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ABSTRACT

In order to minimize a differentiable geodesically convex function, we study a second-
order dynamical system on Riemannian manifolds with an asymptotically vanishing
damping term of the form α/t. For positive values of α, convergence rates for the
objective values and convergence of trajectory is derived. We emphasize the crucial role
of the curvature of the manifold for the distinction of the modes of convergence. There
is a clear correspondence to the results that are known in the Euclidean case. When
α is larger than a certain constant that depends on the curvature of the manifold, we
improve the convergence rate of objective values compared to the previously known
rate and prove the convergence of the trajectory of the dynamical system to an element
of the set of minimizers. For α smaller than this curvature-dependent constant, the best
known sub-optimal rates for the objective values and the trajectory are transferred to
the Riemannian setting. We present computational experiments that corroborate our
theoretical results.

1 Introduction

A perspective on constrained optimization problems that has gained substantial attention is the use
of intrinsic geometry of the underlying space on which the optimization problem is posed. A typical
problem is of the form

min
x∈M

f(x) , (1)
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where M is a Riemannian manifold and f : M → R is geodesically convex. For the special case when
M = Rn, (1) becomes a smooth convex unconstrained optimization problem. Several constrained
optimization problems in different fields of science and engineering can be posed as optimization prob-
lems on Riemannian manifolds. This includes the eigenvalue problem (Golub and Van Loan, 2013),
the Karcher-mean problem (Bini and Iannazzo, 2013), semidefinite programming (Burer and Mon-
teiro, 2005), Gaussian Mixture Models (Hosseini and Sra, 2015), dictionary learning (Sun et al., 2016),
matrix completion (Vandereycken, 2013) and statistical shape analysis (Ring and Wirth, 2012) among
others. For a more comprehensive review, see Boumal (2023). Solving (1) is challenging in general.
Our interest in this paper is in the first-order methods (those using the Riemannian gradient of f ) to
solve (1). For instance, the Riemmanian gradient descent has been proposed and studied in detail, see
e.g., Udriste (1994) and Zhang and Sra (2016). As a natural progression, more recently, first-order
accelerated versions have also been studied on Riemannian manifolds, see e.g., Ahn and Sra (2020);
Alimisis et al. (2020, 2021). Motivated from the Euclidean setting, we aim to understand the (fast)
convergence of first-order algorithms on problems posed over a manifold, such as (1). To this end, we
take inspiration from Nesterov’s accelerated gradient algorithm (Nesterov, 1983).

For convex optimization problems in the Euclidean setting, that is, when the objective function f is
a convex function on Rn, Nesterov (1983) improved the rate of convergence of vanilla gradient de-
scent from O

(
1
k

)
to O( 1

k2
), where k denotes the iteration number. In fact, this rate was proved to be

optimal among all first-order methods for convex functions with Lipschitz conitnuous gradient (Nes-
terov, 2018). This result is a milestone in the history of convex optimization and continues to be
significant with the continually growing size and scale of practical problems. However, the analysis
of Nesterov’s method is non-trivial. As a result, several attempts have been made to understand the
underlying mathematical structure of accelerated methods and come up with different perspectives to
obtain new insights. One way of understanding acceleration is to look at the continuous-time dynamics
of optimization algorithms, which provides powerful analytic tools.

Su et al. (2014) proposed the following second-order in time ordinary differential equation (dynamical
system) towards understanding Nesterov’s accelerated gradient algorithm in the Euclidean case

Ẍ(t) +
α

t
Ẋ(t) +∇f(X(t)) = 0 , (2)

for t > 0 and α > 0, with initial conditions X(0) = x0 and Ẋ(0) = 0.

In this dynamical system, Ẋ and Ẍ denote the velocity and acceleration of the trajectory X respectively.
A curve X : [0,∞) → Rn such that X ∈ C2(0,∞) ∩ C1[0,∞) is called a solution if it satisfies (2) for
t > 0 and the stated initial conditions. Su et al. (2014) prove the existence and uniqueness of such a
solution for (2).

A proper discretization of (2) gives the Nesterov’s accelerated gradient method. This system is similar
to the classical spring–mass–damper system and equates force given as the product of unit mass and
acceleration with the gradient of a convex potential function and the damping force proportional to
the velocity and an asymptotically vanishing viscous damping coefficient α/t. In the absence of the
damping term, (2) is a conservative system and therefore the presence of damping is crucial for the
system to be useful to solve an optimization problem. For (2), Su et al. (2014) prove an accelerated
convergence rate of f(X(t))−minf = O

(
1
t2

)
for α ≥ 3 and this has triggered an immense follow up

work in the Euclidean and Hilbertian setting.
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In this vast array of works that follow Su et al. (2014), we focus on the contributions that form the
basis of this work. In particular, May (2017) proves the convergence rate of objective values for (2)
with α > 3 is strictly faster than O

(
1
t2

)
and that f(X(t))−minf = o( 1

t2
). In infinite dimensional real

Hilbert spaces, Attouch et al. (2018) show weak convergence of the trajectory to a point in the set of
minimizers of f (argminf ) provided the latter is non-empty. Attouch and Peypouquet (2016) prove
little-o convergence rate for objective values and the convergence of iterates in the discrete setting.
Attouch et al. (2019) analyze (2) for the case 0 < α ≤ 3. They show that the rate of convergence
of objective values undergoes a phase transition and that α = 3 is the smallest constant for which the
rate of convergence of objective values is O

(
1
t2

)
. A similar analysis was carried out by Vassilis et al.

(2018) and Apidopoulos et al. (2020) in the case of differential inclusion problem modeling the FISTA
algorithm and the Forward–Backward algorithm.

It is natural to ask whether the above results can be extended to (1) when M is a Riemannian mani-
fold. The continuous-time dynamical systems perspective for optimization on Riemannian manifolds
has been studied by Munier (2007) and Alimisis et al. (2020). Munier (2007) analyzed continuous-
time dynamics of steepest descent method on Riemannian manifolds and proved convergence of the
trajectory to a point in the set of minimizers for geodesically convex functions. Alimisis et al. (2020)
generalized (2) to Riemannian manifolds and proved f(X(t)) − minMf = O

(
1
t2

)
when α is chosen

appropriately in a way that takes into account the curvature of the manifold (see Section 4 for a precise
meaning).

Therefore, in line with a few related approaches we study a generalization of (2) to Riemannian mani-
folds proposed by Alimisis et al. (2020) which we describe in detail in Section 4. Our contributions are
summarized as follows;

(i) When α is larger than a threshold value, we prove the rate of convergence of objective values
is actually o

(
1
t2

)
, which is strictly faster than the previously known rate O( 1

t2
). In addition, we

prove the convergence of the trajectory to an element in the set of minimizers argminMf .

(ii) For α below the threshold value, we provide convergence rates for objective values. In the same
setting, we show convergence of trajectory to an element in argminMf under the condition that
it satisfies the strong minimization property.

(iii) We perform computational experiments that confirm our theoretical guarantees.

2 Related Work

In the Euclidean setting, some of the earlier works studying continuous-time dynamics for first-order
accelerated methods include the works of Alvarez (2000) and Attouch et al. (2000) who study (2) with
a constant damping term instead of an asymptotically vanishing damping term. Cabot et al. (2009)
study (2) with a general asymptotically vanishing damping term a(t) and showed that when a(t) is
non-integrable, the solution to the dynamical system possesses optimization properties i.e., f(X(t)) →
minf . Su et al. (2014) consider a(t) = α/t and prove accelerated convergence rate of O

(
1
t2

)
when α ≥

3. For α > 3, Attouch et al. (2018) show convergence of the trajectory to an optimal solution while May
(2017) shows little-o convergence rate for objective values. Attouch et al. (2019) provide convergence
results for the case 0 < α ≤ 3 and prove convergence of trajectory in the case where the minimizer
possesses strong minimization property. Further, in the case α = 3, for a convex objective function, they
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show convergence of trajectory to the optimal solution in one dimensional problems. More recently,
Attouch and Fadili (2022) have studied the Ravine method from a dynamical systems perspective and
drawn similarities with the Nesterov’s accelerated gradient method. A more comprehensive survey of
historical aspects and research trends related to continuous-time dynamics for achieving acceleration is
provided by Attouch and Fadili (2022) and Attouch and Cabot (2017).

In the Riemannian setting, standard references on optimization algorithms on Riemannian manifolds in-
clude Absil et al. (2008) and Boumal (2023). Udriste (1994) is a standard reference for convex analysis
on Riemannian manifolds while Vishnoi (2018) provides a detailed pedagogical survey of geodesi-
cally convex sets and geodesically convex functions on Riemannian manifolds. Zhang and Sra (2016)
develop techniques that are used to provide convergence guarantees for gradient descent method for
geodesically convex functions on Riemannian manifolds. First-order accelerated algorithms for mini-
mizing geodesically convex functions on Riemannian manifolds have been studied by Zhang and Sra
(2018); Ahn and Sra (2020); Han et al. (2023); Alimisis et al. (2021). Zhang and Sra (2018) propose a
computationally tractable accelerated method for geodesically strongly convex functions by proposing
a new estimate sequence and show accelerated rate of convergence locally. Ahn and Sra (2020) pro-
pose the first global accelerated algorithm on Riemannian manifolds for geodesically strongly convex
functions. In particular, Zhang and Sra (2018) and Ahn and Sra (2020) develop techniques to tackle
metric distortion that is inherent to the analysis of algorithms on Riemannian manifolds. Han et al.
(2023) generalize the work of Scieur et al. (2016) to Riemannian manifolds and propose acceleration
using extrapolation. Alimisis et al. (2021) employ momentum in combination with techniques devel-
oped by Zhang and Sra (2016) to achieve acceleration and provide accelerated convergence guarantees
for geodesically convex functions.

A peculiar aspect of the analysis of accelerated first-order methods on Riemannian manifolds is the
set of assumptions under which the results are proved. In general, one of the standard conditions
in Riemannian optimization is to assume that the exponential map is a global diffeomorphism (see
Section 3 for further details). This condition ensures that the exponential map is invertible and smooth.
Additionally, in order to derive results about first-order accelerated methods in both the discrete and
continuous setting, we work in a bounded subset of the manifold and in particular, we must make the
assumption that the trajectories in the continuous setting or iterates in the discrete setting lie in that
bounded domain, see e.g., Zhang and Sra (2018), Alimisis et al. (2020) and Alimisis et al. (2021).
In other words, this means that the results are valid only for trajectories or iterates that lie within
that bounded subset. This is because in curved spaces, the analysis makes use of certain comparison
theorems like the Rauch comparison theorem (Petersen, 2006) that dictate the size of the domain in
which we must confine our analysis.

In this work, we consider the continuous-time dynamical system approach towards understanding ac-
celeration of first-order optimization methods on Riemannian manifolds. In particular, we close the
gaps in convergence guarantees between the Euclidean and Riemannian settings for the continuous-
time dynamics modelling Nesterov’s acceleration. We shall work with similar assumptions and for
reasons discussed above. A more detailed description follows in later sections.
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3 Preliminaries from Riemannian Geometry

We recall some basic concepts from Riemannian geometry that we shall make references to during the
course of this work. This material can be found in standard references on the subject like Tu (2017),
Leonor Godinho (2014) and Boumal (2023).

Riemannian manifolds. A smooth manifold is a Hausdorff, second-countable topological manifold
such that the chart transition maps are of class C∞. To a smooth manifold, it is possible to attach at
every point x, a real vector space called the tangent space TxM. The union of all tangent spaces over
the manifold M can be imparted a smooth manifold structure and is called the tangent bundle TM =
∪x∈MTxM. A smooth vector field on the manifold is a smooth map Z : M → TM. A Riemannian
manifold is an ordered pair (M, ⟨·, ·⟩) where ⟨·, ·⟩ defines an inner product ⟨·, ·⟩x on the tangent space
TxM for every x ∈ M. This assignment is smooth in the sense that the map x 7→ ⟨Yx, Zx⟩x is a C∞

function on M, where Yx and Zx are tangent vectors at x corresponding to C∞ vector fields Y and
Z on the manifold. The inner product on the tangent space gives the norm of a tangent vector Yx as
∥Yx∥x :=

√
⟨Yx, Yx⟩x. From now on, the subscript on the inner product highlighting the point on which

the inner product is evaluated will be dropped when it is clear from the context.

The Riemannian inner product allows for measurement of length of a piece-wise smooth curve
γ : [a, b] → M using the formula ℓ(γ) :=

∫ b

a
∥γ′(t)∥γ(t), where γ′(t) is the velocity vector field of the

curve γ. This gives rise to the notion of distance between two points x and y on the manifold M given
as d(x, y) := infγ ℓ(γ), where infimum is taken over all piecewise smooth curves from a to b on M such
that γ(a) = x and γ(b) = y. The Riemannian manifold equipped with this distance becomes a metric
space. We can also define the diameter of a subset C of the manifold M as diam(C) = supx,y∈Cd(x, y).

Geodesics and parallel transport. Geodesics generalize the notion of straight lines on curved
spaces. The differentiation of vector fields along a curve is possible via the notion of a covariant deriva-
tive D

dt
associated with the unique connection operator on a Riemannian manifold called the affine or

Levi–Civita connection ∇. Given a curve γ on a manifold M and the corresponding velocity vector
field γ′. Assuming that γ is at least C2– smooth, we call γ a geodesic if its velocity vector is constant,
i.e. D

dt

(
dγ
dt

)
= 0. Geodesics can also be defined as the solution to the variational problem of finding

the curve of shortest length between two points. It should be noted that, a curve with the least distance
between two points has zero acceleration, however a curve with zero acceleration need not be curve
of least distance between two points. For example, on a sphere any two points can joined by both the
short and long segments of the same geodesic which is the great circle.

Parallel transport refers to transporting a tangent vector along a curve such that it remains constant
along the curve. On a Riemannian manifold M equipped with its affine connection and the covariant
derivative D

dt
, for any smooth curve γ and v ∈ Tγ(0)M, there exists a unique vector field Z along the

curve γ such that D
dt
Z = 0 and Z(0) = v (Boumal, 2023). We use the notation by Zhang and Sra

(2016) to denote parallel transport by Γy
xv where v ∈ Tx(M) is transported to y, that is, Ty(M) via the

geodesic γ. Parallel transport preserves inner products, i.e. ⟨u, v⟩x = ⟨Γy
xu, Γ

y
xv⟩y.

The notion of parallel transport allows us to define L- smoothness of a function f defined on a Rieman-
nian manifold M. A function f is geodesically L- smooth if

∥∥gradf(x)− Γx
ygradf(y)

∥∥
x
≤ Lℓ(γ) for

some L > 0 and for all x, y ∈ M and a geodesic γ.
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Exponential and logarithmic maps. The exponential map denoted as Expx : TxM → M, operates
on a tangent vector v ∈ TxM and gives a point on the manifold that lies on the unique geodesic
through x with initial velocity v. The point Expx(v) lies at a distance of ∥v∥x from x on the geodesic.
The exponential map is not injective, however on a Riemannian manifold, we can define the radius of
injectivity where the exponential map is a diffeomorphism. If the radius of injectitivity is non-zero,
then within this neighborhood, it is possible to define the inverse of the exponential map called as
logarithmic map denoted as Logx : M → TxM. Logx(y) gives the tangent vector in Tx(M) whose
exponential map would give y and whose length equals the distance d(x, y), i.e. d(x, y) = ∥Logxy∥x.

Riemannian gradient and Riemannian Hessian. For a smooth function f : M → R, the differential
Df(x) : TxM → R is defined as Df(x)[v] := (f ◦γ)′(0), where v ∈ TxM and γ is a curve on the man-
ifold such that γ(0) = x and γ′(0) = v. The Riemannian gradient of f is the unique vector field denoted
by gradf on M such that for all (x, v) ∈ TM we have Df(x)[v] = ⟨v, gradf(x)⟩x. The Riemannian
Hessian of f at x ∈ M is a linear operator Hessf : TxM → TxM defined as Hessf(x)[v] = ∇vgradf .

Sectional curvature. Sectional curvature generalizes the notion of Gaussian curvature of two-
dimensional surfaces to higher dimensions. Starting with any two-dimensional subspace Πp of the
tangent space at a point x ∈ M, the image of Πx under the exponential map locally spans a two-
dimensional surface SΠx such that TxSΠx = Πx. Then the sectional curvature denoted as K(Πx)
associated with Πx is the Gaussian curvature of SΠx . Since the sectional curvature is dependent of the
choice of the subspace Πp, we work with a tight global lower bound on the sectional curvature of the
manifold denoted by Kmin. A similar tight global upper bound on the sectional curvature is denoted by
Kmax.

Geodesic convexity. The notion of convex sets and convex functions can be generalized to Rieman-
nian manifolds by replacing straight lines with geodesics. A subset C ⊂ M is called a geodesically
convex set if for every x, y ∈ C, there exists a geodesic γ : [0, 1] → M such that γ(0) = x and γ(1) = y
and γ(t) ∈ C for t ∈ [0, 1]. Since it is not necessary to have a unique geodesic between two points
on a manifold (for example, two points on a sphere are joined by two segments of the same geodesic
great circle of different lengths), we can define geodesically unique convex sets. A geodesically unique
convex set has one geodesic segment joining any two points in the set. A function f : C → R is
called geodesically convex function if for any geodesic γ with γ(0) = x and γ(1) = y we have
f(γ(t)) ≤ (1− t)f(x) + tf(y) for all t ∈ [0, 1]. Further, a differentiable geodesically convex function
satisfies

f(y) ≥ f(x) + ⟨gradf(x), Logxy⟩x , (3)

for every x and y in the geodesically uniquely convex set C. We shall refer to (3) through out this work.

4 Problem Setting

We consider the problem in (1) and study the following dynamical system proposed by Alimisis et al.
(2020) as a generalization to (2)

∇Ẋ(t) +
α

t
Ẋ(t) + gradf(X(t)) = 0 , t > 0 , X(0) = x0 and Ẋ(0) = 0 , (4)

for α > 0 and x0 ∈ M.
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In this dynamical system, gradf denotes the Riemannian gradient of the objective function f in (1),
Ẋ denotes the velocity vector field of the trajectory X and ∇Ẋ denotes the covariant derivative of the
velocity vector field that generalizes the acceleration term in (2).

Definition 1. A curve X ∈ C2(0,∞) ∩ C1[0,∞) on the manifold M that satisfies (4) is called a
solution to (4).

Alimisis et al. (2020) prove existence of solution for (4) with α > 0 under conditions stated in Assump-
tion 1 below. Their existence result is stated in Proposition 4.2. However, uniqueness of solution to (4)
is not guaranteed.

Assumption 1.

i) The objective function f is geodesically convex and geodesically L-smooth.

ii) The manifold M is geodesically complete.

iii) The exponential map is a global diffeomorphism on the manifold M.

Remark 4.1. For a geodesically complete Riemannian manifold M, any two points on M can be
joined by a geodesic. The assumption of a global diffeomorphism of the exponential map ensures that
the logarithmic map is well defined. Further, it is worth mentioning that an important class of manifolds
called the Hadamard manifolds satisfy these conditions (Petersen, 2006).

Proposition 4.2. (Alimisis et al., 2020) Under Assumption 1, for α > 0, System 4 has a solution
X : [0,∞) → M.

In this work, we perform a thorough study of the asymptotic behavior of solutions to (4). For this,
the curvature of the manifold plays a key role. A major difference between the Euclidean and the
Riemannian setting is that the curvature of the manifold determines the choice of α and hence the
convergence rates. To explore this, we first discuss a crucial geometric result provided by Alimisis
et al. (2020).

Let Kmax and Kmin be the upper and lower bounds on the sectional curvature of M as discussed in
Section 3 and fix a diameter D that satisfies the following,

D <
π√
Kmax

, ifKmax > 0 , and D < ∞ , ifKmax ≤ 0 . (5)

Consider a subset C ⊂ M, such that diam(C) ≤ D where diam(C) denotes the diameter of C (as
discussed in Section 3), a curve X : I → C, where I ⊂ R and a point z ∈ C. Then d (X(t), z)
quantifies the distance between a point X(t) on the curve X and the point z. A key step in the analysis
requires a bound on the eigenvalues of −Hess

(
−1

2
d (X(t), z)2

)
, where Hess denotes the Riemannian

Hessian. This is equivalent to an expression of the form
〈
−∇Ẋgrad

(
−1

2
d (X(t), z)2

)
, Ẋ

〉
where

∇Ẋgrad
(
−1

2
d (X(t), z)2

)
denotes the covariant derivative of the Riemannian gradient vector field of

−1
2
d (X(t), z)2. The Riemannian gradient vector field is given as

grad

(
−1

2
d (X(t), z)2

)
= LogX(t)z , (6)
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and a proof for (6) can be found in (Pennec, 2018; Alimisis et al., 2020).

Then Alimisis et al. (2020) provide the following bounds,

σ (d (X(t), z))
∥∥∥Ẋ(t)

∥∥∥2

≤
〈
∇Ẋ(t)LogX(t)z,−Ẋ(t)

〉
≤ ξ (d (X(t), z))

∥∥∥Ẋ(t)
∥∥∥2

, (7)

where

σ (p) :=

{
1 , ifKmax ≤ 0 ;√
Kmax p cot

(√
Kmax p

)
, ifKmax > 0 ,

(8)

and

ξ (p) :=

{√
−Kmin p coth

(√
−Kmin p

)
, ifKmin < 0 ;

1 , ifKmin ≥ 0 .
(9)

Figure 1: Functions used in the bounds given in (7) with Kmax = 1 and Kmin = −1.

The functions p cot(p) and p coth(p) are visualized in Figure 1. The terms σ (d (X(t), z)) and
ξ (d (X(t), z)) are bounds on the eigenvalues of the operator −Hess

(
−1

2
d (X(t), z)2

)
. From (8) and

(9) we observe that the curvature of the manifold impacts these bounds. For the analysis of (4), the
choice of α depends on the upper bound on the eigenvalues and this aspect becomes clear from the
proof of Theorem 5.1 hereafter. Now, since ξ (d (X(t), z)) is dependent on the parameter t, we instead
consider an upper bound on ξ by evaluating it at D and define:

ζ := ξ (D) and δ := 2ζ + 1 . (10)

We now make some important observations about the terms ζ and δ.

(i) Since the function p coth(p) is strictly increasing for p ∈ (0,∞), on the set C, we have
ξ (d (X(t), z)) ≤ ζ . Thus the upper bound in (7) can be bounded as〈

∇Ẋ(t)LogX(t)z,−Ẋ(t)
〉
≤ ξ (d (X(t), z))

∥∥∥Ẋ(t)
∥∥∥2

≤ ζ
∥∥∥Ẋ(t)

∥∥∥2

. (11)
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(ii) When Kmin ≥ 0, from (9) we have ζ = 1 and thus δ = 3.

(iii) When Kmin < 0, from (9), since p coth(p) > 1 for p ∈ (0,∞), we have ζ > 1 and thus δ > 3.

At this stage, we summarize the chain of events. We begin with a second-order system as defined in
(4) and under Assumption 1, we have the existence of solutions to the system for α > 0. We calculate
δ as in (10) and this is independent of any conditions required for the existence of a solution. This is
important to note because later we will analyze (4) for 0 < α ≤ δ and α > δ which is the Riemannian
analog of 0 < α ≤ 3 and α > 3 in the Euclidean setting. So in the Riemannian setting, δ corresponds
to the constant 3 in the Euclidean case. Finally, to prove our main results we will make use of the bound
in (11) for the case where X is any solution of (4) and z ∈ argminMf .

Based on this discussion, we complement Assumption 1 with the following standing assumptions.

Assumption 2. Let D satisfy (5).

i) The sectional curvature of M is lower bounded by Kmin > −∞.

ii) C is a geodesically convex subset of M with diam(C) ≤ D.

iii) The set of minimizers argminMf ̸= ∅ and argminMf ⊂ C.

iv) The initial point x0 ∈ C and all the solutions to (4) remain inside the set C.

Remark 4.3. In order to use (3), we make the assumption that C is geodesically convex. Since unique-
ness of solution to (4) is not guaranteed, we make the assumption that all trajectories remain inside C.
Furthermore, we have a rather mild assumption that the set of minimizers is contained in C. The last
condition in Assumption 2 has been discussed in Section 2 as a standard assumption in the study of first-
order accelerated dynamics and algorithms on Riemannian manifolds, see e.g., Zhang and Sra (2018)
and Alimisis et al. (2021) (in the discrete setting) and Alimisis et al. (2020) (in the continuous-time
setting).

For (4) with α = δ, under Assumptions 1 and 2, Alimisis et al. (2020) prove that the convergence
rate of objective values satisfies f(X(t)) − minMf = O

(
1
t2

)
. In this work, we extend the analysis

by providing faster convergence rates and the convergence of solution to the set of minimizers for the
case when α > δ. We complete the analysis by providing convergence guarantees for the case when
0 < α ≤ δ.

Thus, from the discussion in this section, we observe that the curvature of a Riemannian manifold
impacts the choice of the damping coefficient α via a curvature-dependent term given by δ. We now
present the main results of this work.

5 Main Results

In the case α > δ, which is the Riemannian analog of α > 3 in the Euclidean setting, we improve the
convergence rate for objective values in Theorem 5.1 and prove the convergence of solution trajectories
of (4) to an element in the set argminMf in Theorem 5.2. In Theorem 5.3, we analyze the convergence
rate in the sub-critical case 0 < α ≤ δ and for the same setting, in Theorem 5.5, we prove convergence
of trajectories under the assumption that the minimizer satisfies the strong minimization property.
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5.1 Improved convergence rate when α > δ

Our first result improves the rate of convergence of objective values from O
(

1
t2

)
to o

(
1
t2

)
. We con-

sider (4) and perform a Lyapunov analysis similar to May (2017); Attouch et al. (2018) and prove the
following result.

Theorem 5.1. Assume α > δ in (4). Then under Assumptions 1 and 2, any solution X of (4) satisfies

f(X(t))−minMf = o

(
1

t2

)
.

Proof. We fix some z ∈ argminMf , define f ⋆ := minMf and introduce the following functions
W, h : [t0,∞) → [0,∞) as

W (t) :=
1

2

∥∥∥Ẋ(t)
∥∥∥2

+ f(X(t))− f ⋆ and h(t) :=
1

2
d (X(t), z)2 ,

The proof strategy consists of the following steps.

(i) We show that W ′(t) ≤ 0 which shows that W (t) is a non-increasing function.

(ii) We show that limt→∞ t2W (t) exists and is equal to some m ≥ 0. This establishes big–O
convergence rate.

(iii) We show that
∫∞
t0

sW (s)ds < ∞ .

(iv) Based on a simple lemma described in Appendix A.1, we must have m = 0.

(v) Since W (t) is a sum of positive quantities, we deduce in particular that

lim
t→∞

t2
[
f (X(t))− f ⋆

]
= 0 ,

which gives us our result.

We now provide details of the proof of each step for which we will need the first and second derivatives
of h. The derivatives of h are calculated using properties of covariant derivatives of smooth vector
fields on manifolds and are given as

h′(t) =
〈
LogX(t)z,−Ẋ(t)

〉
, (12)

h′′(t) =
〈
∇Ẋ(t)LogX(t)z,−Ẋ(t)

〉
+
〈
LogX(t)z,−∇Ẋ(t)

〉
. (13)

A proof for (12) can be found in Alimisis et al. (2020) whereas (13) follows from the product rule for
covariant derivatives, see e.g., Tu (2017)[Theorem 13.2]. An explanation of these expressions for the
derivatives of h including a comparison with the Euclidean case can be found in Appendix A.2.
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Using the abbreviation κ(t) = α
t
, we can write

h′′(t) + κ(t)h′(t) =
〈
∇Ẋ(t)LogX(t)z,−Ẋ(t)

〉
+
〈
LogX(t)z,−∇Ẋ(t)

〉
+ κ(t)

〈
LogX(t)z,−Ẋ(t)

〉
=

〈
∇Ẋ(t)LogX(t)z,−Ẋ(t)

〉
+
〈
LogX(t)z,−∇Ẋ(t)− κ(t)Ẋ(t)

〉
=

〈
∇Ẋ(t)LogX(t)z,−Ẋ(t)

〉
+
〈
LogX(t)z, gradf(X(t))

〉
,

(14)

where the last equality follows from the definition of the ODE in (4). Next, we have

W (t) + h′′(t) + κ(t)h′(t) =
1

2
∥X(t)∥2 + f(X(t))− f ⋆ +

〈
∇Ẋ(t)LogX(t)z,−Ẋ(t)

〉
+
〈
LogX(t)z, gradf(X(t))

〉
.

(15)

From (11), we have the following curvature-dependent bound for the first term in (13),〈
∇Ẋ(t)LogX(t)z,−Ẋ(t)

〉
≤ ζ

∥∥∥Ẋ(t)
∥∥∥2

. (16)

Using geodesic convexity of f and since f(z) = f ⋆, we can rearrange (3) as〈
LogX(t)z, gradf (X(t))

〉
≤ f ⋆ − f (X(t)) ,

and combined with (16), we obtain

W (t) + h′′(t) + κ(t)h′(t) ≤ 1

2

∥∥∥Ẋ(t)
∥∥∥2

+ (f(X(t))− f ⋆) + ζ
∥∥∥Ẋ(t)

∥∥∥2

+ (f ⋆ − f(X(t)))

=

(
1 + 2ζ

2

)∥∥∥Ẋ(t)
∥∥∥2

=
δ

2

∥∥∥Ẋ(t)
∥∥∥2

,
(17)

where δ is defined in (10).

The following calculation

W ′(t) =
〈
∇Ẋ(t), Ẋ(t)

〉
+
〈
gradf(X(t)), Ẋ(t),

〉
=

〈
−κ(t)Ẋ(t)− gradf(X(t)), Ẋ(t)

〉
+
〈
gradf(X(t)), Ẋ(t)

〉
= −κ(t)

〈
Ẋ(t), Ẋ(t)

〉
= −κ(t)

∥∥∥Ẋ(t)
∥∥∥2

,

(18)

shows that W (t) is a non-increasing function.

Now multiply (17) by t, use κ(t) = α
t

and rearrange to obtain

tW (t) ≤ t
δ

2

∥∥∥Ẋ(t)
∥∥∥2

− th′′(t)− tκ(t)h′(t)

= t
δ

2

∥∥∥Ẋ(t)
∥∥∥2

− th′′(t)− αh′(t) .

(19)
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Now, t δ
2

∥∥∥Ẋ(t)
∥∥∥2

can be written as

δ

2
t
∥∥∥Ẋ(t)

∥∥∥2

=
δ

2

t2

t

∥∥∥Ẋ(t)
∥∥∥2

=
δ

2α
t2κ(t)

∥∥∥Ẋ(t)
∥∥∥2

=
δ

2α

(
2tW (t)− (t2W (t))′

)
, (20)

where the last equality follows from (18). Substituting this in (19) and rearranging yields(
1− δ

α

)
tW (t) +

(
δ

2α

)(
t2W (t)

)′ ≤ −th′′(t)− αh′(t) . (21)

Integrating (21) over [t0, t], we obtain(
1− δ

α

)∫ t

t0

sW (s)ds+

(
δ

2α

)
(t2W (t)) ≤ C0 − th′(t) + (1− α)h(t) , (22)

where C0 :=
δ
2α

(t20W (t0)) + t0h
′(t0) + (α− 1)h(t0) .

Using (12) and applying the Cauchy–Schwarz inequality on the tangent space at X(t) provides

t |h′(t)| ≤ t
∥∥LogX(t)z

∥∥ ∥∥∥Ẋ(t)
∥∥∥ . (23)

From the definition of W (t), we have
∥∥∥Ẋ(t)

∥∥∥ ≤
√

2W (t) .

Combined with observations made in (23) and using the fact that h(t) = 1
2

∥∥LogX(t)z
∥∥2

(since d(x, y) = ∥Logxy∥x), we obtain t|h′(t)| ≤ 2
√
t2W (t)

√
h(t) and therefore

−th′(t) ≤ 2
√

t2W (t)
√

h(t) .

Use this in (22) to arrive at(
1− δ

α

)∫ t

t0

sW (s)ds+

(
δ

2α

)
(t2W (t)) ≤ C0 + 2

√
t2W (t)

√
h(t)− (α− 1)h(t) .

Use the inequality −ax2 + bx ≤ b2

4a
, a > 0, b ∈ R with a = (α − 1), b = 2

√
t2W (t) and x =

√
h(t)

to obtain

A

∫ t

t0

sW (s)ds+Bt2W (t) ≤ C0 , (24)

where A :=
(
1− δ

α

)
and B :=

(
δ
2α

− 1
(α−1)

)
.

Since α > δ, for both Kmin ≥ 0 and Kmin < 0 we have A, B ≥ 0. Thus both the terms in (24) are
non-negative and upper bounded by a constant C0. Thus we infer from (24) that

supt≥t0
t2W (t) < ∞ and (25)∫ +∞

t0

sW (s)ds < ∞ . (26)
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From (20), we have (
t2W (t)

)′
= 2tW (t)− t2κ(t)

∥∥∥Ẋ∥∥∥2

≤ 2tW (t) ,

which combined with (26) gives us that
∫∞
t0

(t2W (t))
′
< ∞ and therefore by (25), limt→∞ t2W (t)

exists.

Thus, following the chain of arguments (i)− (v) stated in the beginning of the proof, we have our
desired result.

5.2 Convergence of trajectory when α > δ

We now show that for α > δ, the solution of (4) converges to an element in argminMf .

Theorem 5.2. Assume α > δ in (4). Then under Assumptions 1 and 2, there exists some x̃ ∈ argminMf
such that X(t) → x̃ as t → ∞.

Proof. We come back to (14). For any z ∈ argminMf , using geodesic convexity of f , we apply (3)
and the fact that f ⋆ − f(X(t)) ≤ 0 to (14) and obtain,

h′′(τ) + κ(τ)h′(τ) ≤ ξ (d (X(τ), z))
∥∥∥Ẋ(τ)

∥∥∥2

≤ δ
∥∥∥Ẋ(τ)

∥∥∥2

, (27)

since ξ (d (X(τ), z)) < 2ξ (d (X(τ), z)) + 1 ≤ δ.

Multiply both sides of (27) by eΨ(τ,t0) where Ψ(τ, t0) =
∫ τ

t0
κ(u)du is the integrating factor, and in-

tegrate from t0 to t. Using standard integration by parts technique and the Fundamental Theorem of
Calculus, we obtain,

h′(t) ≤ e−Ψ(t,t0)h′(t0) +

∫ t

t0

e−Ψ(t,τ)δ
∥∥∥Ẋ(τ)

∥∥∥2

dτ , (28)

where −Ψ(t, τ) = Ψ(τ, t0)−Ψ(t, t0).

Since κ(t) = α
t

a simple integral evaluation gives∫ ∞

s

e−Ψ(t,s)dt =
s

α− 1
, ∀ s ≥ t0 . (29)

Further integrating (28) over [t0,∞), we make use of (29) to obtain∫ ∞

t0

h′(t)dt ≤ t0
α− 1

|h′(t0)|+
∫ ∞

t0

∫ t

t0

e−Ψ(t,τ)δ
∥∥∥Ẋ(τ)

∥∥∥2

dτdt . (30)

Now, upon carefully rearranging the domain of integration and subsequently applyling the Fubini’s
Theorem for double integrals to switch the order of integration we obtain,∫ ∞

t0

h′(t)dt ≤ t0
α− 1

|h′(t0)|+
∫ ∞

t0

∫ ∞

τ

e−Ψ(t,τ)δ
∥∥∥Ẋ(τ)

∥∥∥2

dtdτ . (31)
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Using (29) for the inner integral in (31) we obtain,∫ ∞

t0

h′(t)dt ≤ t0
α− 1

|h′(t0)|+
1

α− 1

∫ ∞

t0

τδ
∥∥∥Ẋ(τ)

∥∥∥2

dτ . (32)

Finally, from (26), the right side of (32) is finite and we have that
∫∞
t0

h′(t)dt < ∞ which implies
limt→∞ h(t) exists. Thus we have,

lim
t→∞

d (X(t), z) exists for every z ∈ argminMf . (33)

Up to this stage, we only know that the limit in (33) exists and could be non-zero. Since the trajectory
remains bounded, as a consequence of the Hopf–Rinow Theorem for complete Riemannian manifolds,
there exists a subsequence X(tk)k∈N whose accumulation point is say x̃ ∈ C ⊂ M (Munier, 2007).
By continuity of f , f(x̃) = f(limk→+∞ X(tk)) = limk→+∞ f(X(tk)) = limt→+∞ f(X(t)) = f ⋆, i.e.
x̃ ∈ argminMf . Now, since (33) holds for every z ∈ argminMf , in particular it holds for x̃. This
implies d (X(tk), x̃) → 0. However, by uniqueness of limit for the function, d (X(t), x̃) → 0 and
therefore X(t) → x̃ (we emphasize that this conclusion is independent of the choice of subsequence
tk).

5.3 Convergence rate for the sub-critical case 0 < α ≤ δ

In this section we analyze continuous-time dynamics for (4) for 0 < α ≤ δ. In the Hilbert space,
this has been analyzed in Attouch et al. (2019) in the continuous-time setting while Apidopoulos et al.
(2020) analyzed this in the discrete setting. We obtain a similar result for a Riemannian manifold with
lower bounded sectional curvature Kmin.

Theorem 5.3. Assume 0 < α ≤ δ in (4). Then under Assumptions 1 and 2, any solution X of (4)
satisfies

f(X(t))−minMf = O

(
1

t
2α
δ

)
.

Proof. We fix a z ∈ argminMf , define f ⋆ := minMf and consider the function W : [t0,∞) → [0,∞)
given as

W (t) = A(t) +B(t) + C(t), (34)

where

A(t) := t2p (f(X(t))− f ⋆) ,

B(t) :=
1

2

∥∥∥−λ(t)
(
LogX(t)z

)
+ tpẊ(t)

∥∥∥2

,

C(t) :==
η(t)

2
d (X(t), z)2 =

η(t)

2

∥∥LogX(t)z
∥∥2

,

and p is a positive real number, λ and η are positive functions that will be chosen appropriately so as to
make the energy function W (t) non-increasing.
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Then their derivatives are given as

A′(t) = 2pt2p−1 [f(X(t))− f ⋆] + t2p
〈
gradf(X(t)), Ẋ(t)

〉
,

B′(t) =
〈
−λ(t)LogX(t)z + tpẊ(t),−λ̇(t)LogX(t)z − λ(t)∇Ẋ(t)LogX(t)z + ptp−1Ẋ(t) + tp∇Ẋ(t)

〉
,

C ′(t) =
η̇(t)

2

∥∥LogX(t)z
∥∥2

+ η(t)
〈
−Ẋ(t),LogX(t)z

〉
.

We make use of (4) and write B′(t) as

B′(t) =
〈
− λ(t)LogX(t)z + tpẊ(t),−λ̇(t)LogX(t)z − λ(t)∇Ẋ(t)LogX(t)z + ptp−1Ẋ(t)

+tp−1(−α)Ẋ(t) + tp(−gradf(X(t)))
〉
.

Adding the derivatives of A, B and C gives an expression for W ′(t). In order to avoid clutter, we avoid
writing the complete expression for W ′(t). Instead, we make some observations about certain terms
that appear in that expression that allows us to find an upper bound for W ′(t).

Since d(X(t), z)2 =
∥∥LogX(t)z

∥∥2
=

〈
LogX(t)z,LogX(t)z

〉
, we have

1

2

d

dt
d (X(t), z)2 =

1

2

d

dt

∥∥LogX(t)z
∥∥ =

1

2

d

dt

〈
LogX(t)z,LogX(t)z

〉
.

Using properties of covariant derivatives, see Tu (2017)[Theorem 13.2], we obtain,〈
LogX(t)z,∇Ẋ(t)LogX(t)z

〉
=

1

2

d

dt
d (X(t), z)2 =

〈
LogX(t)z,−Ẋ(t)

〉
. (35)

Using (3), (11) and (35) in the expression for the derivative of W ′(t) gives us the following bound

W ′(t) ≤ tp
[
2ptp−1 − λ(t)

]
(f(X(t)− f ⋆)

+
[
η(t) + tpλ̇(t)− λ(t)(α− p)tp−1 + λ(t)2

] 〈
LogX(t)z,−Ẋ(t)

〉
− tp

[
(α− p)tp−1 − λ(t)ζ

] ∥∥∥Ẋ(t)
∥∥∥2

+

[
λ(t)λ̇(t) +

η̇(t)

2

] ∥∥LogX(t)z
∥∥2

. (36)

We choose λ and η so as to make the first two terms of (36) zero. This gives

λ(t) = 2ptp−1 and η(t) = 2p(α− 4p+ 1)t2p−2 . (37)

To impose that η is non-negative, we impose the condition

α ≥ 4p− 1 . (38)

For W to be a non-increasing function, we will impose the condition that (α − p)tp−1 − λ(t)ζ ≥ 0 or
equivalently

α ≥ (2ζ + 1)p = δp , (39)
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where δ is as defined in (10). For the choice of λ and η as in (37), we have

λ(t)λ̇(t) +
η̇(t)

2
= −2p(1− p)(α− 2p+ 1)t2p−3 .

which is non-positive if we impose the condition

p ≤ 1 . (40)

Thus, if we choose p = min
(
1, α

δ
, α+1

4

)
, then conditions (38), (39) and (40) are satisfied. This implies

that W is a non-negative, non-increasing function associated with (4). As a consequence, we obtain

t2p (f(X(t))− f ⋆) ≤ W (t) ≤ W (t0) . (41)

Now for the case when Kmin ≥ 0, by definition δ = 3 and hence 0 < α ≤ δ implies p = α
δ
. For the

case when Kmin < 0 , we have δ > 3. As a result, 0 < α ≤ δ includes the case when 0 < α < 3
and the case when 3 ≤ α ≤ δ. If 0 < α < 3 then 1 > α+1

4
> α

3
> α

δ
and when 3 ≤ α ≤ δ then

α+1
4

≥ 1 ≥ α
δ
. Thus, in general p = α

δ
. Combining this with (41) we conclude the statement.

Corollary 5.4. As a corollary, we can combine this result with Theorem 5.1 and obtain the consolidated
rate of convergence for α > 0 as

f(X(t))−minMf = O

(
1

tp(α)

)
,

where p(α) = min
(
2, 2α

δ

)
.

Figure 2: The convergence rate in Corollary 5.4 undergoes a phase change at α = δ.

16



Phase Transition. This result shows a phase transition for convergence rates at α = δ. For α < δ, the
convergence rate increases linearly with a slope of 2

δ
, whereas for α ≥ δ the convergence rate remains

constant. This is shown in Figure 2 that corresponds to a similar figure in Attouch et al. (2019) in the
Euclidean case that shows how p(α) varies as a function of α. The rate of convergence decreases as the
value of α decreases and this is in agreement with the previous works in the literature in the Hilbertian
setting. One has then to take α as large as possible but the rate stagnates at o(1/t2) for α larger than a
threshold that depends on the manifold curvature.

Additionally, we know by the work of Apidopoulos et al. (2020) that this rate is optimal for the whole
space in the Hilbertian setting. It would be worth investigating whether a similar result holds for a class
of manifolds with a given curvature.

5.4 Convergence of trajectories in the sub-critical case 0 < α ≤ δ

In the Euclidean case, when f is convex, convergence of solution trajectories of (2) for the case 0 <
α ≤ 3 is still an open problem. However, convergence of the trajectory can be shown by assuming that
the convex function has a strong minimum (Attouch et al., 2019). In the Riemannian setting we can
define the notion of a strong minimum of geodesically convex function f as follows.

Definition 2. A geodesically convex function f on a Riemannian manifold has a strong minimum if
there exists x̃ ∈ argminMf and µ > 0 such that for every x ∈ M we have

f(x) ≥ f(x̃) +
µ

2
d (x, x̃)2 . (42)

As a result, the minimizer is actually unique. This is true in particular for geodesically strongly convex
functions, for example, the Karcher-mean objective (see Section 6 for details).

Theorem 5.5. Assume 0 < α ≤ δ in (4). Then under Assumptions 1 and 2, for a geodesically convex
function that admits a strong minimum x̃, any solution X of (4) converges to x̃ with the rate

d (X(t), x̃)2 = O

(
1

t
2α
δ

)
. (43)

Proof. We combine Definition 2 with Theorem 5.3 to obtain

d (X(t), x̃)2 ≤ 2

µ
(f(X(t))− f(x̃)) ,

and the result follows.

6 Numerical Experiments

We provide computational evidence for the theoretical guarantees in Section 5. In particular we would
like to verify faster convergence for increasing values of α ≤ δ (cf. Theorem 5.3) and the little-o rate
of convergence for α > δ (cf. Theorem 5.1). We consider some standard optimization problems on
Riemannian manifolds of positive and negative curvature. For the positive curvature, we consider the
maximum eigenvalue problem and for the negative curvature we consider the Karcher-mean problem.
These problems have also been considered by Sra and Hosseini (2015); Ferreira et al. (2019); Alimisis
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et al. (2020). We integrate the System 4 by employing a semi-implicit discretization as in Su et al.
(2014) and Alimisis et al. (2020). A description of semi-implicit discretization can be found in the
Appendix B.1.

In order to demonstrate little-o rate of convergence for objective values, we study the progress of the
term t2 (f(X(t))− f ⋆), where X(t) is obtained from the semi-implicit solver while f ⋆ is a benchmark
value obtained from standard libraries in Matlab. For the eigenvalue problem, f ⋆ is obtained from
the Matlab eigenvalue solver whereas for the Karcher-mean problem, f ⋆ is obtained from the Manopt
library (Boumal et al., 2014). For α > δ, theoretically we expect limt→∞ t2

[
f (X(t))− f ⋆

]
= 0. Due

to the limitations posed by finite machine precision, a fundamental difficulty in verifying little-o rate of
convergence computationally is that the difference f(X(t))−f ⋆ stagnates beyond a certain stage. This
allows t2 to overcompensate and eventually causes their product to grow. As a result, we compute the
product till the difference f(X(t))− f ⋆ is within a tolerance of 10−12.

Figure 3: Convergence plots for the max–eigenvalue problem for 0 < α < δ.

Maximum Eigenvalue Problem. This problem aims to find the maximum eigenvalue of a symmet-
ric positive semi-definite matrix of large condition number. This is accomplished by minimizing the
negative of the Rayleigh quotient over the hemisphere. The problem is stated as follows

minx∈S − 0.5x⊤Ax ,

where S ⊂ Rn is the unit hemisphere. The unit hemisphere has a constant positive curvature Kmin = 1
and hence δ = 3. We refer the reader to Appendix B.2 for expressions of exponential map, Riemannian
gradient and parallel transport on the sphere.

We generate the problem instance based on Alimisis et al. (2020). For the experiment, a matrix with
high condition number is generated by the formula A = 1

β
G⊤G, where G ∈ Rm×n ,m > n, is a random

matrix with normally distributed entries with zero mean and variance one. We choose m = 1000,
n = 2500 and β = 1000. We perform the experiment for different values of α with α < δ and α ≥ δ.
Since δ = 3, we perform experiments for α = {1.5, 2.0, 2.5, 2.9, 3.0, 3.1, 4.0, 6.0, 8.0}. The system
is integrated for a length of time T = 1000 with step size ∆t = 0.1.
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Figure 4: Convergence plots for the max–eigenvalue problem–Transition.

Figure 5: Convergence plots for the max–eigenvalue problem for α > δ.

The results of numerical experiments are shown in Figures 3, 4 and 5 where we plot the progress of
f(X(t))− f ⋆ and t2 (f(X(t))− f ⋆) against time. While the difference f(X(t))− f ⋆ tends to zero for
all the choices of α, we observe an improving convergence rate for increasing values of α. From Figure
3, it is clear that the product t2 (f(X(t))− f ⋆) does not show any decay for α = 1.5 and α = 2.0.
However, from Figure 4 we observe that close to δ = 3, the product shows a decreasing trend for
α = 2.5 and α = 2.95 and we see a transition to a convergence rate faster than O

(
1
t2

)
. Finally, from

Figure 5 for values of α > 3 we clearly observe little-o convergence rate.

Karcher-mean Problem. This problem aims to find the symmetric positive definite matrix whose
sum of squares of distances from a given set of symmetric positive definite matrices is the least. The
problem can be posed as a Riemannian optimization problem on the manifold of symmetric positive
definite matrices (SPD-manifold) with the affine–invariant metric and is a Hadamard manifold with
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sectional curvature K ∈ [−1/2, 0) (Criscitiello and Boumal, 2023).

minP∈Pn
++

m∑
j=1

∥∥Logm(
P−1/2AjP

−1/2
)∥∥2

F

Figure 6: Convergence plots for the Karcher-mean problem for 0 < α < δ.

Figure 7: Convergence plots for the Karcher-mean problem–Transition.

where Pn
++ denotes the SPD-manifold, A1, . . . , Am ∈ Pn

++, ∥ · ∥F denotes the Frobenius norm and
Logm denotes matrix logarithm. The Karcher-mean problem is Euclidean non-convex problem but
Riemannian strongly convex (Ferreira et al., 2019). This is an important application of Riemannian
optimization where a Euclidean non-convex problem can be studied and solved as a geodesically convex
problem. The expressions for the exponential map, Riemannian gradient and parallel transport have
been given in Appendix B.2.
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Figure 8: Convergence plots for the Karcher-mean problem for α > δ.

For the experiment, we compute the Karcher-mean of ten randomly generated SPD-matrices (m =
10) of size n = 100. We employ the strategy proposed in Ferreira et al. (2019) to generate SPD-
matrices for the experiment and the starting point X0. In order to generate the matrices, for j =
1, . . . ,m, we generate random orthonormal matrix Uj and diagonal matrix Qj with eigenvalues in
(0, 100). Then Aj = UjQjU

⊤
j ∈ Pn

++. The initial point P0 is given as the explog–geometric mean

P0 = Expm
(

1
m

∑m
j=1 Logm(Aj)

)
, where Expm denotes matrix exponential.

We first estimate the value of δ for this problem. The diameter D is estimated as the distance between
the optimal P ∈ Pn

++ obtained from the Manopt–solver and the initial point X0. We then choose
Kmin = −0.1. This gives ζ ≈ 1.59 and δ = 2ζ + 1 ≈ 4.1. We integrate the system for a length of
time T = 100 with step size ∆t = 0.1 and for α < δ, α = δ and α > δ. Since δ ≈ 4.1, we perform
experiments for α = {2.0, 2.5, 3.0, 3.9, 4.1, 4.5, 5.0, 6.0, 7.0}.

The computational experiments agree with our theoretical results. We observe that the convergence
is much faster than the previous example on the sphere which is due to the fact that the Karcher-
mean problem is a geodesically strongly convex. It is evident from Figures 6, 7 and 8 that while the
difference f(X(t))− f ⋆ tends to zero for all the choices of α, the convergence is faster for values of α
increasing to δ. While we do not observe little-o rates for α = 2.0, we observe a decreasing trend for
t2 (f(X(t))− f ⋆) for α = 2.5 and α = 3. We observe little-o rates for values of α close to δ ≈ 4.1 and
for values of α greater than δ as evident from Figures 7 and 8. The fact that we observe little-o rates for
values of α close to δ ≈ 4.1 is due to the fact that the value of δ we have chosen is not a tight estimate
and is obtained rather heuristically.

Thus, we observe that for experiments performed on manifolds of both the positive as well as the
negative curvature, the computational results seem to be in line with our theoretical results.

7 Conclusion

In this work we studied the continuous-time dynamical system to model accelerated first-order opti-
mization algorithms on Riemannian manifolds. We have closed gaps in the convergence guarantees
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between the Euclidean setting and the Riemannian setting. In particular, corresponding to α > 3 in
the Euclidean setting, we show that the convergence rate for objective values is o

(
1
t2

)
for α > δ on

Riemannian manifolds. This rate is faster than the previously known rate of O
(

1
t2

)
shown by Alimisis

et al. (2020). In the same setting, we also show the convergence of trajectory to an element in the
set of minimizers of the objective function. We analyze the dynamical system in the sub-critical case
0 < α ≤ δ and provide convergence rate for objective values. In this sub-critical case, we show the
convergence of trajectory to a minimizer that satisfies the strong minimization property. We perform
computational experiments that confirm the theoretical results.

We end this paper with some closing comments on some aspects of accelerated dynamics on Rieman-
nian manifolds that we encountered during this work. We note that the accelerated dynamical system
that we have considered cannot be studied on some rather standard manifolds like the sphere as the
exponential map is not invertible on the sphere. However, this is not necessarily a limitation. This is
because the sphere is a compact manifold and the only convex function that can be defined on a com-
pact manifold is the constant function. But in general, it would be worth investigating if the assumption
that the exponential map is a diffeomorphism can be relaxed.

Another important aspect is the analysis of various discretizations of the accelerated dynamical system.
While we have considered the semi-implicit discretization, some other discretizations like the explicit
discretization are worth considering. It would be interesting to study whether these discretizations are
equivalent to the proposed first-order accelerated algorithms on Riemannian manifolds. Additionally, it
is worth exploring the tightness of the value of δ as it is evident that the behavior resembling little-o rate
of convergence starts to appear for values lesser than the value of δ considered. Finally, the problem
of convergence of trajectories for a convex function in the case α = δ is an open question even in the
Euclidean case (α = 3) for dimensions higher than one.
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Appendices

A Supplementaries for Theorem 5.1

A.1 Lemma

We draw attention to a rather simple and standard result that eventually allows us to prove the little-o
rate.

Lemma A.1. Consider two non-negative functions a and b such that a(t)b(t) has a limit m ≥ 0 as
t → ∞. Then, if the function b(t) is integrable and 1

a(t)
is non-integrable, this means that m = 0.

Proof. If the limit of a(t)b(t) is not zero, then b(t) ≥ m̃
a(t)

, for some m̃ ∈ (0,m) and sufficiently large
t, which contradicts the fact that b(t) is integrable.

A.2 Derivatives of h

The expressions for the derivatives of h(t) in (12) and (13) may appear rather abstract, therefore it is
worthwhile to draw parallels with the Euclidean case.

Suppose M = Rn. Then the expressions for the derivatives of h can be calculated by applying the
chain rule and are given as

h′(t) =
〈
X(t)− z, Ẋ(t)

〉
, (44)

h′′(t) =
〈
Ẋ(t), Ẋ(t)

〉
+
〈
X(t)− z, Ẍ(t)

〉
=

∥∥∥Ẋ(t)
∥∥∥2

+
〈
X(t)− z, Ẍ(t)

〉
. (45)

In (44), the term X(t) − z corresponds to the term LogX(t)z in (12). Observe that in the Euclidean
setting, Kmin = Kmax = 0, thus the bounds in (7) are satisfied with an equality and therefore the first
term in (13) equals the first term in (45). Similarly, in the second term in (13), the covariant derivative
∇Ẋ corresponds to the term Ẍ in (45).

B Computational Results

B.1 Semi-Implicit Discretization

In order to discretize the dynamical system, we observe that the second-order system in (4) can be
written in an equivalent form as a first-order system in phase space by introducing a new variable V for
velocity as

Ẋ = V ,

∇V = −α

t
V − grad(f(X(t))) .

(46)

The semi-implicit discretization is performed by taking an explicit step in the V variable using Vk at
the point Xk to obtain Ṽk+1. The position variable is updated implicitly by applying the exponential
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map on Ṽk+1 at the point Xk to obtain Xk+1. Then, the updated velocity Ṽk+1 is parallel transported to
Xk+1 to obtain Vk+1. For the system of differential equations (46), this is summarized as

Ṽk+1 =

(
1− α

∆t

tk

)
Vk − grad(f(Xk))∆t ,

Xk+1 = ExpXk
(Ṽk+1∆t) ,

Vk+1 = Γ
Xk+1

Xk
Ṽk+1.

where Γ
Xk+1

Xk
denotes the parallel transport of Ṽk+1 from the point Xk to Xk+1 and ∆t is the length of

the time step.

B.2 Manifold Toolbox

The expressions for exponential map, Riemannian gradient and parallel transport on a sphere can be
found in Boumal (2023) or Absil et al. (2008) and are summarized as

gradf(x) = (I − xx⊤)(−Ax) (Riemannian Gradient) ,

Expx(v) = cos(∥v∥)x+ sin(∥v∥) v

∥v∥
(Exponential Map) ,

Γy
x(v) = v − (xx⊤)v (Parallel Transport) .

where I is an identity matrix.

The expressions for exponential map, Riemannian gradient and parallel transport on the SPD-manifold
can be found in Ferreira et al. (2019); Gutman and Ho-Nguyen (2023); Axen et al. (2023) and are
summarized as follows

gradf(P ) =
m∑
i=1

X
1
2Logm(P

1
2A−1

i P
1
2 )P

1
2 (Riemannian Gradient)

ExpP (V ) = P
1
2Expm

(
P− 1

2V P− 1
2

)
P

1
2 (Exponential Map)

ΓP̃
P (V ) = (P̃P−1)

1
2V (P−1P̃ )

1
2 (Parallel Transport).

where Expm and Logm denote the matrix exponential and logarithm.

References
Absil, P.-A., Mahony, R., and Sepulchre, R. (2008). Optimization algorithms on matrix manifolds.

Princeton University Press.

Ahn, K. and Sra, S. (2020). From Nesterov’s estimate sequence to Riemannian acceleration. In Con-
ference on Learning Theory, pages 84–118. PMLR.

Alimisis, F., Orvieto, A., Bécigneul, G., and Lucchi, A. (2020). A continuous-time perspective for mod-
eling acceleration in Riemannian optimization. In International Conference on Artificial Intelligence
and Statistics, pages 1297–1307. PMLR.

24



Alimisis, F., Orvieto, A., Becigneul, G., and Lucchi, A. (2021). Momentum improves optimization on
Riemannian manifolds. In International Conference on Artificial Intelligence and Statistics, pages
1351–1359. PMLR.

Alvarez, F. (2000). On the minimizing property of a second order dissipative system in Hilbert spaces.
SIAM Journal on Control and Optimization, 38(4):1102–1119.

Apidopoulos, V., Aujol, J.-F., and Dossal, C. (2020). Convergence rate of inertial forward–backward
algorithm beyond Nesterov’s rule. Mathematical Programming, 180(1-2):137–156.

Attouch, H. and Cabot, A. (2017). Asymptotic stabilization of inertial gradient dynamics with time-
dependent viscosity. Journal of Differential Equations, 263(9):5412–5458.

Attouch, H., Chbani, Z., Peypouquet, J., and Redont, P. (2018). Fast convergence of inertial dynamics
and algorithms with asymptotic vanishing viscosity. Mathematical Programming, 168:123–175.

Attouch, H., Chbani, Z., and Riahi, H. (2019). Rate of convergence of the Nesterov accelerated gradient
method in the subcritical case α ≤ 3. ESAIM: Control, Optimisation and Calculus of Variations,
25:2.

Attouch, H. and Fadili, J. (2022). From the Ravine method to the Nesterov method and vice versa: a
dynamical system perspective. SIAM Journal on Optimization, 32(3):2074–2101.

Attouch, H., Goudou, X., and Redont, P. (2000). The heavy ball with friction method, i. the continuous
dynamical system: global exploration of the local minima of a real-valued function by asymptotic
analysis of a dissipative dynamical system. Communications in Contemporary Mathematics, 2(1):1–
34.

Attouch, H. and Peypouquet, J. (2016). The rate of convergence of Nesterov’s accelerated forward-
backward method is actually faster than 1/k2. SIAM Journal on Optimization, 26(3):1824–1834.

Axen, S. D., Baran, M., Bergmann, R., and Rzecki, K. (2023). Manifolds.jl: An extensible Julia
framework for data analysis on manifolds. AMS Transactions on Mathematical Software. accepted
for publication.

Bini, D. A. and Iannazzo, B. (2013). Computing the Karcher mean of symmetric positive definite
matrices. Linear Algebra and its Applications, 438(4):1700–1710.

Boumal, N. (2023). An Introduction to Optimization on Smooth Manifolds. Cambridge University
Press.

Boumal, N., Mishra, B., Absil, P.-A., and Sepulchre, R. (2014). Manopt, a Matlab toolbox for opti-
mization on manifolds. Journal of Machine Learning Research, 15(1):1455–1459.

Burer, S. and Monteiro, R. D. (2005). Local minima and convergence in low-rank semidefinite pro-
gramming. Mathematical programming, 103(3):427–444.

Cabot, A., Engler, H., and Gadat, S. (2009). On the long time behavior of second order differential
equations with asymptotically small dissipation. Transactions of the American Mathematical Society,
361(11):5983–6017.

Criscitiello, C. and Boumal, N. (2023). An accelerated first-order method for non-convex optimization
on manifolds. Foundations of Computational Mathematics, 23(4):1433–1509.

Ferreira, O. P., Louzeiro, M. S., and Prudente, L. (2019). Gradient method for optimization on Rieman-
nian manifolds with lower bounded curvature. SIAM Journal on Optimization, 29(4):2517–2541.

25



Golub, G. H. and Van Loan, C. F. (2013). Matrix computations. JHU press.

Gutman, D. H. and Ho-Nguyen, N. (2023). Coordinate descent without coordinates: Tangent subspace
descent on Riemannian manifolds. Mathematics of Operations Research, 48(1):127–159.

Han, A., Mishra, B., Jawanpuria, P., and Gao, J. (2023). Riemannian accelerated gradient methods via
extrapolation. In International Conference on Artificial Intelligence and Statistics, pages 1554–1585.
PMLR.

Hosseini, R. and Sra, S. (2015). Matrix manifold optimization for Gaussian mixtures. Advances In
Neural Information Processing Systems, 28.

Leonor Godinho, J. N. (2014). An Introduction to Riemannian Geometry With Applications to Mechan-
ics and Relativity. Springer Cham.

May, R. (2017). Asymptotic for a second-order evolution equation with convex potential and vanishing
damping term. Turkish Journal of Mathematics, 41(3):681–685.

Munier, J. (2007). Steepest descent method on a Riemannian manifold: the convex case. Balkan
Journal of Geometry & Its Applications, 12(2).

Nesterov, Y. (2018). Lectures on Convex Optimization. Springer Cham.

Nesterov, Y. E. (1983). A method of solving a convex programming problem with convergence rate
O(1/k2). In Doklady Akademii Nauk, volume 269, pages 543–547. Russian Academy of Sciences.

Pennec, X. (2018). Barycentric subspace analysis on manifolds.

Petersen, P. (2006). Riemannian geometry, volume 171. Springer.

Ring, W. and Wirth, B. (2012). Optimization methods on Riemannian manifolds and their application
to shape space. SIAM Journal on Optimization, 22(2):596–627.

Scieur, D., d’Aspremont, A., and Bach, F. (2016). Regularized nonlinear acceleration. Advances In
Neural Information Processing Systems, 29.

Sra, S. and Hosseini, R. (2015). Conic geometric optimization on the manifold of positive definite
matrices. SIAM Journal on Optimization, 25(1):713–739.

Su, W., Boyd, S., and Candes, E. (2014). A differential equation for modeling Nesterov’s accelerated
gradient method: theory and insights. Advances In Neural Information Processing Systems, 27.

Sun, J., Qu, Q., and Wright, J. (2016). Complete dictionary recovery over the sphere i: Overview and
the geometric picture. IEEE Transactions on Information Theory, 63(2):853–884.

Tu, L. W. (2017). Differential Geometry: Connections, Curvature, and Characteristic Classes.
Springer Cham.

Udriste, C. (1994). Convex functions and optimization methods on Riemannian manifolds, volume 297.
Springer Science & Business Media.

Vandereycken, B. (2013). Low-rank matrix completion by Riemannian optimization. SIAM Journal on
Optimization, 23(2):1214–1236.

Vassilis, A., Jean-François, A., and Charles, D. (2018). The differential inclusion modeling FISTA
algorithm and optimality of convergence rate in the case b ≤ 3. SIAM Journal on Optimization,
28(1):551–574.

Vishnoi, N. K. (2018). Geodesic convex optimization: Differentiation on manifolds. arXiv:
1806.06373.

26



Zhang, H. and Sra, S. (2016). First-order methods for geodesically convex optimization. In Conference
on Learning Theory, pages 1617–1638. PMLR.

Zhang, H. and Sra, S. (2018). Towards Riemannian accelerated gradient methods. arXiv preprint
arXiv:1806.02812.

27


	Introduction
	Related Work
	Preliminaries from Riemannian Geometry
	Problem Setting
	Main Results
	Improved convergence rate when >
	Convergence of trajectory when >
	Convergence rate for the sub-critical case 0<
	Convergence of trajectories in the sub-critical case 0<

	Numerical Experiments
	Conclusion
	Supplementaries for Theorem 5.1
	Lemma
	Derivatives of h

	Computational Results
	Semi-Implicit Discretization
	Manifold Toolbox


