM [8]. We focus on algorithms
that guarantee convergence to a stationary point. We also use BPG-MF-WB, where WB stands for
"with backtracking", which is equivalent to CoCaIn BPG-MF with γk ≡ 0. We use two settings for
iPALM, where all the extrapolation parameters are set to a single value β set to 0.2 and 0.4. PALM is
equivalent to iPALM if β = 0. We use the same initialization for all methods.

Simple Matrix Factorization. We set U = RM×K and Z = RK×N . We use a randomly generated
synthetic data matrix with A ∈ R200×200 and report performance in terms of function value for three
regularization settings, R1, R2 and R3 with K = 5. Note that this enforces a factorization into at
most rank 5 matrizes U and Z, which yields an additional implicit regularization. For R2 and R3 we
use λ0 = 0.1. CoCaIn BPG-MF is superior1 as shown in Figure 1 .

Statistical Evaluation. We also provide the statistical evaluation of all the algorithms in Figure 2,
for the above problem. The optimization variables are sampled from [0,0.1] and 50 random seeds
are considered. CoCaIn BPG outperforms other methods, however PALM methods are also very
competitive. In L1 regularization setting, the performance of CoCaIn BPG is the best. In all settings,
BPG-MF performance is worst due to a constant step size, which might change in settings where local

1Note that in the y-axis label v(P) is the least objective value attained by any of the methods.
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adapation with backtracking line search is computationally not feasible.

Matrix Completion. In recommender systems [35] given a matrix A with entries at few index pairs
in set Ω, the goal is to obtain factors U and Z that generalize via following optimization problem

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖PΩ (A−UZ)‖2F +

λ0

2

(
‖U‖2F + ‖Z‖2F

)}
, (3.1)

where PΩ preserves the given matrix entries and sets others to zero. We use 80% data of MovieLens-100K,
MovieLens-1M and MovieLens-10M [30] datasets and use other 20% to test (details in the appendix).
CoCaIn BPG-MF is faster than all methods as given in Figure 3.
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Figure 1: Simple Matrix Factorization on Synthetic Dataset.
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Figure 2: Statistical Evaluation on Simple Matrix Factorization.
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(a) MovieLens-100K
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(b) MovieLens-1M
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Figure 3: Matrix Completion on MovieLens Datasets [30].

As evident from Figures 1, 4, 3, CoCaIn BPG-MF, BPG-MF-WB can result in better performance than
well known alternating methods. BPG-MF is not better than PALM and iPALM because of prohibitively
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small step-sizes (due to ‖A‖F in (2.7)), which is resolved by CoCaIn BPG-MF and BPG-MF-WB using
backtracking. Time comparisons are provided in the appendix, where we show that our methods are
competitive.

Conclusion and Extensions

We proposed non-alternating algorithms to solve matrix factorization problems, contrary to the typical
alternating strategies. We use the Bregman proximal algorithms, BPG [9] and an inertial variant
CoCaIn BPG [46] for matrix factorization problems. We developed a novel Bregman distance, crucial
for proving convergence to a stationary point. Moreover, we also provide non-trivial efficient closed form
update steps for many matrix factorization problems. This line of thinking raises new open questions,
such as extensions to Tensor Factorization [34], to Robust Matrix Factorization [65], stochastic variants
[20, 27, 45, 48] and state-of-the-art matrix factorization model [33].
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A Discussion

We briefly remark some properties of the update steps of BPG-methods. Note that the updates are
independent for U and Z in (1.3), where updates can be done in parallel blockwise (communication is
only required to solve the 1D cubic equation). This can be potentially used to increase the speedup
in practice, in particular for large matrices. Some terms in gradients overlap, so using temporary
variables in implementation can possibly increase the speedup. These speedups are not restricted to
(1.3), however to all the update steps we mentioned in this paper.

We now provide insights on why BPG-methods are a better choice over other methods, with focus on
alternating methods.

• PALM-methods estimate a Lipschitz constant with respect to a block of coordinates in each
iteration, which is expensive for large block matrices. BPG-methods use a global L-smad constant,
which is computed only once.

• PALM-methods cannot be parallelized block wise, for example, in the two block case, the
computation of the Lipschitz constant of the second block must wait for the first block to be
updated, hence it is inherently serial.

• Alternating minimization methods do not converge for non-smooth regularization terms and can
be inefficient (for, e.g., ALS) for some matrix factorization problems (see, for example, [34, 54]).
BPG-methods and PALM-methods converge (due to linearization).

• PALM is not applicable to the 2D function g(x, y) = (x3 + y3)2, because the block-wise Lipschitz
continuity of the gradients fails to hold even after fixing one variable. BPG-methods are applicable
here.

• PALM is not applicable to, for example, symmetric matrix Factorization as also pointed in [21] or
the following penalty method based (relaxed) orthogonal NMF problem (see (1.1))

min
U∈U ,Z∈Z

{
Ψ ≡ 1

2
‖A−UZ‖2F +

ρ

2

∥∥UTU− I
∥∥2

F
+ IU≥0 + IZ≥0 +R1(U) +R2(Z)

}
,
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where second term does not have a block-wise Lipschitz continuous gradient for any ρ > 0. Here
BPG-methods are applicable (similarly also for Projective NMF) with minor changes to the
Bregman distance. For symmetric matrix factorization, we recover the kernel generating distances
proposed in [21].

• BPG-methods are very general so the choice of applications will increase substantially and this
will potentially open doors to design new losses and regularizers, without restricting to Lipschitz
continuous gradients.

State of the art models. The state-of-the-art matrix factorization models in [33] go beyond two
factors and new factorization models are introduced. BPG algorithms are not valid in their setting, and
requires potentially developing new Bregman distances. Also, BPG based methods are not applicable
for big data setting, where stochasticity plays a major role. The stochastic version of BPG was recently
proposed in [20]. The empirical comparisons to [33] is still open. Moreover, designing the appropriate
kernels in the context of new factorization models can possibly require substantially technical proofs.

Extensions. Our algorithms can potentially extended to several applications, for example, multi-task
learning, general matrix sensing, weighted PCA with various applications including cluster analysis,
phase retrieval, power system state estimation. Even though CoCaIn BPG-MF appears to perform
best, the performance of BPG-MF which forms the basis for CoCaIn BPG-MF, is worst as illustrated
in 3. This possibly implies that the kernel choice or the coefficients involved in the kernels are not
optimal. Such optimal choice of kernel generating distances were partially explored in the context of
symmetric matrix factorization setting in [21], where new Bregman distances based on Gram kernels
were introduced with state of the art performance in applicable settings.

B Overview of the Results

Below, we provide a table with the problem or content description and corresponding section where the
results are presented.

Matrix Factorization problem Section
Standard Matrix Factorization Section C

L2-Regularized Matrix Factorization Section C.1
Graph Regularized Matrix Factorization Section C.2
L1-Regularized Matrix Factorization Section C.3

Nuclear Norm Regularized Matrix Factorization Section C.4
Non-negative Matrix Factorization (NMF) Section D

L2-regularized NMF Section D.1
L1-regularized NMF Section D.2

Graph Regularized NMF Section D.3
Symmetric NMF via Non-Symmetric Relaxation Section D.4

Sparse NMF Section D.5
Matrix Completion Section E

Closed Form Solution with 5th-order Polynomials Section F
Conversion to Cubic Equation Section F.1

Extensions to Mixed Regularization Terms Section F.2
Technical Proofs Section G

Additional Experiments Section H

C Closed Form Solutions Part I for Matrix Factorization

Since, the update steps of BPG-MF and CoCaIn BPG-MF have same structure, we provide the closed
form expressions to just BPG-MF. We start with the following technical lemma.
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Lemma C.1. Let Q ∈ RA×B for some positive integers A and B. Let t ≥ 0 and ‖Q‖F 6= 0 then

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F = t2

}
≡ min

X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2

}
= −t ‖Q‖F ,

with the minimizer at X∗ = −tQ/ ‖Q‖F .

Proof. The proof is inspired from [41, Lemma 9]. On rewriting we have the following equivalence

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2

}
≡ − max

X∈RA×B

{
〈−Q,X〉 : ‖X‖2F ≤ t2

}
.

The expression 〈−Q,X〉 is maximized at X∗ = c(−Q) for certain constant c. On substituting we have

〈−Q,X∗〉 = c ‖Q‖2F .

Since, the dependence on c is linear and we additionally require ‖X‖2F ≤ t2, we can set c = t
‖Q‖F

if
‖Q‖F 6= 0 else c = 0. Hence, the minimizer to

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2

}
is attained at X∗ = −t Q

‖Q‖F
for ‖Q‖F 6= 0 else X∗ = 0. The equivalence in the statement follows as

‖X∗‖2F = t2.

Consider the following non-convex matrix factorization problem

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F

}
. (C.1)

Denote g = Ψ, f := 0, h = ha.

Proposition C.1. In BPG-MF, with above defined g, f, h the update steps in each iteration are given
by Uk+1 = −rPk, Zk+1 = −rQk where r is the non-negative real root of

c1

(∥∥∥Qk
∥∥∥2

F
+
∥∥∥Pk

∥∥∥2

F

)
r3 + c2r − 1 = 0 , (C.2)

with c1 = 3 and c2 = ‖A‖F .

Proof. Consider the following subproblem

(Uk+1,Zk+1) ∈ argmin
(U,Z)∈RM×K×RK×N

{〈
Pk,U

〉
+
〈
Qk,Z

〉

+c1

(
‖U‖2F + ‖Z‖2F

2

)2

+ c2

(
‖U‖2F + ‖Z‖2F

2

) .

Denote the objective in the above minimization problem as O(Uk,Zk). Now, the following holds

min
(U,Z)∈RM×K×RK×N

(
O(Uk,Zk)

)
≡ min

t1≥0,t2≥0

{
min

(U,Z)∈RM×K×RK×N ,‖U‖F=t1,‖Z‖F=t2

(
O(Uk,Zk)

)}
, (C.3)

≡ min
t1≥0,t2≥0

{
min

(U,Z)∈RM×K×RK×N ,‖U‖F≤t1,‖Z‖F≤t2

(
O(Uk,Zk)

)}
, (C.4)
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where the first step is a simple rewriting of the objective. The second step is non-trivial. In order to
prove (C.4) we rewrite (C.3) as

min
t1≥0,t2≥0

{
min

U1∈RM×K

{〈
Pk,U1

〉
: ‖U1‖2F = t1

}
+ min

Z1∈RK×N

{〈
Qk,Z1

〉
: ‖Z1‖2F = t2

}
+c1

(
t21 + t22

2

)2

+ c2

(
t21 + t22

2

)}
.

Now, note the following equivalence due to Lemma C.1

min
U1∈RM×K

{〈
Pk,U1

〉
: ‖U1‖2F = t1

}
≡ min

U1∈RM×K

{〈
Pk,U1

〉
: ‖U1‖2F ≤ t1

}
,

min
Z1∈RK×N

{〈
Qk,Z1

〉
: ‖Z1‖2F = t2

}
≡ min

Z1∈RK×N

{〈
Qk,Z1

〉
: ‖Z1‖2F ≤ t2

}
.

This proves (C.4). Now, we solve for (Uk+1,Zk+1) via the following strategy. Denote

U∗1(t1) ∈ argmin
{〈

Pk,U1

〉
: U1 ∈ RM×K , ‖U1‖2F ≤ t1

}
,

Z∗1(t2) ∈ argmin
{〈

Qk,Z1

〉
: Z1 ∈ RK×N , ‖Z1‖2F ≤ t2

}
.

Then we obtain (Uk+1,Zk+1) = (U∗1(t∗1),Z∗1(t∗2)), where t∗1 and t∗2 are obtained by solving the following
two dimensional subproblem

(t∗1, t
∗
2) ∈ argmin

t1≥0,t2≥0

{
min

U1∈RM×K

{〈
Pk,U1

〉
: ‖U1‖2F ≤ t1

}
+ min

Z1∈RK×N

{〈
Qk,Z1

〉
: ‖Z1‖2F ≤ t2

}
+c1

(
t21 + t22

2

)2

+ c2

(
t21 + t22

2

)}
.

Note that inner minimization subproblems can be trivially solved once we obtain U∗1(t1) and Z∗1(t2) via
Lemma C.1. Then the solution to the subproblem in each iteration is as follows:

Uk+1 =

t
∗
1
−Pk

‖Pk‖
F

, for
∥∥Pk

∥∥
F
6= 0 ,

0 otherwise .

Zk+1 =

t
∗
2
−Qk

‖Qk‖
F

, for
∥∥Qk

∥∥
F
6= 0 ,

0 otherwise .

We solve for t∗1 and t∗2 with the following two dimensional minimization problem

argmin
t1≥0,t2≥0

{
−t1

∥∥∥Pk
∥∥∥
F
− t2

∥∥∥Qk
∥∥∥
F

+ c1

(
t21 + t22

2

)2

+ c2

(
t21 + t22

2

)}
.

Thus, the solutions t∗1 and t∗2 are the non-negative real roots of the following equations

−
∥∥∥Pk

∥∥∥
F

+ c1(t21 + t22)t1 + c2t1 = 0

−
∥∥∥Qk

∥∥∥
F

+ c1(t21 + t22)t2 + c2t2 = 0
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Further simplifications lead to t1 = r
∥∥Pk

∥∥
F
and t2 = r

∥∥Qk
∥∥
F
for some r ≥ 0 such that r satisfies the

following cubic equation

c1

(∥∥∥Qk
∥∥∥2

F
+
∥∥∥Pk

∥∥∥2

F

)
r3 + c2r − 1 = 0 .

C.1 Extensions to L2-Regularized Matrix Factorization

We consider the following L2-Regularized Matrix Factorization problem [38].

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F +

λ0

2

(
‖U‖2F + ‖Z‖2F

)}
. (C.5)

Denote g := 1
2 ‖A−UZ‖2F , f := λ0

2

(
‖U‖2F + ‖Z‖2F

)
and h = ha.

Proposition C.2. In BPG-MF, with the above defined g, f, h the update steps in each iteration are
given by Uk+1 = −rPk, Zk+1 = −rQk where r is the non-negative real root of

c1

(∥∥∥Qk
∥∥∥2

F
+
∥∥∥Pk

∥∥∥2

F

)
r3 + (c2 + λ0)r − 1 = 0 , (C.6)

with c1 = 3 and c2 = ‖A‖F .

We skip the proof as it is very similar to Proposition C.1 and only change is in c2.

C.2 Extensions to Graph Regularized Matrix Factorization

Graph Regularized Matrix Factorization was proposed in [13]. However, they used non-negativity
constraints. We simplify the problem here by not considering the non-negativity constraints. We later
show in Section D.3, how the non-negativity constraints are handled. Here, given L ∈ RM×M we are
interested to solve

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F +

µ0

2
tr(UTLU) +

λ0

2

(
‖U‖2F + ‖Z‖2F

)}
.

In such a case, it is easy to extend the following ideas to Graph Regularized Non-negative Matrix
Factorization. We show here L-smad property. We first need the following technical lemma.

Lemma C.2. Let g1(U) = tr(UTLU), then for any H ∈ RM×K we have ∇g1(U) = LU + LTU,〈
H,∇2g1(U)H

〉
= 2 〈LH,H〉 .

Proof. Note that tr(UTLU) = 〈LU,U〉, now we obtain for H ∈ RM×K the following

〈L(U + H),U + H〉 = 〈L(U + H),U + H〉
= 〈LU,U〉+ 〈LU,H〉+ 〈LH,U〉+ 〈LH,H〉 ,
= 〈LU,U〉+ 〈LU,H〉+

〈
LTU,H

〉
+ 〈LH,H〉 .

Thus the statement holds, by collecting the first and second order terms.

Now, we prove the L-smad property.

Proposition C.3. Let g(U,Z) = 1
2 ‖A−UZ‖2F + µ0

2 tr(UTLU). Then, for a certain constant L ≥ 1,
the function g satisfies L-smad property with respect to the following kernel generating distance,

hc(U,Z) = 3h1(U,Z) + (‖A‖F + µ0 ‖L‖F )h2(U,Z) .
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Proof. The proof is similar to Proposition 2.1 and Lemma C.2 must be applied for the result.

Denote g := 1
2 ‖A−UZ‖2F + µ0

2 tr(UTLU), f := λ0
2

(
‖U‖2F + ‖Z‖2F

)
and h = hc.

Proposition C.4. In BPG-MF, with the above defined f, g, h the update steps in each iteration are
given by Uk+1 = −rPk, Zk+1 = −rQk where r ≥ 0 and satisfies

c1

(∥∥∥Qk
∥∥∥2

F
+
∥∥∥Pk

∥∥∥2

F

)
r3 + (c2 + µ0 ‖L‖F + λ0)r − 1 = 0 , (C.7)

with c1 = 3 and c2 = ‖A‖F .

The proof is similar to Proposition C.1 and only c2 changes.

C.3 Extensions to L1-Regularized Matrix Factorization

Now consider the following matrix factorization problem with L1-Regularization

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F + λ1 (‖U‖1 + ‖Z‖1)

}
. (C.8)

Recall that soft-thresholding operator is defined for any y ∈ Rd by

Sθ (y) = argminx∈Rd

{
θ ‖x‖1 +

1

2
‖x− y‖2

}
= max {|y| − θ, 0} sgn (y) , (C.9)

where θ > 0 and the operations are applied element-wise. We require the following technical result.

Lemma C.3. Let Q ∈ RA×B for some positive integers A and B. Let t0 > 0 and let t ≥ 0 then

min
X∈RA×B

{
〈Q,X〉+ t0 ‖X‖1 : ‖X‖2F ≤ t2

}
= −t ‖St0(−Q)‖F .

with the minimizer at X∗ = t
St0 (−Q)

‖St0 (−Q)‖
F

for ‖St0(−Q)‖F 6= 0 and otherwise all X such that ‖X‖2F ≤ t2

are minimizers. Moreover we have the following equivalence,

min
X∈RA×B

{
〈Q,X〉+ t0 ‖X‖1 : ‖X‖2F ≤ t2

}
≡ min

X∈RA×B

{
〈Q,X〉+ t0 ‖X‖1 : ‖X‖2F = t2

}
. (C.10)

Proof. We have the following equivalence

min
X∈RA×B

{
〈Q,X〉+ t0 ‖X‖1 : ‖X‖2F ≤ t2

}
≡ − max

X∈RA×B

{
〈−Q,X〉 − t0 ‖X‖1 : ‖X‖2F ≤ t2

}
.

Then the result follows due to [41, Proposition 14] with the minimizer at X∗ = t
St0 (−Q)

‖St0 (−Q)‖
F

for

‖St0(−Q)‖F 6= 0 and 0 otherwise. The equivalence statement in (C.10) follows as ‖X∗‖2F = t2 for
‖St0(−Q)‖F 6= 0 and otherwise all the points satisfying ‖X‖2F = t2 are minimizers.

Denote g := 1
2 ‖A−UZ‖2F , f := λ1 (‖U‖1 + ‖Z‖1) and h = ha.

Proposition C.5. In BPG-MF, with the above defined g, f, h the update steps in each iteration are
given by Uk+1 = rSλ1λ(−Pk), Zk+1 = rSλ1λ(−Qk) where r ≥ 0 and satisfies

c1

(∥∥∥Sλ1λ (−Qk
)∥∥∥2

F
+
∥∥∥Sλ1λ (−Pk

)∥∥∥2

F

)
r3 + c2r − 1 = 0 , (C.11)

with c1 = 3 and c2 = ‖A‖F .
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Proof. The proof is similar to that of Proposition C.1, but with certain changes due to the L1 norm in
the objective. Consider the following subproblem

(Uk+1,Zk+1) ∈ argmin
(U,Z)∈RM×K×RK×N

{
λλ1 (‖U‖1 + ‖Z‖1) +

〈
Pk,U

〉
+
〈
Qk,Z

〉

+c1

(
‖U‖2F + ‖Z‖2F

2

)2

+ c2

(
‖U‖2F + ‖Z‖2F

2

) ,

Denote the objective in the above minimization problem as O(Uk,Zk). Now, we show that the following
holds

min
(U,Z)∈RM×K×RK×N

(
O(Uk,Zk)

)
≡ min

t1≥0,t2≥0

{
min

(U,Z)∈RM×K×RK×N ,‖U‖F=t1,‖Z‖F=t2

(
O(Uk,Zk)

)}
, (C.12)

≡ min
t1≥0,t2≥0

{
min

(U,Z)∈RM×K×RK×N ,‖U‖F≤t1,‖Z‖F≤t2

(
O(Uk,Zk)

)}
. (C.13)

where the first step is a simple rewriting of the objective. The second step is non-trivial. In order to
prove (C.13) we rewrite (C.12) as

min
t1≥0,t2≥0

{
min

U1∈RM×K

{〈
Pk,U1

〉
+ λλ1 ‖U‖1 : ‖U1‖2F = t1

}
+ min

Z1∈RK×N

{〈
Qk,Z1

〉
+ λλ1 ‖Z‖1 : ‖Z1‖2F = t2

}
+c1

(
t21 + t22

2

)2

+ c2

(
t21 + t22

2

)}
.

where the second step (C.13) uses Lemma C.3 and strong convexity of h. Now, note the following
equivalence due to Lemma C.3

min
U1∈RM×K

{〈
Pk,U1

〉
+ λλ1 ‖U‖1 : ‖U1‖2F = t1

}
≡ min

U1∈RM×K

{〈
Pk,U1

〉
+ λλ1 ‖U‖1 : ‖U1‖2F ≤ t1

}
, (C.14)

and

min
Z1∈RK×N

{〈
Qk,Z1

〉
+ λλ1 ‖Z‖1 : ‖Z1‖2F = t2

}
≡ min

Z1∈RK×N

{〈
Qk,Z1

〉
+ λλ1 ‖Z‖1 : ‖Z1‖2F ≤ t2

}
. (C.15)

We solve the subproblems via the following strategy. Denote

U∗1(t1) ∈ argmin
{〈

Pk,U1

〉
+ λλ1 ‖U‖1 : U1 ∈ RM×K , ‖U1‖2F ≤ t1

}
Z∗1(t2) ∈ argmin

{〈
Qk,Z1

〉
+ λλ1 ‖Z‖1 : Z1 ∈ RK×N , ‖Z1‖2F ≤ t2

}
Then we obtain (Uk+1,Zk+1) = (U∗1(t∗1),Z∗1(t∗2)), where t∗1 and t∗2 are obtained by solving the following
two dimensional subproblem

(t∗1, t
∗
2) ∈ argmin

t1≥0,t2≥0

{
min

U1∈RM×K

{〈
Pk,U1

〉
+ λλ1 ‖U‖1 : ‖U1‖2F ≤ t1

}
+ min

Z1∈RK×N

{〈
Qk,Z1

〉
+ λλ1 ‖Z‖1 : ‖Z1‖2F ≤ t2

}
+c1

(
t1 + t2

2

)2

+ c2

(
t1 + t2

2

)}
.
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Note that inner minimization subproblems can be trivially solved once we obtain U∗1(t1) and Z∗1(t2).
Due to Lemma C.3 we obtain the solution to the subproblem in each iteration as follows

Uk+1 =

t∗1
Sλλ1 (−Pk)

‖Sλλ1 (−Pk)‖
F

, for
∥∥Sλλ1(−Pk)

∥∥
F
6= 0 ,

0 otherwise .

Zk+1 =

t∗2
Sλλ1 (−Qk)

‖Sλλ1 (−Qk)‖
F

, for
∥∥Sλλ1(−Qk)

∥∥
F
6= 0 ,

0 otherwise .

We solve for t∗1 and t∗2 with the following two dimensional minimization problem

argmin
t1≥0,t2≥0

{
−t1

∥∥∥Sλλ1(−Pk)
∥∥∥
F
− t2

∥∥∥Sλλ1(−Qk)
∥∥∥
F

+ c1

(
t21 + t22

2

)2

+ c2

(
t21 + t22

2

)}
.

Thus, the solutions t∗1 and t∗2 are the non-negative real roots of the following equations

−
∥∥∥Sλλ1(−Pk)

∥∥∥
F

+ c1(t21 + t22)t1 + c2t1 = 0

−
∥∥∥Sλλ1(−Qk)

∥∥∥
F

+ c1(t21 + t22)t2 + c2t2 = 0 .

Set t1 = r
∥∥Sλλ1(−Pk)

∥∥
F
and t2 = r

∥∥Sλλ1(−Qk)
∥∥
F
for some r ≥ 0. This results in the following cubic

equation,

c1

(∥∥∥Sλλ1(−Qk)
∥∥∥2

F
+
∥∥∥Sλλ1(−Pk)

∥∥∥2

F

)
r3 + c2r − 1 = 0 ,

where the solution is the non-negative real root.

C.4 Extensions with Nuclear Norm Regularization

We start with the notion of Singular Value Shrinkage Operator [14], where given a matrix Q ∈ RA×B
of rank K with Singular Value Decomposition given by UΣVT with U ∈ RA×K , Σ ∈ RK×K and
V ∈ RK×N for t ≥ 0 the output is

Dt(Q) = USt(Σ)VT , (C.16)

where the soft-thresholding operator is applied only to the singular values. Before we proceed, we
require the following technical lemma.

Lemma C.4. Let Q ∈ RA×B of rank K with Singular Value Decomposition given by UΣVT with
U ∈ RA×K , Σ ∈ RK×K and Z ∈ RK×N . Let t ≥ 0 and ‖Q‖F 6= 0 then

min
X∈RA×B

{
〈Q,X〉+ t0 ‖X‖∗ : ‖X‖2F ≤ t2

}
= −t ‖St0(−Σ)‖ .

with X∗ = t
Dt0 (−Q)

‖Dt(−Q)‖F
if ‖Dt0(−Q)‖ 6= 0 else any X such that ‖X‖2F ≤ t2 is a minimizer. Moreover we

have the following equivalence

min
X∈RA×B

{
〈Q,X〉+ t0 ‖X‖∗ : ‖X‖2F ≤ t2

}
= min

X∈RA×B

{
〈Q,X〉+ t0 ‖X‖∗ : ‖X‖2F = t2

}
. (C.17)

Proof. The sub-differential of the nuclear norm [14] is given by

∂ ‖X‖∗ =
{
UVT + W : W ∈ RA×B,UTW = 0,WV = 0, ‖W‖2 ≤ 1

}
. (C.18)

The normal cone for the set C1 =
{

X : ‖X‖2F ≤ t2
}

is given by

NC1(X̄) =
{
V ∈ RA×B :

〈
V,X− X̄

〉
≤ 0 for all X ∈ C1

}
≡
{
θX̄ : θ ≥ 0

}
.
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We consider the following problem

min
X∈RA×B

{
〈Q,X〉+ t0 ‖X‖∗ : ‖X‖2F ≤ t2

}
.

and the optimality condition [55, Theorem 10.1, p. 422] results in

0 ∈ Q + t0∂ ‖X‖∗ +NC1(X) .

We follow the strategy from [14, Theorem 2.1]. One can decompose −Q as

−Q = U0Σ0VT
0 + U1Σ1VT

1 .

where U0,V0 contain the singular vectors for singular values greater than t0 and U1,V1 for less than
equal to t0. Then with X = U0ΣVT

0 , the optimality condition becomes

0 = Q + t0(U0VT
0 + W) + θU0ΣVT

0 , (C.19)

and thus we obtain

U0Σ0VT
0 + U1Σ1VT

1 = t0
(
U0VT

0 + W
)

+ θU0ΣVT
0 .

With W = t−1
0 U1Σ1VT

1 all the conditions in (C.18) are satisfied. For some unknown θ ≥ 0 we have

θΣ = Σ0 − t0I .

The objective 〈Q,X〉+ t0 ‖X‖∗ is now monotonically decreasing with θ after substituting. Thus, we
obtain the solution X = t

‖Σ0−t0I‖U0 (Σ0 − t0I) VT
0 for ‖Σ0 − t0I‖ 6= 0 else the solution is 0. The

equivalence statement in (C.17) follows trivially because if ‖Σ0 − t0I‖ 6= 0 we have ‖X‖2F = t2 otherwise
all the points satisfying ‖X‖2F ≤ t2 are minimizers.

Here, we want to solve matrix factorization problem with nuclear norm regularization, where for certain
constant λ2 > 0 we want to solve

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F + λ2 (‖U‖∗ + ‖Z‖∗)

}
. (C.20)

Denote g := 1
2 ‖A−UZ‖2F , f := λ2 (‖U‖∗ + ‖Z‖∗) and h = ha.

Proposition C.6. In BPG-MF, with the above defined g, f, h the update steps in each iteration are
given by Uk+1 = rDλ1λ(−Pk), Zk+1 = rDλ1λ(−Qk) where r ≥ 0 and satisfies

c1

(∥∥∥Dλ1λ (−Qk
)∥∥∥2

F
+
∥∥∥Dλ1λ (−Pk

)∥∥∥2

F

)
r3 + c2r − 1 = 0 , (C.21)

with c1 = 3 and c2 = ‖A‖F .

The proof is similar to Proposition C.5 but Lemma C.4 must be used instead of Lemma C.3.

C.5 Extensions with Non-Convex Sparsity Constraints

We want to solve the matrix factorization problem with non-convex sparsity constraints [8]

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F : ‖U‖0 ≤ s1, ‖Z‖0 ≤ s2,

}
. (C.22)

The problem with additional non-negativity constraints, the so called Sparse NMF is considered in
Section D.5. Now, denote g := 1

2 ‖A−UZ‖2F , f := I‖U‖0≤s1 + I‖Z‖0≤s2 and h = ha. Note that the
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Assumption C is not valid here, hence CoCaIn BPG-MF theory does not hold and hints at possible
extensions of CoCaIn BPG-MF, which is an interesting open question. Before, we proceed, we require the
following concept. Let y ∈ Rd and without loss of generality we can assume that |y1| ≥ |y2| ≥ . . . ≥ |yd|,
then the hard-thresholding operator [41] is given by

Hs (y) = argminx∈Rd
{
‖x− y‖2 : ‖x‖0 ≤ s

}
=

{
yi, i ≤ s,
0, otherwise,

(C.23)

where s > 0 and the operations are applied element-wise. We require the following technical lemma.

Lemma C.5. Let Q ∈ RA×B for some positive integers A and B. Let t ≥ 0 and ‖Q‖F 6= 0 then

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s

}
= −t ‖Hs(−Q)‖ .

with the minimizer X∗ = tHs(−Q)
‖Hs(−Q)‖ if ‖Hs(−Q)‖ 6= 0 else X∗ = 0 . Moreover we have the following

equivalence

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s

}
= min

X∈RA×B

{
〈Q,X〉 : ‖X‖2F = t2, ‖X‖0 ≤ s

}
.

Proof. The proof is similar to [41, Proposition 11]. We have

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s

}
= − max

X∈RA×B

{
〈−Q,X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s

}
,

= − max
X∈RA×B

{
〈Hs(−Q),X〉 : ‖X‖2F ≤ t2

}
.

The first equality is a simple rewriting of the objective. Then, the corresponding objective 〈−Q,X〉
can be maximized with

∑A
i=1

∑B
j=1 I(i,j)∈Ω0

(−QijXij) where Ω0 is set of index pairs and I(i,j)∈Ω0
is 1

if the index pair if (i, j) ∈ Ω0 and zero otherwise. Note that the objective 〈−Q,X〉 is maximized if Ω0

contains all the index pairs corresponding to the elements of −Q with highest absolute value which is
captured by Hard-thresholding operator. Thus, the second equality follows and the solution follows due
to Lemma C.1. The equivalence statement follows as ‖X∗‖2F = t2 for ‖Hs(−Q)‖ 6= 0 else the function
value is zero and is attained by all the points in the set

{
X : ‖X‖2F ≤ t2

}
are minimizers, hence the

equivalence.

Proposition C.7. In BPG-MF, with the above defined g, f, h the update steps in each iteration are
given by Uk+1 = rHs1(−Pk), Zk+1 = rHs2(−Qk) where r ≥ 0 and satisfies

c1

(∥∥∥Hs1 (−Qk
)∥∥∥2

F
+
∥∥∥Hs2 (−Pk

)∥∥∥2

F

)
r3 + c2r − 1 = 0 , (C.24)

with c1 = 3 and c2 = ‖A‖F .

The proof is similar to Proposition C.5 but Lemma C.5 must be used instead of Lemma C.3.

D Closed Form Solutions Part II for NMF variants

For simplicity we consider the following problem [36, 37]

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F + IU≥0 + IZ≥0

}
. (D.1)

We set R1(U) = 0, R2(Z) = 0, g = Ψ and f = IU≥0 + IZ≥0 where I is the indicator operator. We start
with the following technical lemma.
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Lemma D.1. Let Q ∈ RA×B for some positive integers A and B. Let t ≥ 0 and ‖Q‖F 6= 0 then

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2,X ≥ 0

}
= −t ‖Π+(−Q)‖F ,

with the minimizer X∗ = t Π+(−Q)
‖Π+(−Q)‖F

if ‖Π+(−Q)‖F 6= 0 else X∗ = 0. For ‖Π+(−Q)‖F 6= 0, we have
the following equivalence

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2,X ≥ 0

}
≡ min

X∈RA×B

{
〈Q,X〉 : ‖X‖2F = t2,X ≥ 0

}
. (D.2)

Proof. On rewriting we have the following equivalence

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2,X ≥ 0

}
≡ − max

X∈RA×B

{
〈−Q,X〉 : ‖X‖2F ≤ t2,X ≥ 0

}
.

The expression 〈−Q,X〉 is maximized at X∗ = cΠ+(−Q) for certain constant c. On substituting we
have

〈−Q,X∗〉 = c ‖Π+(−Q)‖2F .

Since, the dependence on c is linear and we additionally require ‖X‖2F ≤ t2, we can set c = t
‖Π+(−Q)‖F

if ‖Π+(−Q)‖F 6= 0 else c = 0. Hence, the minimizer to

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2

}
is attained at X∗ = −t Π+(−Q)

‖Π+(−Q)‖F
for ‖Π+(−Q)‖F 6= 0 else X∗ = 0. The equivalence in the statement

follows as ‖X∗‖2F = t2.

Denote g = Ψ, f = IU≥0 + IZ≥0 and h = ha.

Proposition D.1. In BPG-MF, when g = Ψ in (D.1) the update step in each iteration are given by
Uk+1 = Π+(−Pk), Zk+1 = Π+(−Qk) where r ≥ 0 and satisfies

c1

(∥∥∥Π+(−Qk)
∥∥∥2

F
+
∥∥∥Π+(−Pk)

∥∥∥2

F

)
r3 + c2r − 1 = 0 . , (D.3)

with c1 = 3 and c2 = ‖A‖F .

Proof. The proof is similar to that of Proposition C.1, but with certain changes due to the involved
non-negativity constraints for the objective. Consider the following subproblem

(Uk+1,Zk+1) ∈ argmin
(U,Z)∈RM×K+ ×RK×N+

{〈
Pk,U

〉
+
〈
Qk,Z

〉

+c1

(
‖U‖2F + ‖Z‖2F

2

)2

+ c2

(
‖U‖2F + ‖Z‖2F

2

) .

Denote the objective in the above minimization problem as O(Uk,Zk). Now, we show that the following
holds

min
(U,Z)∈RM×K×RK×N

(
O(Uk,Zk)

)
≡ min

t1≥0,t2≥0

{
min

(U,Z)∈RM×K×RK×N ,‖U‖F=t1,‖Z‖F=t2

(
O(Uk,Zk)

)}
, (D.4)

≡ min
t1≥0,t2≥0

{
min

(U,Z)∈RM×K×RK×N ,‖U‖F≤t1,‖Z‖F≤t2

(
O(Uk,Zk)

)}
, (D.5)

20



where the first step is a simple rewriting of the objective and involved variables and the second
equivalence proof is similar to that equivalence of (C.13) and (C.12) in Proposition C.5, which we
describe now. The second step is non-trivial. In order to prove (D.5) we rewrite (D.4) as

min
t1≥0,t2≥0

{
min

U1∈RM×K

{〈
Pk,U1

〉
: ‖U1‖2F = t1,U1 ≥ 0

}
+ min

Z1∈RK×N

{〈
Qk,Z1

〉
: ‖Z1‖2F = t2,Z1 ≥ 0

}
+c1

(
t21 + t22

2

)2

+ c2

(
t21 + t22

2

)}
.

where the second step uses Lemma D.1 and strong convexity of h. Now, due to Lemma C.3, if∥∥Π+(−Pk)
∥∥
F
6= 0 we have

min
U1∈RM×K

{〈
Pk,U1

〉
: ‖U1‖2F = t1 ,U1 ≥ 0

}
≡ min

U1∈RM×K

{〈
Pk,U1

〉
: ‖U1‖2F ≤ t1 ,U1 ≥ 0

}
,

(D.6)

and similarly if
∥∥Π+(−Qk)

∥∥
F
6= 0 we have

min
Z1∈RK×N

{〈
Qk,Z1

〉
: ‖Z1‖2F = t2 ,Z1 ≥ 0

}
≡ min

Z1∈RK×N

{〈
Qk,Z1

〉
: ‖Z1‖2F ≤ t2 ,Z1 ≥ 0

}
. (D.7)

Note that if
∥∥Π+(−Pk)

∥∥
F

= 0 and
∥∥Pk

∥∥
F
6= 0 then the objective

min
U1∈RM×K

{〈
Pk,U1

〉
: ‖U1‖2F = t1 ,U1 ≥ 0

}
with minimum function value of a positive value t1 min

i∈[M ], j∈[K]
{(Pk)i,j} where we have [A] = {1, 2, . . . , A}

for a positive integer A. Similarly if
∥∥Π+(−Qk)

∥∥
F

= 0 and
∥∥Qk

∥∥
F
6= 0 the minimum function value for

min
Z1∈RK×N

{〈
Qk,Z1

〉
: ‖Z1‖2F = t2 ,Z1 ≥ 0

}
is a positive value t2 min

i∈[K], j∈[N ]
{(Qk)i,j}. Thus for

∥∥Pk
∥∥
F
6= 0 with

∥∥Π+(−Pk)
∥∥
F

= 0 (or
∥∥Qk

∥∥
F
6= 0

with
∥∥Π+(−Qk)

∥∥
F

= 0) the final objective (D.4) is monotonically increasing in t1 (or t2) which will
drive t1 (or t2) to 0 due to the constraint t1 ≥ 0 (or t2 ≥ 0). So, without loss of generality we can
consider

∥∥Π+(−Qk)
∥∥
F
6= 0 and

∥∥Π+(−Qk)
∥∥
F

= 0. Now, we obtain the solutions via the following
strategy. Denote

U∗1(t1) ∈ argmin
{〈

Pk,U1

〉
: U1 ∈ RM×K+ , ‖U1‖2F ≤ t1

}
,

Z∗1(t2) ∈ argmin
{〈

Qk,Z1

〉
: Z1 ∈ RK×N+ , ‖Z1‖2F ≤ t2

}
.

Then we obtain (Uk+1,Zk+1) = (U∗1(t∗1),Z∗1(t∗2)), where t∗1 and t∗2 are obtained by solving the following
two dimensional subproblem

(t∗1, t
∗
2) ∈ argmin

t1≥0,t2≥0

{
min

U1∈RM×K+

{〈
Pk,U1

〉
: ‖U1‖2F ≤ t1

}
+ min

Z1∈RK×N+

{〈
Qk,Z1

〉
: ‖Z1‖2F ≤ t2

}
+c1

(
t1 + t2

2

)2

+ c2

(
t1 + t2

2

)}
.
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Note that inner minimization subproblems can be trivially solved once we obtain U∗1(t1) and Z∗1(t2).
Due to Lemma D.1 we obtain the solution to the subproblem in each iteration as follows

Uk+1 =

t
∗
1

Π+(−Pk)

‖Π+(−Pk)‖
F

, for
∥∥Π+(−Pk)

∥∥
F
6= 0 ,

0, otherwise .

Zk+1 =

t
∗
2

Π+(−Qk)

‖Π+(−Qk)‖
F

, for
∥∥Π+(−Qk)

∥∥
F
6= 0 ,

0, otherwise .

We solve for t∗1 and t∗2 with the following two dimensional minimization problem

argmin
t1≥0,t2≥0

{
−t1

∥∥∥Π+(−Pk)
∥∥∥
F
− t2

∥∥∥Π+(−Qk)
∥∥∥
F

+ c1

(
t21 + t22

2

)2

+ c2

(
t21 + t22

2

)}
.

Thus, the solutions t∗1 and t∗2 are the non-negative real roots of the following equations

−
∥∥∥Π+(−Pk)

∥∥∥
F

+ c1(t21 + t22)t1 + c2t1 = 0 ,

−
∥∥∥Π+(−Qk)

∥∥∥
F

+ c1(t21 + t22)t2 + c2t2 = 0 .

Further simplifications lead to t1 = r
∥∥Π+(−Pk)

∥∥
F

and t2 = r
∥∥Π+(−Qk)

∥∥
F

for some r ≥ 0. This
results in the following cubic equation,

c1

(∥∥∥Π+(−Qk)
∥∥∥2

F
+
∥∥∥Π+(−Pk)

∥∥∥2

F

)
r3 + c2r − 1 = 0 ,

where the solution is the non-negative real root.

D.1 Extensions to L2-regularized NMF

Here, the goal is solve the following minimization problem

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F +

λ0

2

(
‖U‖2F + ‖Z‖2F

)
+ IU≥0 + IZ≥0

}
.

Denote g := 1
2 ‖A−UZ‖2F + λ0

2

(
‖U‖2F + ‖Z‖2F

)
, f := IU≥0 + IZ≥0 and h = hb.

Proposition D.2. In BPG-MF, with above defined g, f, h the update step in each iteration are given
by Uk+1 = Π+(−Pk), Zk+1 = Π+(−Qk) where r ≥ 0 and satisfies

c1

(∥∥∥Π+(−Qk)
∥∥∥2

F
+
∥∥∥Π+(−Pk)

∥∥∥2

F

)
r3 + (c2 + λ0)r − 1 = 0 ,

with c1 = 3 and c2 = ‖A‖F .

The proof is similar to Proposition D.1 with only change in c2.

D.2 Extensions to L1-regularized NMF

Here, the goal is solve the following minimization problem

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F + λ1 (‖U‖1 + ‖Z‖1) + IU≥0 + IZ≥0

}
.

We denote eD to be a vector of dimension D with all its elements set to 1.
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Lemma D.2. Let Q ∈ RA×B for some positive integers A and B. Let t ≥ 0 and ‖Q‖F 6= 0 then

min
X∈RA×B

{
〈Q,X〉+ t0 ‖X‖1 : ‖X‖2F ≤ t2,X ≥ 0

}
= −t

∥∥Π+(−
(
Q + t0eAeB

T
)
)
∥∥
F

with the minimizer X∗ = t
Π+(−(Q+t0eAeB

T ))

‖Π+(−(Q+t0eAeB
T ))‖F

if the condition
∥∥Π+(−

(
Q + t0eAeB

T
)
)
∥∥
F
6= 0 holds .

Proof. By using X ≥ 0 and the basic trace properties we have the following equivalence

‖X‖1 =
∑
i,j

Xij = eA
TXeB = tr

(
eA

TXeB

)
= tr

(
eBeA

TX
)

=
〈
eAeB

T ,X
〉
,

hence we have the following equivalence

min
X∈RA×B

{
〈Q,X〉+ t0 ‖X‖1 : ‖X‖2F ≤ t2,X ≥ 0

}
≡ min

X∈RA×B

{〈
Q + t0eAeB

T ,X
〉

: ‖X‖2F ≤ t2,X ≥ 0
}

Now, the solution follows due to Lemma D.1.

Denote g := 1
2 ‖A−UZ‖2F , f := λ1 (‖U‖1 + ‖Z‖1) + IU≥0 + IZ≥0 and h = ha.

Proposition D.3. In BPG-MF, with the above defined g, f, h the update steps in each iteration are
given by Uk+1 = rΠ+(−

(
Pk + t0eMeTK

)
), Zk+1 = rΠ+(−

(
Qk + t0eKeTN

)
) where r ≥ 0 and satisfies

c1

(∥∥∥Π+(−
(
Pk + t0eMeTK

)
)
∥∥∥2

F
+
∥∥∥Π+(−

(
Qk + t0eKeTN

)
)
∥∥∥2

F

)
r3 + c2r − 1 = 0 ,

with c1 = 3, c2 = ‖A‖F and t0 = λλ1.

We skip the proof as it is similar to Proposition D.1.

D.3 Extensions to Graph Regularized Non-negative Matrix Factorization

Graph Regularized Non-negative Matrix Factorization was proposed in [13]. Here, given L ∈ RM×M we
are interested to solve

min
U∈RM×K ,Z∈RK×N

{Ψ(U,Z) =
1

2
‖A−UZ‖2F +

µ0

2
tr(UTLU)

+
λ0

2

(
‖U‖2F + ‖Z‖2F

)
+ IU≥0 + IZ≥0

}
.

Recall that
hc(U,Z) = 3h1(U,Z) + (‖A‖F + µ0 ‖L‖F )h2(U,Z) .

Denote g := 1
2 ‖A−UZ‖2F + µ0

2 tr(UTLU), f := λ0
2

(
‖U‖2F + ‖Z‖2F

)
+ IU≥0 + IZ≥0 and h = hc.

Proposition D.4. In BPG-MF, with the above defined f, g, h the update steps in each iteration are
given by Uk+1 = rΠ+(−Pk), Zk+1 = rΠ+(−Qk) where r ≥ 0 and satisfies

c1

(∥∥∥Π+(−Qk)
∥∥∥2

F
+
∥∥∥Π+(−Pk)

∥∥∥2

F

)
r3 + (c2 + µ0 ‖L‖F + λ0)r − 1 = 0 , (D.8)

with c1 = 3 and c2 = ‖A‖F .

The proof is similar to Proposition D.1 and only c2 changes.
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D.4 Extensions to Symmetric NMF via Non-Symmetric Relaxation.

In [68], the following optimization problem was proposed in the context of Symmetric NMF where the
factors U and ZT are equal. The symmetricity of the factors was lifted via a quadratic penalty terms
resulting in the following problem

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F +

λ0

2

∥∥U− ZT
∥∥2

F
+ IU≥0 + IZ≥0

}
.

Now, we prove the L-smad property. We need the following technical lemma.

Lemma D.3. Let g(U,Z) = 1
2 ‖A−UZ‖2F + λ0

2

∥∥U− ZT
∥∥2

F
be as defined above, we have the following

∇Ug(A,UZ) = λ0

(
U− ZT

)
− (A−UZ)ZT

∇Zg(A,UZ) = λ0

(
U− ZT

)
+ UT (A−UZ)

and 〈
(H1,H2),∇2g(A,UZ)(H1,H2)

〉
= −2 〈A−UZ,H1H2〉+ ‖UH2 + H1Z‖2F + λ0

∥∥H1 −H2
T
∥∥2

F
.

Proof. The first part of proof for function 1
2 ‖A−UZ‖2F follows from Proposition 2.1. For the other

term, with the Forbenius dot product, we obtain

λ0

2

∥∥U + H1 − ZT −H2
T
∥∥2

F

=
λ0

2

(∥∥U− ZT
∥∥2

F
+ 2

〈
U− ZT ,H1 −H2

T
〉

+
∥∥H1 −H2

T
∥∥2

F

)
.

Combining with Lemma G.1, the statement follows from the collecting the first order and second order
terms.

Proposition D.5. Let g(U,Z) = 1
2 ‖A−UZ‖2F + λ0

2 ‖U− Z‖2F . Then, for a certain constant L ≥ 1,
the function g satisfies L-smad property with respect to the following kernel generating distance,

hd(U,Z) = 3h1(U,Z) + (‖A‖F + 2λ0)h2(U,Z) .

Proof. The proof is similar to Proposition 2.1 and Lemma D.3 must be applied for the result.

Denote g := 1
2 ‖A−UZ‖2F + λ0

2 ‖U− Z‖2F , f := IU≥0 + IZ≥0 and h = hd.

Proposition D.6. In BPG-MF, with the above defined update steps in each iteration are given by
Uk+1 = rΠ+

(
−Pk

)
, Zk+1 = rΠ+

(
−Qk

)
where r ≥ 0 and satisfies

c1

(∥∥∥Π+

(
−Pk

)∥∥∥2

F
+
∥∥∥Π+

(
−Qk

)∥∥∥2

F

)
r3 + (c2 + 2λ0)r − 1 = 0 , (D.9)

with c1 = 3 and c2 = ‖A‖F .

The proof is similar to Proposition D.1 and only c2 changes.
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D.5 Extensions to NMF with Non-Convex Sparsity Constraints (Sparse NMF)

Consider the following problem from [8]

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F : U ≥ 0, ‖U‖0 ≤ s1,Z ≥ 0, ‖Z‖0 ≤ s2,

}
,

where s1 and s2 are two known positive integers. Denote g := 1
2 ‖A−UZ‖2F , f := IU≥0 + I‖U‖0≤s1 +

IZ≥0 + I‖Z‖0≤s2 and h = ha. Note that the Assumption C is not valid here, hence CoCaIn BPG-MF
theory does not hold and hints at possible extensions of CoCaIn BPG-MF, which is an interesting open
question. We start with the following technical lemma.

Proposition D.7. Let Q ∈ RA×B for some positive integers A and B. Let t ≥ 0 and ‖Q‖F 6= 0 then

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s,X ≥ 0

}
= −t ‖Hs(Π+(−Q))‖F .

with the minimizer X∗ = t Hs(Π+(−Q))
‖Hs(Π+(−Q))‖F

if ‖Hs(Π+(−Q))‖F 6= 0 else X∗ = 0. If ‖Hs(Π+(−Q))‖F 6= 0

we have the following equivalence

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s,X ≥ 0

}
(D.10)

≡ min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F = t2, ‖X‖0 ≤ s,X ≥ 0

}
(D.11)

Proof. We have

min
X

{
〈Q,X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s,X ≥ 0

}
= −max

X

{
〈−Q,X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s,X ≥ 0

}
,

= −max
X

{
〈Π+(−Q),X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s

}
,

= −max
X

{
〈Hs(Π+(−Q)),X〉 : ‖X‖2F ≤ t2

}
.

The first equality is a simple rewriting of the objective. Then, the corresponding objective 〈−Q,X〉
can be maximized with

∑A
i=1

∑B
j=1 I(i,j)∈Ω0

(−QijXij) where Ω0 is set of index pairs and I(i,j)∈Ω0
is

1 if the index pair if (i, j) ∈ Ω0 and zero otherwise. It is easy to see that the objective 〈−Q,X〉 is
maximized if Ω0 contains all the index pairs corresponding to the elements of −Q with highest absolute
value which is captured by Hard-thresholding operator. However due to the non-negativity constraint if
there is any −Qij such that it is negative, then since Xij will be driven to zero. So, before we use the
Hard-thresholding operator, we need to use Π+(.) = max{0, .} in second equality. The third equality
follows as a consequence of hard sparsity constraint similar to Lemma C.5 and the solution follows due
to Lemma C.1. The equivalence statement follows as ‖X∗‖2F = t2.

Proposition D.8. In BPG-MF, with the above defined g, f, h the update steps in each iteration are
Uk+1 = rHs1(Π+(−Pk)), Zk+1 = rHs2(Π+(−Qk)) where r ≥ 0 and satisfies

c1

(∥∥∥Hs1 (Π+(−Qk)
)∥∥∥2

F
+
∥∥∥Hs2 (Π+(−Pk)

)∥∥∥2

F

)
r3 + c2r − 1 = 0 ,

with c1 = 3 and c2 = ‖A‖F .

The proof is similar to Proposition D.1.
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E Matrix Completion Problem

Matrix Completion is an important non-convex optimization problem, which arises in practical real
world applications, such as recommender systems [35, 15, 23]. Give a matrix A where only the values
at the index set given by Ω are given. The goal is obtain the rest of the values. One of the popular
strategy is to obtain the factors U ∈ RM×K and Z ∈ RK×N for a small positive integer K. This is cast
into the following problem,

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖PΩ (A−UZ)‖2F +

λ0

2

(
‖U‖2F + ‖Z‖2F

)}
, (E.1)

where PΩ is an masking operator over index set Ω which preserves the given matrix entries and sets
others to zero.. We require the following technical lemma.

Lemma E.1. Let g := 1
2 ‖PΩ (A−UZ)‖2F be as defined above, we have the following

∇Ug(A,UZ) = −PΩ(A−UZ)ZT , ∇Zg(A,UZ) = −UTPΩ(A−UZ)〈
(H1,H2),∇2g(A,UZ)(H1,H2)

〉
= ‖PΩ(UH2 + H1Z)‖2F − 2 〈PΩ(A−UZ),H1H2〉 .

Proof. With the Forbenius dot product, we have

‖PΩ(A−UZ)‖2F = 〈PΩ(A−UZ), PΩ(A−UZ)〉 .
In the above expression by substituting U with U + H1 and Z with Z + H2, we obtain

〈PΩ(A− (U + H1)(Z + H2)), PΩ(A− (U + H1)(Z + H2))〉 ,
= ‖PΩ(A−UZ)‖2F + ‖PΩ(UH2 + H1Z)‖2F
− 2 〈PΩ(A−UZ), PΩ(UH2 + H1Z)〉 − 2 〈PΩ(A−UZ), PΩ(H1H2)〉

where in the last term we ignored the terms higher than second order. Collecting all the first order
terms we have

− 2 〈PΩ(A−UZ), PΩ(UH2 + H1Z)〉
= −2 〈PΩ(A−UZ),UH2 + H1Z〉
= −2

〈
PΩ(A−UZ)ZT ,H1

〉
− 2

〈
UTPΩ(A−UZ),H2

〉
and similarly collecting all the second order terms we have

‖PΩ(UH2 + H1Z)‖2F − 2 〈PΩ(A−UZ), PΩ(H1H2)〉
= ‖PΩ(UH2 + H1Z)‖2F − 2 〈PΩ(A−UZ),H1H2〉

Thus the statement follows using the second order Taylor expansion.

Proposition E.1. Let g := 1
2 ‖PΩ (A−UZ)‖2F and h1, h2 be as defined as in (2.6). Then, for a certain

constant L ≥ 1, the function g satisfies L-smad property with respect to the following kernel generating
distance,

ha(U,Z) = 3h1(U,Z) + ‖PΩ(A)‖F h2(U,Z) .

Proof. With Lemma G.1 we obtain〈
(H1,H2),∇2g(A,UZ)(H1,H2)

〉
= ‖PΩ(UH2 + H1Z)‖2F − 2 〈PΩ(A−UZ),H1H2〉
≤ ‖H1Z + UH2‖2F − 2 〈PΩ(A−UZ),H1H2〉
≤ 2 ‖H1Z‖2F + 2 ‖UH2‖2F + 2 ‖PΩ(A)‖F ‖H1H2‖F + 2 ‖PΩ(UZ)‖F ‖H1H2‖F ,

≤ 2 ‖H1Z‖2F + 2 ‖UH2‖2F + 2 ‖PΩ(A)‖F ‖H1H2‖F + 2 ‖UZ‖F ‖H1H2‖F .

The rest of the proof is similar to Proposition 2.1.

26



Proposition E.2. Let g := 1
2 ‖PΩ (A−UZ)‖2F + λ0

2

(
‖U‖2F + ‖Z‖2F

)
and h1, h2 be as defined as in

(2.6). Then, for a certain constant L ≥ 1, the function g satisfies L-smad property with respect to the
following kernel generating distance,

ha(U,Z) = 3h1(U,Z) + (‖PΩ(A)‖F + λ0)h2(U,Z) .

The update steps are very similar as what we described earlier in Section C and D.

F Closed Form Solution with 5th-order Polynomial

The goal of this section is to show a case, where while obtaining the update step of BPG-MF we obtain
a 5th order polynomial equation, for which Newton based method solvers can be used. We later show
that we can obtain a cubic equation by slightly modifying the kernel generating distance. Let λ0 > 0
and we consider the following problem

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F +

λ0

2
‖U‖2F

}
. (F.1)

We set R1(U) = λ0
2 ‖U‖

2
F , R2(Z) = 0, g = 1

2 ‖A−UZ‖2F , f(U,Z) = λ0
2 ‖U‖

2
F and h = ha.

Proposition F.1. In BPG-MF, with above defined g, f, h the update steps in each iteration are given
by Uk+1 = − Pk

r1+λ0
, Zk+1 = −Qk

r1
where r1 ≥ 0 and satisfies

c1

(∥∥∥Qk
∥∥∥2

F
(r1 + λ0)2 +

∥∥∥Pk
∥∥∥2

F
r2

1

)
+ c2r

2
1(r1 + λ0)2 − r3

1(r1 + λ0)2 = 0 , (F.2)

with c1 = 3 and c2 = ‖A‖F .

Proof. The proof is similar to that of Proposition C.1. Consider the following subproblem

(Uk+1,Zk+1) ∈ argmin
(U,Z)∈RM×K×RK×N

{
λ0

2
‖U‖2F +

〈
Pk,U

〉
+
〈
Qk,Z

〉

+c1

(
‖U‖2F + ‖Z‖2F

2

)2

+ c2

(
‖U‖2F + ‖Z‖2F

2

) ,

Denote the objective in the above minimization problem as O(Uk,Zk). Now, we show that the following
holds

min
(U,Z)∈RM×K×RK×N

(
O(Uk,Zk)

)
≡ min

t1≥0,t2≥0

{
min

(U,Z)∈RM×K×RK×N ,‖U‖F=t1,‖Z‖F=t2

(
O(Uk,Zk)

)}
,

≡ min
t1≥0,t2≥0

{
min

(U,Z)∈RM×K×RK×N ,‖U‖F≤t1,‖Z‖F≤t2

(
O(Uk,Zk)

)}
.

where the first step is a simple rewriting of the objective and the second step follows as there is no
change in the constraint set and due to Lemma C.1, which is given precisely in Proposition C.1 where
the equivalence argument used for (C.4) and (C.3) holds here. Note that in the first step, we used
‖U‖F = t1 this results in deviation of value of c2 to c2 + λ0, corresponding to U (see below). We solve
for (Uk+1,Zk+1) via the following strategy. Denote

U∗1(t1) ∈ argmin
{〈

Pk,U1

〉
: U1 ∈ RM×K , ‖U1‖2F ≤ t1

}
,
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Z∗1(t2) ∈ argmin
{〈

Qk,Z1

〉
: Z1 ∈ RK×N , ‖Z1‖2F ≤ t2

}
.

Then we obtain (Uk+1,Zk+1) = (U∗1(t∗1),Z∗1(t∗2)), where t∗1 and t∗2 are obtained by solving the following
two dimensional subproblem

(t∗1, t
∗
2) ∈ argmin

t1≥0,t2≥0

{
min

U1∈RM×K

{〈
Pk,U1

〉
: ‖U1‖2F ≤ t1

}
+ min

Z1∈RK×N

{〈
Qk,Z1

〉
: ‖Z1‖2F ≤ t2

}
+c1

(
t21 + t22

2

)2

+ c2
t22
2

+ (c2 + λ0)
t21
2

}
.

Note that inner minimization subproblems can be trivially solved once we obtain U∗1(t1) and Z∗1(t2) via
Lemma C.1. Then the solution to the subproblem in each iteration as follows:

Uk+1 =

t
∗
1
−Pk

‖Pk‖
F

, for
∥∥Pk

∥∥
F
6= 0 ,

0 otherwise .

Zk+1 =

t
∗
2
−Qk

‖Qk‖
F

, for
∥∥Qk

∥∥
F
6= 0 ,

0 otherwise .

We solve for t∗1 and t∗2 with the following two dimensional minimization problem

argmin
t1≥0,t2≥0

{
−t1

∥∥∥Pk
∥∥∥
F
− t2

∥∥∥Qk
∥∥∥
F

+ c1

(
t21 + t22

2

)2

+ c2
t22
2

+ (c2 + λ0)
t21
2

}
.

Thus, the solutions t∗1 and t∗2 are the non-negative real roots of the following equations

−
∥∥∥Pk

∥∥∥
F

+ c1(t21 + t22)t1 + (c2 + λ0)t1 = 0 , (F.3)

−
∥∥∥Qk

∥∥∥
F

+ c1(t21 + t22)t2 + c2t2 = 0 . (F.4)

Further simplifications with t1 =
‖Pk‖

F
r1+λ0

and t2 =
‖Qk‖

F
r1

denoting r1 = c1(t21 + t22) + c2, then we have

r1 = c1

(∥∥Pk
∥∥
F

r1 + λ0

)2

+

(∥∥Qk
∥∥
F

r1

)2
+ c2

This will result in following 5th order equation,

c1

(∥∥∥Pk
∥∥∥2

F
r2

1 +
∥∥∥Qk

∥∥∥2

F
(r1 + λ0)2

)
+ c2r

2
1(r1 + λ0)2 − r3

1(r1 + λ0)2 = 0 .

F.1 Conversion to Cubic Equation

We set R1(U) = λ0
2 ‖U‖

2
F , R2(Z) = 0 and g = 1

2 ‖A−UZ‖2F . Denote f(U,Z) = λ0
2 ‖U‖

2
F , h(U,Z) =

ha(U,Z) + λ0
2 ‖Z‖

2
F . Note that such a g satisfies L-smad property with respect to h satisfies L-smad

trivially since only a quadratic term is added to ha.
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Proposition F.2. In BPG-MF, with the above defined g, f, h the update steps in each iteration are
given by Uk+1 = −rPk, Zk+1 = −rQk where r is the non-negative real root of

c1

(∥∥∥Qk
∥∥∥2

F
+
∥∥∥Pk

∥∥∥2

F

)
r3 + (c2 + λ0)r − 1 = 0 , (F.5)

with c1 = 3 and c2 = ‖A‖F .

Proof. The resulting subproblem is

(Uk+1,Zk+1) ∈ argmin
(U,Z)∈RM×K×RK×N

{〈
Pk,U

〉
+
〈
Qk,Z

〉

+c1

(
‖U‖2F + ‖Z‖2F

2

)2

+ (c2 + λ0)

(
‖U‖2F + ‖Z‖2F

2

) .

The rest of the proof is similar to Proposition C.1.

F.2 Extensions to Mixed Regularization Terms

Let λ0 > 0 and we consider the following problem

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F +

λ0

2
‖U‖2F + λ1 ‖Z‖1

}
. (F.6)

Note that the regularizer is a mixture of L1 and L2 regularization. The usual strategy with h = ha
would result in a fifth order polynomial. In order to generate a cubic equation, we use the same
strategy as given Section F.1. We set h(U,Z) = ha(U,Z) + λ0

2 ‖Z‖
2
F , g = 1

2 ‖A−UZ‖2F and f(U,Z) =
λ0
2 ‖U‖

2
F + λ1 ‖Z‖1.

Proposition F.3. In BPG-MF, with the above defined g, f, h the update steps in each iteration are
given by Uk+1 = −rPk, Zk+1 = rSλλ1

(
−Qk

)
where r is the non-negative real root of

c1

(∥∥∥Pk
∥∥∥2

F
+
∥∥∥Sλλ1 (−Qk

)∥∥∥2

F

)
r3 + (c2 + λ0)r − 1 = 0 , (F.7)

with c1 = 3 and c2 = ‖A‖F .

The proof is similar to Proposition C.1 and Proposition C.5.

G Technical Lemmas and Proofs

Before we proceed to the proof of Proposition 2.1 we require the following technical lemma.

Lemma G.1. Let g := 1
2 ‖A−UZ‖2F , then we have the following

∇g(A,UZ) =
(
−(A−UZ)ZT ,−UT (A−UZ)

)
〈
(H1,H2),∇2g(A,UZ)(H1,H2)

〉
= −2 〈A−UZ,H1H2〉+ 〈UH2 + H1Z,UH2 + H1Z〉 .

Proof. With the Forbenius dot product, we have

‖A−UZ‖2F = 〈A−UZ,A−UZ〉 .
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In the above expression by substituting U with U + H1 and Z with Z + H2, we obtain

〈A− (U + H1)(Z + H2),A− (U + H1)(Z + H2)〉 ,
= 〈A−UZ−UH2 −H1Z−H1H2,A−UZ−UH2 −H1Z−H1H2〉 ,
= 〈A,A〉 − 〈A,UZ〉 − 〈A,UH2〉 − 〈A,H1Z〉 − 〈A,H1H2〉 ,
− 〈UZ,A〉+ 〈UZ,UZ〉+ 〈UZ,UH2〉+ 〈UZ,H1Z〉+ 〈UZ,H1H2〉
− 〈UH2,A〉+ 〈UH2,UZ〉+ 〈UH2,UH2〉+ 〈UH2,H1Z〉+ 〈UH2,H1H2〉
− 〈H1Z,A〉+ 〈H1Z,UZ〉+ 〈H1Z,UH2〉+ 〈H1Z,H1Z〉+ 〈H1Z,H1H2〉
− 〈H1H2,A〉+ 〈H1H2,UZ〉+ 〈H1H2,UH2〉+ 〈H1H2,H1Z〉+ 〈H1H2,H1H2〉 .

Collecting all the first order terms we have

− 〈A,UH2〉 − 〈A,H1Z〉+ 〈UZ,UH2〉+ 〈UZ,H1Z〉
− 〈UH2,A〉+ 〈UH2,UZ〉 − 〈H1Z,A〉+ 〈H1Z,UZ〉
= −〈A,H1Z〉+ 〈UZ,H1Z〉 − 〈H1Z,A〉+ 〈H1Z,UZ〉
− 〈A,UH2〉+ 〈UZ,UH2〉 − 〈UH2,A〉+ 〈UH2,UZ〉 ,
= −2 〈A,H1Z〉 − 2 〈A,UH2〉+ 2 〈UZ,H1Z〉+ 2 〈UZ,UH2〉 ,
= −2tr((A−UZ)ZTHT

1 )− 2tr((A−UZ)HT
2 UT ) ,

= −2tr((A−UZ)ZTHT
1 )− 2tr(UT (A−UZ)HT

2 ) ,

and similarly collecting all the second order terms we have

− 〈A,H1H2〉+ 〈UZ,H1H2〉+ 〈UH2,UH2〉+ 〈UH2,H1Z〉
+ 〈H1Z,UH2〉+ 〈H1Z,H1Z〉 − 〈H1H2,A〉+ 〈H1H2,UZ〉
= −2 〈A−UZ,H1H2〉+ 〈UH2 + H1Z,UH2 + H1Z〉 .

Thus the statement follows using the second order Taylor expansion.

Lemma G.2. Given h1 :=
(
‖U‖2F+‖Z‖2F

2

)2

, then we have the following

∇h1(U,Z) =
((
‖U‖2F + ‖Z‖2F

)
U,
(
‖U‖2F + ‖Z‖2F

)
Z
)
,

〈
(H1,H2),∇2h1(U,Z)(H1,H2)

〉
= (‖H1‖2F + ‖H2‖2F )(‖U‖2F + ‖Z‖2F ) + 2

∥∥H1UT + ZHT
2

∥∥2

F

Proof. By the definition of Forbenius dot product, we have

1

4
‖U‖4F +

1

4
‖Z‖4F +

1

2
‖U‖2F ‖Z‖2F =

1

4
〈U,U〉2 +

1

4
〈Z,Z〉2 +

1

2
〈U,U〉 〈Z,Z〉
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Now, considering h1(U + H1,Z + H2) we have
1

4
〈U + H1,U + H1〉2 +

1

4
〈Z + H2,Z + H2〉2 +

1

2
〈U + H1,U + H1〉 〈Z + H2,Z + H2〉

=
1

4
(〈U,U〉+ 2 〈H1,U〉+ 〈H1,H1〉)2 +

1

4
(〈Z,Z〉+ 2 〈Z,H2〉+ 〈H2,H2〉)2

+
1

2
(〈U,U〉+ 2 〈H1,U〉+ 〈H1,H1〉) (〈Z,Z〉+ 2 〈Z,H2〉+ 〈H2,H2〉)

=
1

4

(
〈U,U〉2 + 4 〈H1,U〉2 + 〈H1,H1〉2 + 2 〈H1,H1〉 〈U,U〉

+4 〈U,U〉 〈H1,U〉+ 4 〈H1,U〉 〈H1,H1〉)

+
1

4

(
〈Z,Z〉2 + 4 〈Z,H2〉2 + 〈H2,H2〉2 + 2 〈H2,H2〉 〈Z,Z〉

+4 〈Z,H2〉 〈Z,Z〉+ 4 〈Z,H2〉 〈H2,H2〉)

+
1

2
(〈U,U〉 〈Z,Z〉+ 2 〈U,U〉 〈Z,H2〉+ 〈U,U〉 〈H2,H2〉)

+
1

2
(2 〈H1,U〉 〈Z,Z〉+ 4 〈H1,U〉 〈Z,H2〉+ 2 〈H1,U〉 〈H2,H2〉)

+
1

2
(〈H1,H1〉 〈Z,Z〉+ 2 〈H1,H1〉 〈Z,H2〉+ 〈H1,H1〉 〈H2,H2〉)

Collecting all the first order terms, we have

〈U,U〉 〈H1,U〉+ 〈Z,H2〉 〈Z,Z〉+ 〈U,U〉 〈Z,H2〉+ 〈H1,U〉 〈Z,Z〉 ,
and similarly collecting all the second order terms we have

1

4

(
4 〈H1,U〉2 + 2 〈H1,H1〉 〈U,U〉+ 4 〈Z,H2〉2 + 2 〈H2,H2〉 〈Z,Z〉

)
+

1

2
(〈U,U〉 〈H2,H2〉+ 4 〈H1,U〉 〈Z,H2〉+ 〈H1,H1〉 〈Z,Z〉) ,

=
1

2

(
2 〈H1,U〉2 + (〈H1,H1〉+ 〈H2,H2〉)(〈U,U〉+ 〈Z,Z〉)

+2 〈Z,H2〉2 + 4 〈H1,U〉 〈Z,H2〉
)
,

=
1

2

(
(〈H1,H1〉+ 〈H2,H2〉)(〈U,U〉+ 〈Z,Z〉) + 2(〈H1,U〉+ 〈Z,H2〉)2

)
.

Thus the statement follows.

Lemma G.3. Given h2(U,Z) :=
‖U‖2F+‖Z‖2F

2 , then we have the following

∇h2(U,Z) = (U,Z) ,〈
(H1,H2),∇2h2(U,Z)(H1,H2)

〉
= ‖H1‖2F + ‖H2‖2F .

Proof. Considering h2(U + H1,Z + H2), we have
1

2
〈U + H1,U + H1〉+

1

2
〈Z + H2,Z + H2〉

=
1

2
(〈U,U〉+ 2 〈U,H1〉+ 〈H1,H1〉) +

1

2
(〈Z,Z〉+ 2 〈Z,H2〉+ 〈H2,H2〉) .

Collecting all the first order terms we have

〈U,H1〉+ 〈Z,H2〉 ,
and similarly collecting all the second order terms we have

1

2
(〈H1,H1〉+ 〈H2,H2〉) .

Thus the statement holds.
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G.1 Proof of Proposition 2.1

Proof. We prove here the convexity of Lha − g for a certain constant L ≥ 1. With Lemma G.1 we
obtain〈

(H1,H2),∇2g(A,UZ)(H1,H2)
〉

= ‖H1Z + UH2‖2F − 2 〈A−UZ,H1H2〉 ,
≤ 2 ‖H1Z‖2F + 2 ‖UH2‖2F + 2 ‖A‖F ‖H1H2‖F + 2 ‖UZ‖F ‖H1H2‖F ,

≤ 2 ‖H1‖2F ‖Z‖2F + 2 ‖U‖2F ‖H2‖2F + 2 ‖A‖F ‖H1‖F ‖H2‖F + 2 ‖U‖F ‖Z‖F ‖H1‖F ‖H2‖F .

With AM-GM inequality, for non-negative real numbers a, b we have 2
√
ab ≤ a+ b, we have

2 ‖U‖F ‖Z‖F ‖H1‖F ‖H2‖F ≤ ‖H1‖2F ‖Z‖2F + ‖U‖2F ‖H2‖2F ,

and similarly we have

2 ‖A‖F ‖H1‖F ‖H2‖F ≤ ‖A‖F ‖H1‖2F + ‖A‖F ‖H2‖2F .

Using the above two inequalities, we obtain〈
(H1,H2),∇2g(A,UZ)(H1,H2)

〉
≤ (3 ‖Z‖2F + ‖A‖F ) ‖H1‖2F + (3 ‖U‖2F + ‖A‖F ) ‖H2‖2F . (G.1)

Now, considering the kernel generating distances, via Lemma G.2 and G.3 we obtain〈
(H1,H2),∇2h1(U,Z)(H1,H2)

〉
= 2 ‖H1U + H2Z‖2F + (‖U‖2F + ‖Z‖2F ) ‖H1‖2F + (‖U‖2F + ‖Z‖2F ) ‖H2‖2F
≥ ‖Z‖2F ‖H1‖2F + ‖U‖2F ‖H2‖2F ,

and 〈
(H1,H2),∇2h2(U,Z)(H1,H2)

〉
= ‖H1‖2F + ‖H2‖2F .

Now, it is easy to see that〈
(H1,H2),∇2ha(U,Z)(H1,H2)

〉
≥
〈
(H1,H2),∇2g(A,UZ)(H1,H2)

〉
.

A similar proof holds for the convexity of Lha + g, however the choice of L here need not be the same
as it is for Lha − g (see [9, Remark 2.1]).

H Additional Experiments and Implementation Details

H.1 Double Backtracking Implementation

This subsection where we provide certain crucial implementation details of CoCaIn BPG-MF algorithm,
is largely based on [46, Section 5.4]. Note that CoCaIn BPG-MF is a sequential algorithm in the sense
one can compute Y k

U, Y
k
Z first via the steps (2.8), (2.9) and (2.10). Then, the updates can be done

exactly like BPG-MF, where step-size depends on the parameter L̄k obtained via (2.12). In (2.10) it is
required to find Lk such that the following holds

Dg

(
Uk+1,Zk+1, Y k

U, Y
k
Z

)
≥ −LkDh

(
Uk+1,Zk+1, Y k

U, Y
k
Z

)
, (H.1)

similarly in (2.12) it is required to find L̄k such that

Dg

(
Uk+1,Zk+1, Y k

U, Y
k
Z

)
≤ L̄kDh

(
Uk+1,Zk+1, Y k

U, Y
k
Z

)
. (H.2)
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The above mentioned steps can be solved via the classical backtracking strategy for Lk and L̄k
individually, hence the name "double backtracking". We describe the backtracking procedure for Lk
and it is easy to extend to L̄k. The backtracking strategy involves a scaling parameter ν ≥ 1 and
an initialization point Lk,0 > 0 (preferably small) both chosen by the user and the parameter Lk is
set to the smallest element from the set

{
Lk,0, νLk,0, ν

2Lk,0, . . .
}
such that (2.10) holds. For L̄k one

requires to use (2.12) and also due to the additional restriction that L̄k ≥ L̄k−1 in CoCaIn BPG-MF it
is required to start the initialization L̄k,0 = L̄k−1.

H.2 Non-negative Matrix Factorization

We consider the same setting as the simple matrix factorization problem considered in 3, however
we set U = RM×K+ and Z = RK×N+ . We consider Medulloblastoma dataset [12] dataset with matrix
A ∈ R5893×34. As evident from Figure 4 PALM based methods outpeform BPG methods here. This
raises new open questions and hints at potential variants of BPG which are better suited for constrained
problems.
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Figure 4: Non-negative Matrix Factorization on Medulloblastoma Dataset [12].

H.3 Matrix Completion

The MovieLens datasets are essentially a matrix A ∈ RM×N , where M denotes the number of users
and N denotes the number of movies. Only a few non-zero entries are given and the entries denote the
ratings which the user has provided for a particular movie. The ratings can take the value between 1
and 5, which we refer to as scale. The exact statistics of all the MovieLens datasets are given below.

Dataset Users Movies Non-zero entries Scale

MovieLens100K 943 1682 100000 1-5
MovieLens1M 6040 3952 1000209 1-5
MovieLens10M 71567 10681 10000054 1-5

The plots provided for the matrix completion problem in Section 3 uses only 80% of the data and we
use the remaining 20% as test data in order to obtain the generalization performance to unseen matrix
entries with the resulting factors U ∈ RM×K and Z ∈ RK×N where we use K = 5. The predicted rating
to a particular i ∈ {1, 2, . . . ,M} and j ∈ {1, 2, . . . , N} is given by (UZ)ij . The test data is comprised
of matrix indices with unseen entries and we denote this set of indices as ΩT . A popular measure for
the test data is the Test RMSE, which is given by the following entity

Test RMSE =

√√√√ 1

|ΩT |
M∑
i=1

N∑
j=1

I(i,j)∈ΩT (Aij − (UZ)ij)
2
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where |ΩT | denotes the cardinality of the set ΩT and I(i,j)∈ΩT = 1 if the index pair (i, j) lies in the set
ΩT else it is zero. The Test RMSE comparisons for the MovieLens Dataset are given below in Figure 5.
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Figure 5: Test RMSE plot on MovieLens Datasets [30].

The above given figures show that the proposed methods BPG-MF-WB and CoCaIn BPG-MF are
competitive to PALM and iPALM. BPG-MF is slow in the beginning, however it is competitive to other
methods towards the end.

H.4 Time Comparisons

We provide time comparisons in Figures 6, 7, 8 for all the experimental settings mentioned in Section 3,
where we mention the dataset in the caption. Since, we used logarithmic scaling, we used an offset of
10−2 for all algorithms for better visualization.
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Figure 6: Time plots for Simple Matrix Factorization on Synthetic Dataset.
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Figure 7: Time plots for Non-negative Matrix Factorization on Medulloblastoma dataset
[12].
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Figure 8: Time plots for Matrix Completion on MovieLens Datasets [30].

As evident from the plots, the proposed variants BPG-MF-WB and CoCaIn BPG-MF are competitive
that PALM and iPALM. And, BPG-MF is mostly slow, due to constant step-size, which can be
potentially helpful when backtracking is computationally expensive.
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