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Abstract

We aim at computing the derivative of the solution to a parametric optimization
problem with respect to the involved parameters. For a class broader than that of
strongly convex functions, this can be achieved by automatic differentiation of itera-
tive minimization algorithms. If the iterative algorithm converges pointwise, then we
prove that the derivative sequence also converges pointwise to the derivative of the
minimizer with respect to the parameters. Moreover, we provide convergence rates
for both sequences. In particular, we prove that the accelerated convergence rate of
the Heavy-ball method compared to Gradient Descent also accelerates the derivative
computation. An experiment with L2-Regularized Logistic Regression validates the
theoretical results.

1 Introduction

For a sufficiently smooth function f : RN × RP → R, with N,P ∈ N, we consider the
parametric optimization problem:

min
x∈RN

f(x,u) , (P)

for parameters u ∈ RP . We assume that, for any u, this problem has a unique solution, which
defines the solution function u 7→ x∗(u), mapping a parameter u onto the solution x∗(u) of
(P). In this paper, we seek fast convergent iterative approximations of the derivative Dux

∗

of the solution function.
Problems of the form (P) are frequently encountered as lower (or inner) level problems in

bilevel optimization [10]. The complementing upper (or outer) level problem often minimizes
a loss function with respect to the parameter and the solution of the lower level problem. If
both levels are sufficiently smooth, gradient based schemes can be used to solve the bilevel
problem, which eventually requires to compute the derivative of the minimizer Dux

∗ (of the
lower level) with respect to the parameter. This strategy is used in image denoising [21, 11],
segmentation [27], data cleaning [14] and various other applications [24, 28] for parameter
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Related Work

learning, otherwise known as hyperparameter optimization in machine learning literature.
Maclaurin et al. [24] and Pedregosa [28] were able to optimize thousands of hyperparamters
using the so-called gradient based methods.
Another application is in grid search methods [5], for which the derivative value allows for
adaptable grid spacing.

In practice, at any u, the solution x∗ in (P) is approximated by a sequence (x(k))k∈N
generated by an iterative optimization algorithm that converges to x∗, for example, by
Gradient Descent:

x(k+1) = x(k) − α∇xf(x(k),u) ,

for k ∈ N. Here we start with x(0) ∈ RN and assume a constant step size α > 0. The above
update rule suggests that the iterates are dependent on u and under suitable conditions, the
convergence of the sequence (x(k)(u))k∈N is guaranteed for a given u. Since the algorithm
relies only on the gradient information, it is therefore called a first order method. Another
example of first order algorithms is the Heavy-ball method [29], also known as gradient
descent with momentum or inertial gradient descent. This algorithm often accelerates the
convergence of Gradient Descent and is known to be a so-called optimal algorithm for strongly
convex functions [25, 26]. As we are mainly interested in large scale problems (e.g. deep
learning), the high dimensionality prohibits the usage of second order algorithms such as
Newton’s method [22].

Since the minimizing sequence depends on u, we consider the derivative sequence
(Dux

(k)(u))k∈N for approximating Dux
∗. In particular, our contribution is the following:

• For a sequence (x(k)(u))k∈N generated by Gradient Descent, we prove pointwise conver-
gence and a convergence rate of the derivative sequence (Dux

(k)(u))k∈N to Dux
∗(u).

• For the Heavy-ball method, the optimal rate of convergence for (x(k)(u))k∈N is also
proved for the derivative sequence.

• We study memory efficient variants, which turn out to yield an additional speed ups.

1.1 Related Work

One of the first works on differentiating iterative algorithms for parametric minimization
is by Fischer [13], who studied a parametric linear system of equations. For the discussed
Jacobi method, the derivative sequence is shown to converge under the same conditions
as the original sequence. Gilbert [16] did the first comprehensive study of the problem.
He considered a parametric iterative process that approaches a fixed point, and concluded
convergence of the derivative sequence to the derivative of the fixed point. As an example,
he showed that these results hold for Newton’s method. He also suggested a technique to
improve the convergence speed of the derivative sequence for forward mode case. This was
further studied in detail by Christianson [8] who proposed an efficient method for computing
the derivative using the reverse mode automatic differentiation (AD).
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Problem Setting

Azmy [1] performed numerical experiments by using Gilbert’s efficient strategy for for-
ward mode AD and found significant improvement in the accuracy of the derivative with same
number of iterations as well as in computational power used in each iteration. Bartholomew–
Biggs [2] also used this strategy to speed up the convergence process. He performed numerical
experiments and applied the results to various practical applications. Schlenkric et al. [33]
integrated the reverse accumulation technique in ADOL-C [19] for computing the derivatives
of fixed-point iterations and used the package for analysis of a problem in Fluid Dynamics.

A question that remained unsolved in [16] was as to how to apply his results to a gener-
alized fixed-point iterations, for instance, the quasi-Newton methods. Rosemblun [31] per-
formed successful experiments on the Broyden’s method. Beck [3] studied these iterations
and provided theoretical results for convergence of the derivative sequences for such itera-
tions. The conditions that he imposed on the iterations were similar to those by Gilbert.
Griewank et al. [17] provided the convergence guarantees for quasi-Newton methods like
Broyden and DFP update rules. They pointed out that the rate and order of convergence
of derivative sequences at best matches that of original sequences.

Christianson [9] investigated this problem in a more general setting. He used reverse
accumulation to compute the derivative of an implicit function when any eversion process
is used to compute the value of the depend variable (not just the fixed-point iterations).
Griewank and Faure [18] studied a similar problem in the context of a dynamic system
where the state vector is given as an implicit function of the input vector and the derivative
of the output vector which is provided as a function of input and state vector, is required.
Bell and Burke [4] studied the problem of computing gradient and Hessian of optimal value
of a parametric objective function which is useful in saddle point problems or multilevel
optimization.

We study AD for a more specialized setting of sequences that are derived from a min-
imization problem. We explore this additional information and prove that the derivative
sequence generated by a so-called optimal algorithm, in the sense of [25] and [26], has the
same accelerated convergence rate as the original sequence.

2 Problem Setting

Given an open, non-empty and bounded set U ⊂ RP , we consider (P), where f is twice
continuously differentiable on RN × U . We further assume that for all u ∈ U , the function
f(·,u) is convex and a unique solution to (P) exists. This allows us to define a map x∗ :
U → X as x∗(u) = arg minx∈RN f(x,u) which is equivalently characterized by its optimality
condition:

∇xf(x∗(u),u) = 0 .

For differentiation of the left hand side, we require the following assumption:

Assumption 1. For all u ∈ U , the matrix ∇2
xf(x∗(u),u) is positive definite, and hence

invertible.
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Problem Setting

Example 1. If f(·,u) is strongly convex for all u ∈ U , then Assumption A1 is satisfied.
Therefore, our setting is more general.

Remark 2. The set U can be thought of as a neighborhood of a point for which we want to
compute the derivative.

From Assumption A1, we conclude that, for all u ∈ U , the function f(·,u) is m(u)-
strongly convex on a closed ε(u)-neighborhood Bε(u)(x

∗(u)) of x∗(u) with m(u) > 0.
This implies that ∇2

xf(x,u) is invertible on Y := {(x,u) ∈ RN × U : x ∈ Bε(u)(x
∗(u))}

and ‖∇2
xf(x,u)−1‖ ≤ 1/m(u) holds for all (x,u) ∈ Y . Moreover, for all u ∈ U , the

function f(·,u) is lower-level bounded so that for some fixed a ∈ RN , the set X (u) :=
lev≤f(a,u)f(·,u) ⊇ Bε(u)(x

∗) is bounded. Similarly, we define the bounded set Z := {(x,u) ∈
RN × U : x ∈ X (u)} in the domain of f . Therefore from extreme value theorem, for any
u ∈ U , there exists an upper bound, L(u) > 0, on the maximum eigenvalue of ∇2

xf(·,u) on
X (u). In other words, ∇xf(·,u) is locally L(u)-Lipschitz continuous for every u ∈ U and
we have:

m(u)I � ∇2
xf(x,u) � L(u)I , (1)

for every (x,u) ∈ Y . Similarly, there exists an upper bound κ > 0 on ‖∇xuf(x,u)‖ for all
(x,u) ∈ Z.

We state our second assumption for f which is motivated from the previous papers
[16, 17].

Assumption 2. The derivative map D(∇xf) of the gradient of f with respect to x is
Lipschitz continuous on Z with constant C ≥ 0.

We state following results for the solution map x∗ and its derivative.

Lemma 3. Under Assumptions A1 and A2, the function ϕ given by:

ϕ(x,u) = −∇2
xf(x,u)−1∇xuf(x,u) , (2)

is well-defined for all (x,u) ∈ Y . It is bounded by κ/m(u) and is C(κ + m(u))/m(u)2-
Lipschitz Continuous on Y . The function x∗ : U → X is continuously differentiable with
C(κ+m(u))2/m(u)3-Lipschitz Continuous derivative Dux

∗(u) = ϕ(x∗(u),u).

The proof is in Section A.1. An important consequence of the above lemma is the following
result which will be useful later.

Corollary 4. Under these conditions, for all u ∈ U , if a sequence (xk)k∈N lies in X (u) and
converges to x∗(u) at a linear rate, then the sequence ϕ(x(k),u) converges to Dux

∗(u) with
the same rate.
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Recap of AD

The proof is in Section A.2.
As discussed in the introduction, the objective of this paper is to estimate the derivative of

the minimizerDux
∗. In practice, however, direct computation ofDux

∗ is usually not possible
and we have to content ourselves with approximations. A successful strategy is provided by
automatic differentiation or AD, which we briefly recap in the following subsection.

2.1 Recap of AD

AD is an algorithmic way of differentiating a function given by a computer program at a
given value of the input variable. It comprises two modes, namely forward and reverse mode,
which we demonstrate in the context of our problem. We refer the reader to [20] for a detailed
account on AD and to [16, 3] for AD applied to an iteration mapping.

Let u ∈ U , we approximate x∗(u) using the following parametrized, continuously differ-
entiable iteration mapping g : RN × RP → RN :

x(k+1) := g(x(k),u) , (IM)

where x(0) ∈ RN and k ∈ N denotes the iteration counter. We assume that the sequence
(x(k)(u))k∈N generated by (IM) converges to x∗(u). We break the algorithm after a fixed
number of K ∈ N iterations to obtain x(K)(u), the suboptimal solution. Assuming x(0)

is independent of u, the map x(K) : U → RN is differentiable. We compute its derivative
using the two modes of AD (forward and reverse mode) and use standard dotted and barred
variable notation for these modes respectively. Also, following AD literature, if the original
variables lie in a space (e.g. RN), then the dotted variables lie in the same space RN whereas
the barred variables lie in the dual space L(RN ,R) (of linear mappings on RN).

The forward mode is straightforward. We start with u̇ := s for some s ∈ RP and perform
the following iterations for k = 0, . . . , K − 1:

ẋ(k+1) := Dxg(x(k),u)ẋ(k) +Dug(x(k),u)u̇ , (IM-F)

to obtain the sequence (ẋ(k))k∈[K] where [K] := {0, . . . , K} with ẋ(0) = 0, because Dux
(0) =

0. In forward mode, the original iterates are computed alongside the derivative iterates
without any overhead of memory.

The reverse mode, although a bit more complicated than the forward mode, proves to be
relatively computationally efficient when P is significantly larger thanN , for example, in deep
learning where it is known as back-propagation [32]. In this mode, we start with ū

(K)
0 = 0

and x̄(K) := rT for some r ∈ RN and perform the following iterations for n = 0, . . . , K − 1:

ū
(K)
n+1 := ū(K)

n + x̄(K−n)Dug(x(K−n−1),u)

x̄(K−n−1) := x̄(K−n)Dxg(x(K−n−1),u) ,
(IM-R)

to obtain the sequence (u
(K)
n )n∈[K]. In reverse mode, we perform the original iterations and

store the finite sequence (x(k))k∈[K] before going to derivative computation. Therefore mem-
orywise, it is less efficient than forward mode. Notice that, we use a different index to denote
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Inexact AD

the derivative sequence in reverse mode because we move in the opposite direction (back-
wards) to compute the derivative. The derivative information for forward and reverse mode

is contained within the terms ẋ(K) = Dux
(K)s and ū(K) := ū

(K)
K = rTDux

(K) respectively.
Gilbert [16] showed that for all u ∈ U , if the sequence (x(k)(u))k∈N lies in X (u), the

map Dg is Lipschitz on Z and the spectral radius ρ(Dxg(x∗(u),u)) < τ for some τ ∈ [0, 1),
then (x(k))k∈N converges like O(τ k) to x∗(u) and (ẋ(k))k∈N converges like O(kτ k) to ẋ∗(u) =
Dux

∗(u)s.
Similar result holds for reverse mode because of the equivalence of two modes. Thus,

the convergence of the derivative sequences is slightly slower as compared to that of original
sequences. Gilbert (for forward mode) and later Christianson [8] (for reverse mode) suggested
ways to get past this problem by performing AD of x(K) in an inexact manner. We briefly
discuss this approach in the following subsection.

2.2 Inexact AD

Consider again, the update rules for forward (IM-F) and reverse (IM-R) mode AD of our
iteration mapping given by (IM). The idea is to replace the intermediate iterates x(k) (resp.
x(K−n−1)) on the right side by the last iterate x(K) for forward (resp. reverse) mode case
for all k ∈ [K] (resp. n ∈ [K]). Since this approach is different from exact AD, we alter
our notation slightly. That is, we denote forward mode derivatives by hatted variables and
reverse mode derivatives by tilde’ed variables for this approach. Therefore, the modified
update rule for forward mode is given by:

x̂(k+1) := Dxg(x(K),u)x̂(k) +Dug(x(K),u)û (IM-FI)

and for reverse mode, by:

ũ
(K)
n+1 := ũ(K)

n + x̃(K−n)Dug(x(K),u)

x̃(K−n−1) := x̃(K−n)Dxg(x(K),u) ,
(IM-RI)

where we similarly set û := s and x̂(0) := 0 for forward mode and x̃(K) := rT and ũ
(K)
0 := 0

for reverse mode. These initializations are important and will be retained when we move to
gradient descent and the Heavy-ball method in Sections 3 and 4. Note that, it is possible
to perform (IM-FI) and (IM-RI) for k, n ≥ K, even though we only performed a fixed K
iterations of (IM). This is in contrast with (IM-F) and (IM-R).

Gilbert [16] argued that under his assumptions (Subsection 2.1, last paragraph), the
sequence (x̂)k∈N converges like O(τ k) to ϕ(x(K),u)s. The term ϕ(x(K),u) → Dux

∗ like
O(τK) as K → ∞ (Corollary 4). Similarly, Christianson [8] showed that under the same

assumptions, the sequence (ũ
(K)
n )n∈N converges like O(τ k) to rTϕ(x(K),u).

Remark 5. The reverse accumulation strategy of Christianson [8] is slightly different from
(IM-RI) but he also used the last iterate only in his technique. With little effort it is possible
to show that his results also extend to (IM-RI).

— 6 —



AD of Gradient Descent

The other advantage of using this approach is that we do not have any overhead of
memory in the reverse mode so that K can be as large as desired for both modes. Also,
we require less computational power for both modes because we only need to compute the
derivative Dg(x(K),u) once. The above discussion shows that, as compared to exact AD,
the inexact approach provides better convergence rate and computational performance and
is also memory efficient when using reverse mode.

In Section 3, we apply these results on gradient descent in the setting of (P). We show
convergence of the sequences generated by exact and inexact AD of gradient descent for
the objective functions that satisfy the assumptions defined at the start of this section. In
Section 4, we show that the sequences computed by exact and inexact AD of the Heavy-ball
method also converge to the desired limits for these functions. We infer from our results
that, whenever the Heavy-ball method accelerates the convergence of original sequence, the
derivative sequences are also accelerated. Finally, in Section 5, we show that these results
hold empirically as well.

3 AD of Gradient Descent

The update rule for gradient descent with constant step size α > 0 applied to (P) is given
by:

x(k+1) := x(k) − α∇xf(x(k),u) , (GD)

which we recognize as the special case of (IM) with g(x,u) = x − α∇xf(x,u). We define
the map RGD : RN × R→ RN×N as:

RGD(x, α) = I − α∇2
xf(x,u) (3)

and use it to summarize some properties of (GD) in the following lemma. This map will be
useful in proving the results for AD of (GD) as well.

Lemma 6. For any u ∈ U , if the sequence (x(k))k∈N is generated by (GD), then under
Assumptions A1 and A2 and for α ≤ 1/L(u), the sequence (f(x(k)),u)k∈N is decreasing and
converges to f(x∗(u),u). Also, the sequence (x(k))k∈N lies in X (u) and converges to x∗(u)
and there exists k0 ≥ 0 and qGD ∈ [0, 1), such that, for all k ≥ k0:

‖e(k)‖ ≤ qk−k0GD ‖e
(k0)‖ ,

where e(k) := x(k) − x∗.

The proof is in Section A.3.

Remark 7. If f(·,u) is m(u)-strongly convex for all u ∈ U , then the choice of step size
α = α∗GD := 2/(L(u) + m(u)) gives the best convergence rate of qGD = q∗GD := (L(u) −
m(u))/(L(u) +m(u)) for (GD) [30].
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AD of Gradient Descent

To perform AD on (GD), we similarly start with x(0) := a and break the algorithm after
K iterations. Therefore, the update rule for forward mode AD reads for k = 0, . . . , K − 1
as:

ẋ(k+1) := R
(k)
GDẋ

(k) − α∇xuf(x(k),u)u̇ (GD-F)

and for reverse mode as:

ū
(K)
n+1 := ū(K)

n − αx̄(K−n)∇xuf(x(K−n−1),u)

x̄(K−n−1) := x̄(K−n)R
(K−n−1)
GD ,

(GD-R)

where we set R
(k)
GD := RGD(x(k), α). The convergence results for exact AD are shown in the

following proposition.

Proposition 8. For any u ∈ U , if the sequence (ẋ(k))k∈N is generated by (GD-F), then
under Assumptions A1 and A2 and for α ≤ 1/L(u), it converges to ẋ∗ = Dux

∗s and there
exists k0 ≥ 0, C1 > 0 and qGD ∈ [0, 1), such that, for all k ≥ k0:

‖ė(k)‖ ≤ qk−k0GD ‖ė
(k0)‖+ C1(k − k0)qk−k0GD ‖e

(k0)‖ ,

where ė(k) := ẋ(k) − ẋ∗.

The proof is in Section A.4.

Remark 9.

• The convergence of the exact AD of (GD) is like O(kqGD(u)k).

• If f(·,u) is m(u)-strongly convex for all u ∈ U , then the optimal choice of step size
gives the best convergence rate of qGD = q∗GD for (GD-F) (Remark 7).

Similarly, we apply inexact AD on gradient descent to obtain the update rule for forward
mode as:

x̂(k+1) := R
(K)
GD x̂

(k) − α∇xuf(x(K),u)û . (GD-FI)

and for reverse mode as:

ũ
(K)
n+1 := ũ(K)

n − αx̃(K−n)∇xuf(x(K),u)

x̃(K−n−1) := x̃(K−n)R
(K)
GD .

(GD-RI)

In the following proposition, we state convergence results for inexact AD of (GD) and show
that it achieves faster convergence as compared to exact AD. We drop the argument (x(K),u)
for the maps ∇2

xf and ∇xuf for simplicity.
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AD of Heavy-ball Method

Proposition 10. For any u ∈ U , if the sequences (x̂(k))k∈N and (ũ
(K)
n )n∈N are generated by

(GD-FI) and (GD-RI) respectively with sufficiently large K ∈ N such that x(K) ∈ Bε(u)(x
∗),

then under Assumptions A1 and A2 and for α ≤ 1/L(u), these sequences converge to
ϕ(x(k),u)s and rTϕ(x(k),u) respectively and there exists qGD ∈ [0, 1) such that for all
k, n ∈ N, we have:

‖x̂(k) − ϕ(x(K),u)s‖ ≤ qkGD
κ

m(u)
‖s‖

and

‖ũ(K)
n − rTϕ(x(K),u)‖ ≤ qnGD

κ

m(u)
‖r‖ .

The proof is in Section A.5.

Remark 11.

• The convergence of the inexact AD of (GD) is like O(qGD(u)k) which is better than
that of exact AD (Remark 9).

• Again if f(·,u) is strongly convex for any u ∈ U , then the optimal choice of step size
gives best convergence rate of qGD = q∗GD for (GD-FI) and (GD-RI).

• The error bound in the above proposition shows that, with the estimate x(K) of the
minimizer, the sequences (x̂(k))k∈N and (ũ

(K)
n )n∈N are quite similar and difference comes

only due to different initializations of û and x̃(K). This effect is visible in Figure 1
(bottom row).

When using backtracking line search [7] for computing the step size α, its dependence on x(k)

for every k ∈ N makes (GD) non-differentiable. But this does not affect the differentiability
of the minimizer x∗(u). Following consequence of Proposition 10 shows that the inexact
approach is still usable in this case.

Corollary 12. If x(K) ∈ Bε(u)(x
∗) is generated by (GD) using backtracking line search, then

the sequences (x̂(k))k∈N and (ũ
(K)
n )n∈N computed with α set to the step size evaluated at the

last iteration of (GD) converge to ϕ(x(k),u)s and rTϕ(x(k),u) respectively.

The proof is in Section A.6.

4 AD of Heavy-ball Method

We now turn our attention to the Heavy-ball method applied to (P) whose update rule for
k = 0, . . . , K − 1, is given by:

x(k+1) = x(k) − α∇xf(x(k),u) + β(x(k) − x(k−1)) , (HB)
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AD of Heavy-ball Method

with initialization x(−1) := x(0) and constant step size α > 0 and momentum parameter
β ∈ [0, 1). We similarly define the map RHB : RN × R× R→ RN×N as:

RHB(x, α, β) = (1 + β)I − α∇2
xf(x,u) . (4)

and state the following lemma to outline some properties of (HB).

Lemma 13. For any u ∈ U , if the sequence (x(k))k∈N is generated by (HB), then under As-
sumptions A1 and A2 and for β ∈ [0, 1) and α ≤ 2(1+β)/L(u), the sequence (f(x(k)),u)k∈N
is decreasing and converges to f(x∗(u),u). Also, the sequence (x(k))k∈N lies in X (u) and
converges to x∗(u). In particular for all γ > 0, there exists c such that:

‖e(k)‖ ≤ c(qHB + γ)k−k0 ,

for some qHB ∈ [0, 1) and k ≥ k0 ≥ 0.

The proof is in Section A.7.

Remark 14. If f(·,u) is m(u)-strongly convex for all u ∈ U , then the choices of α =
α∗HB := 4/(

√
L(u) +

√
m(u))2 and β = β∗HB := (q∗HB)2 provides the best convergence rate

of qHB = q∗HB := (
√
L(u)−

√
m(u))/(

√
L(u) +

√
m(u)) for (HB) which is better than that

of (GD) [30].

We assign RHB(x(k), α, β) to R
(k)
HB and start with ẋ(−1) := ẋ(0) to get the update rule for

forward mode AD for k = 0, . . . , K − 1 as:

ẋ(k+1) := R
(k)
HBẋ

(k) − α∇xuf(x(k),u)u̇− βẋ(k−1) , (HB-F)

For reverse mode AD we have for n = 0, . . . , K − 1:

ū
(K)
n+1 := ū(K)

n − αx̄(K−n)∇xuf(x(K−n−1),u)

x̄(K−n−1) := x̄(K−n)R
(K−n−1)
HB − βx̄(K−n+1) ,

(HB-R)

where we set x̄(K+1) := 0. We state similar results for the convergence of AD of the Heavy-
ball method.

Proposition 15. For any u ∈ U , if the sequence (ẋ(k))k∈N is generated by (HB-F), then
under Assumptions A1 and A2 and for β ∈ [0, 1) and α ≤ 2(1 + β)/L(u), it converges to
ẋ∗ = Dux

∗s. In particular, for all γ > 0, there exist c1, c2 such that:

‖ė(k)‖ ≤ c1(qHB + γ)k−k0 + C1c2(k − k0)(qHB + γ)k−k0 ,

for some qHB ∈ [0, 1), C1 ≥ 0 and k ≥ k0 ≥ 0.

The proof is in Section A.8.
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Experiments

Remark 16. Again, If f(·,u) is m(u)-strongly convex for all u ∈ U , the optimal choices of
α and β provides the best convergence rate of qHB = q∗HB for (HB-F) which is better than
that of (GD-F) (Remark 9).

We give similar update rules for inexact AD of the Heavy-ball method as well. For
forward mode, we set x̂(−1) := x̂(0) and update the new iterates for k = 0, . . . , K − 1 as:

x̂(k+1) := R
(K)
HBx̂

(k) − α∇xuf(x(K),u)û− βx̂(k−1) (HB-FI)

and for reverse mode, we set x̃(K+1) := 0 and perform following iterations for n = 0, . . . , K−1:

ũ
(K)
n+1 := ũ(K)

n − αx̃(K−n)∇xuf(x(K),u)

x̃(K−n−1) := x̃(K−n)R
(K)
HB − βx̃

(K−n+1) .
(HB-RI)

We show that inexact AD of (HB) also converges to the desired limits.

Proposition 17. For any u ∈ U , if the sequences (x̂(k))k∈N and (ũ
(K)
n )n∈N are generated by

(HB-FI) and (HB-RI) respectively with sufficiently large K ∈ N such that x(K) ∈ Bε(u)(x
∗),

then under Assumptions A1 and A2 and for β ∈ [0, 1) and α ≤ 2(1+β)/L(u), these sequences
converge to ϕ(x(k),u)s and rTϕ(x(k),u) respectively. In particular, for all γ > 0, there exist
c such that:

‖x̂(k) − ϕ(x(K),u)s‖ ≤ c(qHB + γ)k
κ

m(u)
‖s‖

and

‖ũ(k)
n − rTϕ(x(k),u)‖ ≤ c(qHB + γ)n

κ

m(u)
‖r‖ ,

for some qHB ∈ [0, 1) and for every k, n ∈ N.

The proof is in Section A.9.

Remark 18. Arguments made for inexact AD of gradient descent in Remark 11 similarly
extend to (HB-FI) and (HB-RI).

Corollary 19. With the inexact scheme, it is possible to compute the estimate x(K) using
one algorithm and compute the derivative iterates using the other.

The proof is in Section A.10.

5 Experiments

Given a feature matrix A ∈ RM×N with rows a1, . . . ,aM ∈ RN and target vector b ∈
{0, 1}M , we consider a regularized logistic regression problem with objective function
fN : RN × RN

++ → R defined as:
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Experiments

fN(x,u) :=
M∑
i=1

log(1 + exp(−bi〈ai,x〉)) +
1

2

N∑
j=1

uix
2
i ,

for u = (u1, . . . , uN) ∈ RN
++. Moreover, we define the scalar variant f1(x, u) that assumes

all parameters to be identical u1 = . . . = uN , which we identify with a single parameter
u ∈ R++.

It can be shown that for a given u (resp. u), f1(·, u) (resp. fN(·,u)) is m-strongly convex
with m = u (resp. m = minj≤N uj) and has L-Lipschitz gradient with L = ‖A‖22 + u (resp.
L = ‖A‖22 +maxj≤N uj). We can also show that the derivative maps D(∇xf1) and D(∇xfN)
are Lipschitz continuous with constant C ∼ O(‖A‖3). This shows that the assumptions
stated in Section 2 are satisfied for both functions.

We compute the derivative of the minimizers of f1 and fN with respect to their regular-
ization parameters using the algorithms discussed in this paper. The goal is to validate our
theoretical results empirically and, in particular, emphasize the practical advantage of using
accelerated algorithms and the inexact approach: The original and the derivative sequence
converge faster.

Since we do not have access to the analytical form for the minimizer, we find a good
estimate by first applying gradient descent. Once we are very close to the minimizer, we
apply Newton’s method. Then (2) is used to compute a good estimate for the derivative of
the minimizer. All the experiments are performed on Banknote Authentication Dataset [12]
without any feature transformation and data augmentation.

For f1, we set u = 2 and for fN we choose uj ∼ U(0, 5) for all j ∈ [N ]. We run the original
algorithms (GD) and (HB) for K = 6000 iterations and evaluate the exact derivative algo-
rithms (GD-F), (GD-R), (HB-F) and (HB-R) and the inexact derivative algorithms (GD-FI),
(GD-RI), (HB-FI) and (HB-RI). Except for (GD-F) and (HB-F), which are run alongside
their original counterparts, the derivative algorithms are executed after the termination of
original algorithms for K iterations.

For original iterations, we generate finite sequences (x(k))k∈[K] by starting with x(0) ∈ RN .
For forward mode derivative iterations, we start with u̇ and û set to IN and generate
sequences (ẋ(k))k∈[K] and (x̂(k))k∈[K] which lie in RN×N . We might ask that these variables
were introduced as vectors in previous sections but it can be seen that, computationally, this
methodology makes sense and we expect the sequences to converge to the derivative of the
minimizer. Similarly for reverse mode iterations, we start with x̄(K) and x̃(K) set to IN and
generate finite sequences (x̄

(K)
n )n∈[K] and (x̃

(K)
n )n∈[K].

The importance of optimal step size and momentum selection is explored by two differ-
ent choices: α∗GD and α∗GD/3 for gradient descent and (α∗HB, β

∗
HB) and (α∗HB/3, β

∗
HB/3) for

the Heavy-ball method (see Remarks 7 and 14). Since suboptimal algorithm parameters
slow down the convergence process for original iterations, we expect the same for derivative
iterations.

In Figure 1, we plot the error norm against the number of iterations for optimal algorithm
parameters. In Table 1, we also list the final accuracy of all the sequences after K iterations,
including the results for suboptimal algorithm parameters.
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Figure 1: Errors for original (upper row) and derivative (lower row) sequences computed for f1 (left column)
and fN (right column) using optimal algorithm parameters. The original and derivative sequences converge
similarly for GD and HB. Moreover, the well-known advantage of acceleration of HB compared with GD is
also reflected in the derivative sequences.

The number of iterations required to get to the desired accuracy for the derivative se-
quences depends on the original sequence. For gradient descent, the original sequence takes
time to get to the desired accuracy and so do the derivative sequences. For the Heavy-ball
method, convergence is much faster for both type of sequences. Notice also the difference
between the convergence of the derivative sequences. When performing the automatic dif-
ferentiation on the sequences in a naive way, i.e., by using (GD-F), (GD-R), (HB-F) and
(HB-R), the resulting sequences (Figure 1, lower row) reach their respective limit points
relatively slower than their original counterparts (Figure 1, upper row). If we use the faster
algorithms however, i.e. those given by (GD-FI), (GD-RI), (HB-FI) and (HB-RI), to com-
pute the derivative sequences (Figure 1, lower row), we find that the number of iterations
taken by the original and derivative sequences to get to the desired accuracy is almost the
same.

From the above experiments, we see that the behaviour of the original sequences is
imitated by that of the derivative sequences. When we use the suboptimal algorithm pa-
rameters, we see that original sequences converge at a slower rate. This also leads to slower
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Table 1: Accuracy of the algorithms after K = 6000 iterations computed for f1 and fN using optimal and
suboptimal algorithm parameters.

Algorithm f1 (optimal) f1 (suboptimal) fN (optimal) fN (suboptimal)

(GD) 9× 10−5 0.06 3× 10−5 0.04

(HB) 4× 10−9 0.01 3× 10−10 0.006

(GD-F) 6× 10−4 0.1 9× 10−5 0.04

(GD-R) 6× 10−4 0.1 9× 10−5 0.04

(HB-F) 5× 10−8 0.03 2× 10−9 0.01

(HB-R) 5× 10−8 0.03 2× 10−9 0.01

(GD-FI) 1× 10−4 0.06 2× 10−5 0.02

(GD-RI) 1× 10−4 0.06 2× 10−5 0.02

(HB-FI) 5× 10−9 0.01 2× 10−10 0.003

(HB-RI) 5× 10−9 0.01 2× 10−10 0.003

convergence for the derivative sequences. We also see that by replacing gradient descent with
the Heavy-ball method, both the original and derivative sequences are provoked to converge
with a better rate.

6 Conclusion

The derivative of the minimizer of a parametric objective function, under certain conditions,
can be obtained by differentiating the estimate of the minimizer obtained through gradient
descent or the Heavy-ball method. The Heavy-ball method accelerates the convergence of
iterates for strongly convex functions. This acceleration is also reflected in the derivative
sequences. The derivative computation process can be optimized in terms of time and
memory by using the final iterate only, which also results in faster convergence.

A Proofs

A.1 Proof of Lemma 3.

Proof. The fact that ϕ is well-defined and bounded on Y follows from the boundedness of
∇2

xf and ∇xuf . The Lipschitz continuity of ϕ and Dux
∗ on Y and U respectively can be

proved by using Theorem 2.2 in [8].

A.2 Proof of Corollary 4.
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Proof of Lemma 6.

Proof. Since (xk)k∈N converges to x∗, there exists k0 ≥ 0 such that x(k) lies in Bε(u)(x
∗(u))

for all k ≥ k0. Thus, from the Lipschitz continuity of ϕ on Y , we have:

‖ϕ(x(k),u)− ϕ(x∗,u)‖ ≤ C
κ+m(u)

m(u)2
‖x(k) − x∗‖ ,

for all k ≥ k0.

A.3 Proof of Lemma 6.

Proof. Since f(·,u) is convex and ∇xf is L(u)-Lipschitz continuous on Z, therefore, for all
u ∈ U and α ≤ 1/L(u), the first part of the proposition follows from [6] and Induction. In
particular we have:

f(x(k),u)− f(x∗(u),u) ≤ 1

2αk
‖e(0)‖2 = O(

1

k
) , (5)

for k ∈ N. Thus the sequence (x(k))k∈N lies in X (u) and from the continuity of f and
Assumption A1, converges to x∗(u). This implies that, there exists δ(u) > 0 such that
after at most k0 ∼ O(1/δ(u)) iterations of (GD), the sequence (x(k))k∈N lies in the set
lev≤f(x∗,u)+δ(u)f(·,u) ⊆ Bε(u)(x

∗) and we have for all k ≥ k0:

e(k+1) = e(k) − α(∇xf(x(k),u)−∇xf(x∗(u),u))

= Rg(z
(k))e(k) .

Because α ≤ 1/L(u) and from Equation (1), the term given by:

qGD(u) := sup{‖RGD(x, α)‖ : x ∈ Bε(u)(x
∗(u))} . (6)

lies in [0, 1) and the inequality follows.

A.4 Proof of Proposition 8.

Proof. We simplify the term ė(k+1) as:

ė(k+1) = R
(k)
GDẋ

(k) − α∇xuf(x(k),u)u̇−R∗GDẋ∗ + α∇xuf(x∗,u)u̇

= R
(k)
GDė

(k) +
(
D(∇xf)(x(k),u)−D(∇xf)(x∗,u)

)
(ẋ∗, s) ,

where we assigned RGD(x∗, α) to R∗GD. Rearranging the expression on the right hand side,
taking the norm and recursive expansion yields the desired inequality for k ≥ k0 and C1 :=
C‖s‖(κ+m(u))/m(u).
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Proof of Proposition 10.

A.5 Proof of Proposition 10.

Proof. The difference of the sequence generated by (GD-FI) with ϕ(x(k),u)s can be simpli-
fied as:

x̂(k+1) − ϕ(x(K),u)s = R
(K)
GD

(
x̂(k) − ϕ(x(K),u)s

)
.

After taking the norm, expanding the expression on the right recursively and using Equa-
tion (6), we arrive at the first inequality. For (GD-RI), we have:

ũ
(K)
n+1 = ũ(K)

n − αx̃(K−n)∇xuf

= ũ
(K)
0 − α

( n∑
i=0

x̃(K−n+i)
)
∇xuf

= −αx̃(K)
( n∑
i=0

(R
(K)
HB)i

)
∇xuf

= −αrT (IN −R(K)
GD)−1

(
IN − (R

(K)
GD)n+1

)
∇xuf

= −rT∇2
xf
−1(IN − (R

(K)
GD)n+1

)
∇xuf

= rTϕ(x(K),u) + rT∇2
xf
−1(R

(K)
GD)n+1∇xuf .

By taking the norm of the error term ũ
(K)
n − rTϕ(x(K),u) from above equation and using

Equation (6), we get the second inequality.

A.6 Proof of Corollary 12.

Proof. x(K) ∈ Bε(u)(x
∗) implies α ≤ 1/L(u) is satisfied for our choice of step size from

Equation (1) and [7]. Since the conditions of Proposition 10 are satisfied, the proof follows.

A.7 Proof of Lemma 13.

Proof. For all u ∈ U and for given choices of α and β, the first part of the proof follows
from (1) and [30]. This implies that x(k) ∈ X (u) for all k ∈ N. Also the sequence (x(k))k∈N
converges to x∗(u) from the continuity of f and uniqueness of x∗(u). Therefore, there exists
k0 ≥ 0 such that for all k ≥ k0 we have x(k) ∈ Bε(u)(x

∗). From mean value theorem, the
error term e(k+1) is simplified as:

e(k+1) = (1 + β)x(k) − α(∇xf(x(k),u)−∇xf(x∗,u))− βx(k−1) − x∗

= RHB(z(k), α, β)e(k) − βe(k−1) ,

for some z(k) ∈ conv{x(k),x∗}. We assign y(k) := (x(k+1),x(k)) and y∗ := (x∗,x∗) and
compute the error term for this sequence as:
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Proof of Proposition 15.

y(k) − y∗ = (e(k+1), e(k))

= (RHB(z(k), α, β)e(k) − βe(k−1), e(k))

= T (z(k), α, β)(y(k−1) − y∗) ,

(7)

where we define T : RN × R× R→ R2N×2N , a matrix-valued function as:

T (x, α, β) =

[
RHB(x, α, β) −βIN

IN 0N

]
. (8)

Here we use subscripts to denote the order of idenitiy and zero matrices to avoid any confu-
sion. Let ρ(A) be the spectral radius of matrix A, then from [30], (1) and the compactness
of our ε(u)-neighbourhood, qHB(u) defined by:

qHB(u) := sup{ρ(T (x, α, β)) : x ∈ Bε(u)(x
∗)} , (9)

lies in [0, 1) for every u ∈ U and given choices of α and β. From Gelfand’s relation between
spectral radius and the norm of a matrix [15], we arrive at our result by taking the norm of
the last identity in (7) and recursively expanding up to k0.

A.8 Proof of Proposition 15.

Proof. We assign the expression RHB(x∗, α, β) to R∗HB and compute

R
(k)
HBẋ

(k) −R∗HBẋ∗ = (1 + β)ė(k) − α
(
∇2

xf(x(k),u)ẋ(k) −∇2
xf(x∗,u)ẋ∗

)
= R

(k)
HBė

(k) − α
(
∇2

xf(x(k),u)−∇2
xf(x∗,u)

)
ẋ∗ ,

from which we obtain the following error term:

ė(k+1) = R
(k)
HBẋ

(k) −R∗HBẋ∗ − α(∇xuf(x(k),u)−∇xuf(x∗,u))u̇− βė(k−1)

=
[
R

(k)
HB −βIN

]
ẏ(k−1) − α

(
D(∇xf)(x(k),u)−D(∇xf)(x∗,u)

)
(ẋ∗, u̇) ,

where we similarly define ẏ(k) − ẏ∗ := (ė(k+1), ė(k)). Thus the error term for this sequence is
given by:

ẏ(k) − ẏ∗ = T (k)(ẏ(k−1) − ẏ∗)− α
(
E(k) − E∗

)
(ẋ∗, u̇) , (10)

where we set T (k) := T (x(k),α,β, α, β) and define the map E : RN ×RP → L(RN ×RN ,RN ×
RP ) as:

E(x,u) :=

[
D(∇xf)(x,u)

0N,N+P

]
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Proof of Proposition 17.

and assign E(x(k),u) to E(k) and E(x∗,u) to E∗. Now taking the norm and recursively
expanding the term on the right hand side of Equation (10), we arrive at our result by using
the same argument we made in the proof of Lemma 13.

A.9 Proof of Proposition 17.

Proof. We will work through the proof for both sequences in a similar fashion as in Propo-
sition 10. We first consider the forward mode case where the error for x̂(k) is given by:

x̂(n+1) − ϕ(x(k),u)s = R
(k)
HB

(
x̂(n) − ϕ(x(k),u)s

)
− β

(
x̂(n−1) − ϕ(x(k),u)s

)
.

We can use it to compute the error term for ŷ(k) := (x̂k+1, x̂k) as:

ŷ(k) −

[
ϕ(x(K),u)s

ϕ(x(K),u)s

]
=

[
x̂(k+1) − ϕ(x(K),u)s

x̂(k) − ϕ(x(K),u)s

]

=

[
R

(K)
HB −βIN
IN 0N

][
x̂(k) − ϕ(x(K),u)s

x̂(k−1) − ϕ(x(K),u)s

]

= T (K)
(
ŷ(k−1) −

[
ϕ(x(K),u)s

ϕ(x(K),u)s

])
= −

(
T (K)

)k [ϕ(x(K),u)s

ϕ(x(K),u)s

]
,

where in the last equality we used ŷ(0) = (x̂0, x̂−1) = 0. Because x(k) ∈ Bε(u)(x
∗), we use

the argument provided in the proof of Lemma 13 to arrive at the first inequality.
We now define ỹ(K−n−1) := (x̃(K−n−1), x̃(K−n))T which is computed for n = 0, . . . , K − 1

as:

ỹ(K−n−1) =

[
x̃(K−n−1)

x̃(K−n)

]T

=

[
x̃(K−n)R

(K)
HB − βx̃(K−n+1)

x̃(K−n)

]T

=

[
x̃(K−n)

x̃(K−n+1)

]T [
R

(K)
HB IN

−βIN 0N

]
= ỹ(K−n)(T (K))T .

We also compute ṽ
(K)
n+1 := (ũ

(K)
n+1, ũ

(K)
n )T for n = 0, . . . , K − 1 as:
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Proof of Proposition 17.

ṽ
(K)
n+1 =

[
ũ

(K)
n+1

ũ
(K)
n

]T

=

[
ũ

(K)
n − αx̃(K−n)∇xuf

ũ
(K)
n−1 − αx̃(K−n+1)∇xuf

]T

=

[
ũ

(K)
n+1

ũ
(K)
n

]T
− α

[
x̃(K−n−1)

x̃(K−n)

]T [
∇xuf 0N,P

0N,P ∇xuf

]
= ṽ(K)

n − αỹ(K−n)S(K) ,

where S : RN × RP → L(RN × RN ,RP × RP ) is defined as:

S(x,u) =

[
∇xuf(x,u) 0N,P

0N,P ∇xuf(x,u)

]
,

so that S(x(K),u) is assigned to S(K). Putting the expressions for ṽ
(K)
n+1 and ỹ(K−n−1) together

we notice that they are equivalent to those in (GD-RI). We can therefore simplify ṽ
(K)
n+1 as:

ṽ
(K)
n+1 = ṽ(K)

n − αỹ(K−n)S(K)

= ṽ
(K)
0 − α

( n∑
i=0

ỹ(K−n+i)
)
S(K)

= −αỹ(K)
( n∑
i=0

(
T (K)T

)i)
S(K)

= −α(r, 0)T (I2N − T (K)T )−1
(
I2N

− (T (K)T )n+1
)
S(K) ,

where our starting points are ṽ
(K)
0 := 0 and ỹ(K) := (r, 0)T .

Now in order to compute the inverse of the matrix

I2N − T (K)T =

[
α∇2

xf − βIN −IN
βIN IN

]
,

we use the results given in Theorem 1 of Lu and Shiou [23]. The Schur complement of IN
(bottom right block in the above matrix) is (α∇2

xf − βIN) − (−IN)(IN)−1(β)IN = α∇2
xf

which is invertible and we have:

(r, 0)T (I2N − T (K)T )−1 =
1

α
(rT∇2

xf
−1, rT∇2

xf
−1)T .

We can substitute this term in the expression obtained above for ṽ
(K)
n+1 and obtain
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Proof of Corollary 19.

ṽ(K)
n = −

[
rT∇2

xf
−1

rT∇2
xf
−1

]T (
I2N − (T (K)T )n

)
S(K)

=

[
rTϕ(x(K),u)

rTϕ(x(K),u)

]T
+

[
rT∇2

xf
−1

rT∇2
xf
−1

]T
(T (K)T )nS(K) .

Since the matrix S(x,u) has same singular values as ∇xuf(x,u), the second inequality
follows.

A.10 Proof of Corollary 19.

Proof. The proof follows from the fact that, in Propositions 10 and 17, we only assume that
the estimate x(K) lies in Bε(u)(x

∗). We don’t put any constraint on how it is computed.
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