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ABSTRACT

We apply the PAC-Bayes theory to the setting of learning-to-optimize. To the best of our knowl-
edge, we present the first framework to learn optimization algorithms with provable generalization
guarantees (PAC-bounds) and explicit trade-off between a high probability of convergence and a
high convergence speed. Even in the limit case, where convergence is guaranteed, our learned op-
timization algorithms provably outperform related algorithms based on a (deterministic) worst-case
analysis. Our results rely on PAC-Bayes bounds for general, unbounded loss-functions based on
exponential families. By generalizing existing ideas, we reformulate the learning procedure into a
one-dimensional minimization problem and study the possibility to find a global minimum, which
enables the algorithmic realization of the learning procedure. As a proof-of-concept, we learn hy-
perparameters of standard optimization algorithms to empirically underline our theory.

1 Introduction

Let `(·, θ) be an instance of a class of functions (`(·, θ))θ∈Θ. We consider the minimization problem:
min
x∈Rn

`(x, θ) . (1)

Our goal is the construction of an algorithm A(α), depending on some hyperparameters α, that is provably the best
(on average) for the given class of problems. We contrast the majority of approaches in continuous optimization in
two ways:

i) Classical optimization theory studies the worst-case behaviour, which guarantees the same convergence for
all problems that arise:

α∗ ∈ arg min
α∈H

sup
θ∈Θ

`(A(α, θ), θ) .

Thereby, this is often accompanied by rough estimates and ignores that some problems are more likely to
occur than others. On the other hand, by using the additional information that θ is a realization of some
random variable S, we seek for the average case in form of the mean function, usually called the risk:

α∗ ∈ arg min
α∈H

ES[`(A(α,S),S)] .

From an optimization perspective, this is a distinct approach leading to performance guarantees in expectation
or with high probability. This allows us to exploit features of the considered class of problems beyond ana-
lytical accessible quantities such as the Lipschitz constant (of the gradient) or the strong convexity modulus,
which are usually pessimistic and hard to compute.

ii) Instead of analytically constructing an algorithm driven by intricate worst-case estimates, we train our algo-
rithm (by learning) to be the best one on some samples {`(·, θi)}Ni=1 and prove that the performance general-
izes, in a suitable sense (PAC-Bayes), to the random function `(·,S). This type of problem is naturally found
in the whole area of machine learning and cannot be solved directly, since the mean function is generally
unknown. Consequently, one typically solves an approximate problem like empirical risk minimization in
the hope that the solution found there will transfer:

α∗ ∈ arg min
α∈H

1

N

N∑
i=1

`(A(α, θi), θi) .
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However, through this, one is left with the problem of generalization, which is one of the key problems in
machine learning in general. Therefore, one of the main concerns of learning-to-optimize are generalization
bounds. A famous framework to provide such bounds is the PAC-Bayes framework, which allows for giving
high-probability bounds on the true risk relative to the empirical risk.

In this paper, we apply the PAC-Bayesian theory to the setting of learning-to-optimize. In doing so, we provide PAC-
Bayesian generalization bounds for a general optimization algorithm on a general, unbounded loss function and we
show how one can trade-off convergence guarantees for convergence speed. As a proof of concept, we illustrate our
approach by learning, for example, the step-size τ and the inertial parameter β, i.e., α = (τ, β), of a fixed number of
iterations of the Heavy-ball update scheme given by:

x(k+1) = HB
(
x(k), x(k−1), α, θ

)
:= x(k) − τ∇`(x(k), θ) + β(x(k) − x(k−1)), (2)

which generalizes Gradient Descent for β = 0.

1.1 Our Contributions

• We provide a general PAC-Bayes theorem for general, unbounded loss functions based on exponential fam-
ilies. In this framework, the role of the reference distribution (called the prior), the data dependence of the
learned distribution (called the posterior) and the divergence term arise directly and naturally from the defi-
nition. Furthermore, this abstract approach allows for a unified implementation of the learning framework.

• We provide a principled way of excluding the case of the learnt algorithm’s divergence from the considera-
tions, which in turn allows us to apply our PAC theorem under a modified objective. Based on this, we give
a theoretically grounded way of ensuring a given (user-specified) convergence probability during learning.
Taken together, this allows us to trade-off convergence speed and the probability of convergence. To the best
of our knowledge, both approaches are completely new and could also be very interesting for other learning
approaches.

• We apply our PAC-Bayesian framework to the problem of learning-to-optimize and learn optimization algo-
rithms by minimizing the PAC-Bayesian upper bound.

2 Related Work

The literature on both learning-to-optimize and the PAC-Bayes learning approach is vast. Hence, in the discussion of
learning-to-optimize, we will mainly focus on approaches that provide certain theoretical guarantees. Especially, this
excludes most model-free approaches, which replace the whole update step with a learnable mapping such as a neural
network. Chen et al. (2021) provide a good overview of the variety of approaches in learning-to-optimize. Good
introductory references for the PAC-Bayes approach are given by Guedj (2019) and Alquier (2021).

Learning-to-Optimize with Guarantees. Chen et al. (2021) point out that learned optimization methods may lack
theoretical guarantees for the sake of convergence speed. That said, there are applications where convergence guar-
antee is of highest priority. To underline this problem, Moeller et al. (2019) provide an example where a purely
learning-based approach fails to reconstruct the crucial details in medical image reconstruction. Also, they prove con-
vergence of their method by restricting the output to descent directions, for which mathematical guarantees exist. The
basic idea is to trace the learned object back to, or constrain it to, a mathematical object with convergence guarantees.
Similarly, Sreehari et al. (2016) provide sufficient conditions under which the learned mapping is a proximal mapping.
Related schemes under different assumptions and guarantees are given by Chan et al. (2016), Teodoro et al. (2017),
Tirer and Giryes (2018), Buzzard et al. (2018), Ryu et al. (2019), Sun et al. (2019), Terris et al. (2021) and Cohen et al.
(2021). A major advantage of these methods is the fact that the number of iterations is not restricted a priori. However,
a major drawback is their restriction to specific algorithms and problems. Another approach, which limits the number
of iterations, yet in principle can be applied to every iterative optimization algorithm, is unrolling, pioneered by Gregor
and LeCun (2010). Xin et al. (2016) study the IHT algorithm and show that it is, under some assumptions, able to
achieve a linear convergence rate. Likewise, Chen et al. (2018) establish a linear convergence rate for the unrolled
ISTA. However, a difficulty in the theoretical analysis of unrolled algorithms is actually the notion of convergence
itself, such that one rather has to consider the generalization performance. Only few works have addressed this: Either
directly by means of Rademacher complexity (Chen et al., 2020), or indirectly in form of a stability analysis (Kobler
et al., 2020), as algorithmic stability is linked to generalization and learnability (Bousquet and Elisseeff, 2000, 2002;
Shalev-Shwartz et al., 2010). We consider the model-based approach of unrolling a general iterative optimization
algorithm and provide generalization guarantees in form of PAC-bounds.

2



PAC-Bounds through Change-of-Measure. The PAC-Bayesian framework allows us to give high probability
bounds on the risk, either as an oracle bound or as an empirical bound. The key ingredients are so-called change-
of-measure inequalities. The choice of such an inequality strongly influences the corresponding bound. The one used
most often is based on a variational representation of the Kullback–Leibler divergence due to Donsker and Varadhan
(1975), employed, for example, by Catoni (2004, 2007). Yet, not all bounds are based on a variational representation,
i.e., holding uniformly over all posterior distributions (Rivasplata et al., 2020). However, most bounds involve the
Kullback–Leibler divergence as a measure of proximity, e.g. those by McAllester (2003b,a), Seeger (2002), Langford
and Shawe-Taylor (2002), or the general PAC-Bayes bound of Germain et al. (2009). More recently, other divergences
have been used: Honorio and Jaakkola (2014) prove an inequality for the χ2-divergence, which is also used by Lon-
don (2017). Bégin et al. (2016) and Alquier and Guedj (2018) use the Renyi-divergence (α-divergence). Ohnishi
and Honorio (2021) propose several PAC-bounds based on the general notion of f-divergences, which includes the
Kullback–Leibler-, α- and χ2-divergences. We develop a general PAC theorem based on exponential families. In this
general approach, the role of prior, posterior, divergence and data dependence will be given naturally. Moreover, this
approach allows us to implement a general learning framework that can be applied to a wide variety of algorithms.

Boundedness of the Loss Function. A major drawback of many of the existing PAC-Bayes bounds is the assumption
of a bounded loss-function. However, this assumption is mainly there to apply some exponential moment inequality
like the Hoeffding- or Bernstein-inequality (Rivasplata et al., 2020; Alquier, 2021). Several ways have been developed
to solve this problem: Germain et al. (2009) explicitly include the exponential moment in the bound, Alquier et al.
(2016) use so-called Hoeffding- and Bernstein-assumptions, Catoni (2004) restricts to the sub-Gaussian or sub-Gamma
case. Another possibility, of which we make use of here, is to ensure the generalization or exponential moment bounds
by properties of the algorithm in question. London (2017) uses algorithmic stability to provide PAC-Bayes bounds
for SGD. We consider suitable properties of optimization algorithms aside from algorithmic stability to ensure the
exponential moment bounds. To the best of our knowledge, this has not been done before.

Minimization of the PAC-Bound. The PAC-bound is a relative bound and relates the risk to other terms such as
the empirical risk. Yet, it does not directly say anything about the actual numbers. Thus, one aims to minimize the
bound: Langford and Caruana (2001) compute non-vacuous numerical generalization bounds through a combination
of PAC-bounds with a sensitivity analysis. Dziugaite and Roy (2017) extend this by minimizing the PAC-bound
directly. Pérez-Ortiz et al. (2021) also consider learning by minimizing the PAC-Bayes bound and provide very tight
generalization bounds. Thiemann et al. (2017) are able to solve the minimization problem resulting from their PAC-
bound by alternating minimization. Further, they provide sufficient conditions under which the resulting minimization
problem is quasi-convex. We also follow this approach and consider learning as minimization of the PAC bound,
however, applied to the context of learning-to-optimize.

Choice of the Prior. A common difficulty in learning with PAC-Bayes bounds is the choice of the prior distribution,
as it heavily influences the performance of the learned models and the generalization bound (Catoni, 2004; Dziugaite
et al., 2021; Pérez-Ortiz et al., 2021). In part, this is due to the fact that the divergence term can dominate the bound,
keeping the posterior close to the prior. This leads to the idea to choose a data- or distribution-dependent prior (Seeger,
2002; Parrado-Hernández et al., 2012; Lever et al., 2013; Dziugaite and Roy, 2018; Pérez-Ortiz et al., 2021). As we
also found the choice of the prior distribution to be crucial for the performance of our learned algorithms, we use
a data-dependent prior. Further, we point out how the prior is essential in preserving necessary properties during
learning. It is key to control the trade-off between convergence guarantee and convergence speed.

3 Preliminaries and Notation

If not further specified, we will endow every topological spaceX with the corresponding Borel-σ-algebra B(X). If we
consider a product space X×Y of two measurable spaces (X,A) and (Y,B), we endow it with the product-σ-algebra
A⊗B. We use the Fraktur-font to denote random variables. Let

(
Ω,F ,P

)
be a probability space, Θ be a Polish space

and

S :
(
Ω,F ,P

)
−→ Θ

be a random variable. Its distribution is denoted by PS, following the general notation PX to denote the distribution of
a random variable X. Integration w.r.t. PX is denoted by EX[g] := EX[g(X)] :=

∫
g(x) PX(dx). Finally, 1A denotes

the indicator function of a set A, which is one for x ∈ A and zero else, and log denotes the natural logarithm.
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Definition 3.1. Let N ∈ N. Further, let
(
Ω,F ,P

)
be a probability space, Si :

(
Ω,F ,P

)
−→ Θ, i = 1, ..., N , be

random variables. A measurable function

DN :
(
Ω,F ,P

)
−→

( N∏
i=1

Θ,

N⊗
i=1

B(Θ)
)
, ω 7→

N∏
i=1

Si(ω)

is called a dataset. If the induced distribution PDN
factorizes into the product of the marginals, i.e., if it satisfies

PDN
=
⊗N

i=1 PSi , it is called independent and if, additionally, it satisfies PDN
=
⊗N

i=1 PS, it is called i.i.d.

Notation 3.2. The space (
∏N
i=1 Θ,

⊗N
i=1 B(Θ)) will be denoted by (DN ,B(DN )). Since

⊗N
i=1 B(Θ) is indeed the

Borel-σ-algebra of DN , it will not be mentioned anymore.

In the PAC-Bayesian framework, generalization bounds typically involve a so-called posterior distribution, which in
turn is referred to as a data-dependent distribution. Often, this term is left unspecified. However, as also pointed out by
Rivasplata et al. (2020), this is an instance of a Markov kernel. Another commonly used name are regular conditional
probabilities, following the definition of a regular conditional distribution (Catoni, 2004; Alquier, 2008).

Definition 3.3. Let DN :
(
Ω,F ,P

)
−→ DN be a dataset and H a Polish space. A Markov kernel from DN to H is

called a data-dependent distribution.

Remark 3.4. The assumption of a Polish space is not very restrictive (for practical considerations) and sufficient to
ensure the existence of such Markov kernels.

The following theory will be based on exponential families, which are a special class of probability distributions with
a specific, mathematically convenient form.

Definition 3.5. Let Λ ⊂ Rk. A family of probability measures (Qλ)λ∈Λ on a measurable space (H,B(H)) is called
an exponential family, if there is a dominating probability measure PH, measurable functions η1, ..., ηk : Λ −→ R, a
measurable function A : Λ −→ R>0, measurable functions T1, ..., Tk : H −→ R and h : H −→ R>0, such that every
Qλ has a PH-density of the form:

dQλ
dPH

(α) = h(α)A(λ) exp
(
〈η(λ), T (α)〉

)
, PH − a.s.

where η := (η1, ..., ηk) and T := (T1, ..., Tk).

In the PAC-Bayesian setting, the dominating measure PH is usually referred to as the prior and every distribution
Q � PH is referred to as a posterior. Note that this deviates from the standard definitions of prior and posterior in
Bayesian statistics, which are linked through the likelihood. We use a similar notation as in Barndorff–Nielsen (2014)
and denote

c(λ) :=

∫
H
h(α) exp(〈η(λ), T (α)〉) PH(dα)

κ(λ) := log(c(λ)),

(3)

or short, κ = log(c). It holds that A(λ) = c(λ)−1.

Remark 3.6. In the case h = 1 and η(λ) = λ, c is the Laplace transform (moment generating function) of the push-
forward measure PH ◦ T−1 and κ the corresponding log-Laplace transform (cumulant-generating function). Further,
if η(λ) actually describes a lower-dimensional manifold or curve in Rk, (Qλ)λ∈Λ is sometimes also called a curved
exponential family (Efron, 1975).

Remark 3.7. In the following we will consider data-dependent exponential families, i.e., the sufficient statistic T
additionally depends on a dataset DN . Hence, also c and κ do depend on DN . Thus, we will assume that T :
H×DN −→ R is measurable. In this case, Qλ is indeed a data-dependent distribution.

Notation 3.8. For notational simplicity, we will omit the dependence of Qλ, T , c and κ on the dataset DN .

For the rest of the paper, we assume that we are given an exponential family (Qλ)λ∈Λ w.r.t. PH of the form:

dQλ
dPH

(α) =
h(α)

c(λ)
exp
(
〈η(λ), T (α)〉

)
. (4)
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Finally, since the loss-function is neither assumed to be bounded nor to satisfy any self-bounding or bounded-difference
property, the following result will be needed. It states that non-negative random variables with finite second moment
satisfy a one-sided sub-Gaussian inequality. It can be found as Exercise 2.9 on page 47 in the book by Boucheron et al.
(2013).

Lemma 3.9. Let X be a non-negative random variable with finite second moment. Then, for every λ > 0 it holds:

E
[
exp
(
−λ(X− E[X])

)]
≤ exp

(λ2

2
E[X2]

)
.

4 Problem Setup

As described in the introduction, we aim to solve the following minimization problem with a random objective function
` under Assumption 1:

min
x∈Rn

`(x,S) .

Assumption 1. Θ is a Polish space, S :
(
Ω,F ,P

)
−→ Θ is a random variable, and ` : Rn×Θ −→ R is measurable

and non-negative.

Remark 4.1. The non-negativity assumption is not restrictive, as any lower-bounded function f can be rescaled
according to `(x, θ) := f(x, θ)− infx∈Rn f(x, θ).

To actually solve this problem for a concrete realization θ, we apply an optimization algorithmA to `. For this, we will
consider a similar setting as in London (2017), i.e., randomized algorithms are considered as deterministic algorithms
with randomized hyperparameters.

Definition 4.2. LetH be a Polish space. A measurable function

A : H× Rn ×Θ −→ Rn

is called a parametric algorithm andH is called the hyperparameter space of A. A random variable

H :
(
Ω,F ,P

)
−→ H

is called a hyperparameter of A.

Remark 4.3. A depends on θ ∈ Θ, as it is applied to `.

Learning now refers to learning a distribution Q onH. For this, one needs a reference distribution:

Assumption 2. A is a parametric optimization algorithm with hyperparameter space H. The prior PH is induced by
hyperparameters H :

(
Ω,F ,P

)
−→ H that are independent of the dataset DN and S. The initialization x(0) ∈ Rn is

given and fixed.

The initialization and the probability space
(
Ω,F ,P

)
will not be mentioned anymore. We define the risk of a random-

ized parametric algorithm in the usual way:

Definition 4.4. Let N ∈ N and let DN = (S1, ...,SN ) be a data set. Further, let A be a parametric algorithm with
hyperparameter space H. Furthermore, let S ∼ PS be independent of DN . Finally, let ` : Rn ×Θ −→ R≥0 satisfy
Assumption 1. The risk of A is defined as the measurable function:

R : H −→ R≥0, α 7→ ES[`
(
A(α,S),S

)
] .

Similarly, the empirical risk of A on DN is defined as the measurable map R̂ : H×DN −→ R≥0 with:

R̂(α,DN ) =
1

N

N∑
i=1

`
(
A(α,Si),Si

)
.

Notation 4.5. We also use `(α, θ) := `(A(α, θ), θ).
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5 General PAC-Bayesian Theorem

In this section we derive a general PAC-Bayes bound, which will be used to bound the generalization risk of the learned
parametric optimization algorithm A. As stated above, PAC-Bayesian theorems are usually based on a change-of-
measure (in-)equality. The following lemma is a form of the Donsker–Varadhan variational formulation. Though it is
not new, we state it nevertheless for the sake of completeness. The proof is especially easy in this case. We provide all
the proofs in Appendix A.

Lemma 5.1. Let (Qλ)λ∈Λ be an exponential family onH w.r.t. PH of the form (4) and κ as in (3). Then it holds:

κ(λ) = sup
Q�PH

EQ
[
〈η(λ), T 〉+ log(h)

]
−DKL(Q ‖ PH) .

Furthermore, the supremum is attained at Qλ.

The proof is given in Appendix A.1. This change-of-measure equality allows to directly give the PAC-Bayesian
theorem in its general form. Basically, one uses Markov’s inequality to give a probabilistic bound on κ(λ). The
restriction to a finite set is made such that the bound also holds uniformly in λ ∈ Λ by a union-bound. This idea
appeared previously (Langford and Caruana, 2001; Catoni, 2007; Alquier, 2021).

Theorem 5.2. Let (Qλ)λ∈Λ be an exponential family onH of the form (4). Further, let Λ be a finite set with cardinality
|Λ| and let EDN

[c(λ)] ≤ 1 for all λ ∈ Λ. Then, for ε > 0, it holds that:

PDN

{
∀λ ∈ Λ, ∀Q� PH : EQ

[
〈η(λ), T 〉+ log(h)

]
≤ DKL(Q ‖ PH) + log

( |Λ|
ε

)}
≥ 1− ε .

The proof is given in Appendix A.2.

Remark 5.3. The restriction to a finite set gets problematic, if the term log(|Λ|) influences the bound strongly. In our
application the loss is usually much larger than log(|Λ|), such that this is not the case even for large |Λ|.

For the rest of the paper, we will have h ≡ 1. Corollary 5.4 shows how to transform this general result into a high-
probability bound on the risk. It follows directly by using the properties of the Euclidean scalar product.

Corollary 5.4. Let the assumptions of Theorem 5.2 hold. Furthermore, assume that there are T ′ : H×DN −→ Rk−1,
η′ : Λ −→ Rk−1 and η1 : Λ −→ R>0, such that η and T are given by:

η(λ) =
(
η1(λ), η′(λ)

)
, T (α,DN ) =

(
R(α)− R̂(α,DN ), T ′(α,DN )

)
.

Then it holds for ε > 0:

PDN

{
∀λ ∈ Λ,∀Q� PH : EQ[R] ≤ EQ[R̂]

+
1

η1(λ)

(
DKL(Q ‖ PH) + log

( |Λ|
ε

)
− EQ

[
〈η′(λ), T ′〉

])}
≥ 1− ε .

(5)

In Section 6 we provide sufficient conditions, such that EDN
[c(λ)] ≤ 1 holds for all λ > 0.

5.1 Minimization of the PAC-Bound

In this whole subsection we use η and T from Corollary 5.4. We seek for λ ∈ Λ and Q � PH that minimizes the
right-hand side of the generalization bound in (5). By factoring out − 1

η1(λ) again, this is actually the same as:

inf
λ∈Λ
− 1

η1(λ)

(
sup

Q�PH

EQ[〈η(λ), T̃ 〉]−DKL(Q ‖ PH)− log
( |Λ|
ε

))
,

where T̃ (α,DN ) :=
(
−R̂(α,DN ), T ′(α,DN )

)
. Since log(|Λ|/ε) is a constant, Lemma 5.1 shows that the term

inside the brackets is actually given by κ̃(λ) − log(|Λ|/ε), where κ̃ corresponds to the exponential family Qλ built
upon T̃ , η and h ≡ 1. Furthermore, it shows that the optimal posterior distribution is given by the corresponding
member of the exponential family (usually called the Gibbs posterior (Alquier, 2021)):

dQλ
dPH

(α) =
exp(〈η(λ), T̃ (α)〉)
EH[exp(〈η(λ), T̃ 〉)]

.
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By denoting F (λ) := − 1
η1(λ) (κ̃(λ)− log(|Λ|/ε)), one is left with solving the following minimization problem:

min
λ∈Λ

F (λ), (6)

which for Λ ⊂ R is one-dimensional. Under mild assumptions, one can show that arg minλ>0 F (λ) lies in a bounded
interval. Thus, one can control the accuracy of the solution of the minimization problem (6) by the choice of Λ.
The computational cost for evaluating this one-dimensional function several times is low compared to solving several
minimization problems during training.

6 Learning Optimization Algorithms with Theoretical Convergence Guarantees

In this section, we consider properties of optimization algorithms, that assert the necessary condition EDN
[c(λ)] ≤ 1

for all λ ∈ Λ to employ the PAC-Bayes bound from Section 5. Typically, this yields the functions η′ and T ′.

6.1 Guaranteed Convergence

The following convergence property is sufficient to ensure the assumptions of Theorem 5.2. Essentially, it requires the
loss of the algorithm’s output to be bounded. Nevertheless, it is shown in Section 6.2 that it is too restrictive to learn
hyperparameters that allow for a significant acceleration compared to the standard choices from a worst-case analysis.

Assumption 3. There is a constant C ≥ 0 and a measurable function ρ : H −→ R≥0, such that it holds:

`(A(α,S),S) ≤ Cρ(α)`(x(0),S) ∀α ∈ H .

Remark 6.1. The basic motivation for Assumption 3 is to take the (possibly known) convergence behaviour of an
optimization algorithm into account.

Theorem 6.2. Let N ∈ N and DN be an i.i.d. dataset. Assume A satisfies Assumption 3. Further, assume that
ES

[
`(x(0),S)2

]
<∞. Define η : R>0 −→ R2 and T : H×DN −→ R2 through:

η(λ) :=
(
λ, −λ

2

2

C2

N
ES

[
`(x(0),S)2

])
, T (α,DN ) := (R(α)− R̂(α,DN ), ρ2(α)) .

Then, for all λ > 0, it holds that:
EDN

[c(λ)] ≤ 1 .

The proof can be found in Appendix A.3.

6.2 Conditioning on Convergence

Most of the time, the previous approach is only able to learn hyperparameters that ensure convergence. When the con-
sidered class of functions (`(·, θ))θ∈Θ is that of general quadratic functions, the convergence behaviour is accurately
represented by analytic quantities from a worst-case analysis. Thereby, Assumption 3 prevents ”aggressive” step-size
parameters that lie outside the worst-case convergence regime. This is also encoded in Assumption 3, as C and ρ are
independent of S. Moreover, it can be difficult to compute them. Hence, in this section, a different approach is taken:
We allow for divergence, if it only occurs in rare cases with a controllable quantity. Essentially, one only considers
the loss for all the hyperparameters, where convergence occurs, as well as the probability for that. In Section 6.3, we
develop a technique that allows the user to control this probability. Clearly, a higher convergence guarantee trades
for convergence speed. To the best of our knowledge, the following way of dealing with the rare, unwanted case is
completely new.

Definition 6.3. The convergence set is defined as the set-valued mapping C : H⇒ Θ with

C(α) := {θ ∈ Θ | `(A(α, θ), θ) ≤ `(x(0), θ)} .

For every α ∈ H, the set C(α) is measurable, as the map θ 7→ `(A(α, θ), θ)− `(x(0), θ) is measurable. Nevertheless,
we have to make the following assumption:

Assumption 4. The map p : H −→ [0, 1], α 7→ p(α) := PS[C(α)] is measurable.

Remark 6.4. This assumption is difficult to verify, since it involves the measurability of the set-valued mapping C.

7



Now we define the convergence risk as the expect loss conditioned on the convergence of the algorithm:

Definition 6.5. The convergence risk is defined as the conditional expectation of the loss given C(α):

Rc(α) := ES[`(A(α,S),S) | C(α)] =

{
1

p(α)ES[1C(α)(S)`(α,S)], if p(α) > 0 ;

0, else .

Given a dataset DN = (S1, ...,SN ), the empirical convergence risk is defined as:

R̂c(α,DN ) :=
1

p(α)

1

N

N∑
i=1

1C(α)(Si)`(α,Si) .

The following theorem is a generalization of Theorem 6.2.

Theorem 6.6. Assume that PH{p > 0} = 1 and ES[`(x(0),S)2] <∞. Define η : R>0 −→ R2 and T : H×DN −→
R2 through

η(λ) :=
(
λ, −λ

2

2

1

N
ES

[
`(x(0),S)2

])
, T (α,DN ) :=

(
Rc(α)− R̂c(α,DN ),

1

p(α)2

)
.

Then, for all λ > 0, it holds that:

EDN
[c(λ)] ≤ 1 .

The proof is given in Appendix A.4.

Remark 6.7. PH{p > 0} = 1 says that, under the prior, the algorithm should not diverge exclusively.

6.3 Guarantee of Convergence with High Probability

In the previous approach, care has to be taken in the choice of the prior PH: Constructing the prior in a way that
minimizes the upper bound as much as possible can lead to the case where a high convergence probability is neglected,
i.e., the algorithm converges only on a small subset of the parameters and for them especially fast, because the term

1
p(α) might not compensate for the smaller convergence risk. Thus, if a certain convergence probability εconv has to
be satisfied, one has to ensure this in another way. We propose to use a direct consequence of absolute continuity:

Lemma 6.8. Let εconv ∈ [0, 1] and PH be such that PH{p < εconv} = 0. Then it holds for every Q� PH:

Q{p < εconv} = 0 .

Though the proof is trivial, this lemma has a very important consequence, which we want to emphasize here: If one
can guarantee that a required property is satisfied for the prior, it will be preserved during the PAC-Bayes learning
process, i.e., if the prior only puts mass on hyperparameters that ensure a certain convergence probability, also the
posterior will allow only hyperparameters that ensure the same convergence probability. Thus, ensuring a convergence
probability will be part of the construction of the prior.

7 Experiments

In all experiments, we use n = 50 and a quadratic loss function for which we can choose the smallest and largest
eigenvalue, i.e., a loss of the form 1

2‖Ax − b‖
2. As optimization algorithms we unroll either the Heavy-ball (2) or

Gradient Descent update step for a fixed number of iterations. In the case of Gradient Descent we learn the (constant)
step-size, and in the case of heavy-ball we learn the step-size and the extrapolation parameter (both constant). Note
that all results are created with a single sample from the posterior and do not show the expected value under the
posterior. The experiments are a proof-of-concept for our theory in an easily controllable setting. Actually, our theory
does not require a quadratic, in fact not even convex, loss function. More details about the learning procedure are
given in Appendix B.
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Figure 1: Posterior for an increasing number of iter-
ations: The initial prior is chosen as a Gaussian cen-
tered at 1

2 ( 1
L + 2

L ). The posterior distributions for
Nit ∈ {5, 15, 45, 135} are shown. For an increasing
number of iterations the posterior puts increasingly
more mass close to αstd = 2

L+µ .

Figure 2: Test loss over the iterations: The black lines
are for the standard choices of the hyperparameters.
The empirical mean is given by the dashed line, and
the median by the dotted one. The other lines show
the test loss for p(α) ∈ {0.9, 0.7, 0.5, 0.3}. By ex-
cluding the worst-case, one can accelerate the opti-
mization procedure significantly.

7.1 Convergence of the Posterior

The first experiment considers the posterior distribution over the step-size parameter of Gradient Descent. The param-
eter S is given by the right-hand side b of the quadratic problem, i.e., all problems have the same strong convexity
parameter µ and the same smoothness parameter L (smallest and largest eigenvalue of ATA). We use Ntrain = 200
and build the exponential family with η and T from Section 6.1, i.e., convergence is guaranteed during learning. We
are interested in how the posterior distribution evolves for an increasing number of iterations of the algorithm. Since it
is known that αstd = 2

L+µ yields the optimal rate in the worst-case (Nesterov et al., 2018), one would expect that the
posterior puts increasingly more mass onto step-sizes close to αstd. Figure 1 confirms this intuition. Also, it shows
that Assumption 3 prohibits step-sizes larger than 2

L , which could lead to divergence easily.

7.2 Conditioning on Convergence

Here, the parameters S of ` are given by the quadratic matrix and the right-hand side, i.e., the problems have a differing
strong convexity parameter µ and smoothness parameterL. We sample these from a uniform distribution over [µ−, µ+]
and [L−, L+]. This simulates a situation where these parameters can only be estimated roughly. We use the Heavy-

ball method for 50 iterations. The standard choice for the hyperparameters are given by τstd =
(

2√
L++

√
µ−

)2

and

βstd =
(√

L+−
√
µ−√

L++
√
µ−

)2

(Nesterov et al., 2018). We use Nprior = 100, Ntrain = 100 and Ntest = 200. Figure 2

shows the convergence behaviour for different convergence guarantees. As one can see, excluding the worst-case
(εconv ≥ 0.9) leads to a significantly better convergence result. However, a further decrease of the convergence
guarantee does not lead to a further acceleration. This does not match the expected behaviour, yet is explained by the
next experiment.

7.3 Ensuring a Certain Convergence Probability

We use the same setup as in Section 7.2 and investigate the empirical convergence probability on several test sets. We
use Nprior = 100, Ntrain = 100 and 25 test sets of size Ntest = 250 per user-specified convergence probability
to estimate the true convergence probability of the algorithm. Note that we use the same datasets for all different
convergence probabilities, i.e., we create them beforehand. We use the standard estimator for binomial distributions as
empirical estimate for the convergence probability, i.e., p̂(α) = Nconv

Ntest
. Figure 3 shows the result of this experiment:

All empirical convergence probabilities lie well above the diagonal, i.e., the algorithm indeed ensures the user-specified
convergence probability. However, one can also see that it clearly favors a higher convergence probability than neces-
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Figure 3: Empirical convergence probability: The
dashed diagonal indicates the user-specified conver-
gence probability. Each cross represents the empiri-
cal convergence probability on a separate test set. All
empirical convergence probabilities lie well above
the diagonal, i.e., the algorithm indeed ensures the
user-specified convergence probability.

Figure 4: Test loss as histogram: The blue thin
bars represent the learned hyperparameters and the
red thick bars the ones from a worst-case analy-
sis. The vertical lines represent the empirical mean
for the learned hyperparameters (blue dashed) and
the corresponding PAC-bound (orange dotted). The
learned hyperparameters clearly outperform the stan-
dard ones, yet the PAC-bound is not perfectly tight.

sary, which can hinder the performance and explains the somewhat unexpected behaviour in the previous experiment.
As indicated by the theory, this behaviour is probably due to our construction of the prior distribution.

7.4 Evaluation of the PAC-Bound

This experiment looks at the tightness of the PAC-bound. We adopt the setting from Section 7.2. Based on the previous
experiment, we choose εconv = 0.9 as convergence guarantee. Further, we use Nprior = 200, Ntrain = 1000 and
Ntest = 200. The training dataset is chosen larger than before, since the PAC-bound is not yet very tight for small
datasets. Figure 4 shows the resulting losses on the test set as histogram plot, as well as the empirical mean and the
PAC-Bayes bound. One can clearly see the improved performance of Heavy-ball with the learned hyperparameters.
Further, one can see that the PAC-bound is not perfectly tight, however provides a good estimate of the true mean.

8 Conclusion

We presented a general PAC-Bayes theorem based on exponential families, which allows for a unified implementation
of the learning framework. We applied this framework to the setting of learning-to-optimize and derived properties,
under which the theorem is applicable to a given algorithm. Further, we provided a principled way to exclude unwanted
cases by using conditional expectations and showed how to preserve necessary properties during learning. We believe
that both approaches can be of great interest even aside the setting of learning-to-optimize. Finally, we provided a
proof-of-concept of our theory on several experiments.

Limitations. We mainly see four limitations of our work: First, a theoretical guarantee to find the global minimum
in (6) is still missing. Second, the construction of the prior is difficult and time-consuming. Third, we expect similar
scaling problems for high-dimensional hyperparameters as with other probabilistic methods. And fourth, the trade-off
between convergence speed and convergence probability is partly rather conservative. These problems are very related
and will be addressed in future work.
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A Missing Proofs

A.1 Proof of Lemma 5.1

Proof. Recall that κ(λ) = log
(∫

h exp
(
〈η(λ), T 〉

)
dPH

)
and A(λ) = c(λ)−1. We have to show:

1) κ(λ) = supQ�PH
EQ
[
〈η(λ), T 〉+ log(h)

]
−DKL(Q ‖ PH).

2) The supremum is attained at Qλ.

For this, we first show κ(λ) ≥ EQ
[
〈η(λ), T 〉+ log(h)

]
−DKL(Q ‖ PH) for an arbitrary Q � PH and then equality

for Qλ. Thus, let Q� PH and denote by dQ
dPH

its Radon-Nikodym derivative w.r.t. PH. Then it holds:

EQ

[
〈η(λ), T 〉+ log(h)

]
−DKL(Q ‖ PH) =

∫
〈η(λ), T 〉+ log(h)− log

( dQ
dPH

)
dQ

=

∫
log
( h

dQ
dPH

exp
(
〈η(λ), T 〉

))
dQ .

Since the logarithm is concave, by Jensen’s inequality this can be bounded by:

≤ log
(∫ h

dQ
dPH

exp
(
〈η(λ), T 〉

)
dQ
)

= log
(∫

h exp
(
〈η(λ), T 〉

)
dPH

)
= κ(λ) .

It remains to show the equality for Qλ:

DKL(Qλ ‖ PH) =

∫
log
(dQλ
dPH

)
dQλ

=

∫
log
(
hA(λ) exp(〈η(λ), T 〉)

)
dQλ

=

∫
log(h) + 〈η(λ), T 〉 dQλ + log(A(λ))

= EQλ

[
log(h) + 〈η(λ), T 〉

]
− log(c(λ))

= EQλ

[
log(h) + 〈η(λ), T 〉

]
− κ(λ),

which yields:

κ(λ) = EQλ

[
log(h) + 〈η(λ), T 〉

]
−DKL(Qλ ‖ PH) .

Thus, the supremum is attained at Qλ. This concludes the proof.

A.2 Proof of Theorem 5.2

Proof. We will use c(λ) and κ(λ) as a short-hand for c(λ,DN ) and κ(λ,DN ) respectively. c(λ) is a non-negative
random variable and exp is a monotonically increasing function. Thus, since EDN

[c(λ)] ≤ 1 for all λ ∈ Λ, one gets
for every λ ∈ Λ from Markov’s inequality for every s ∈ R:

PDN

{
c(λ) > exp(s)

}
≤ EDN

[c(λ)]

exp(s)
≤ exp(−s) .

Since c(λ) > exp(s) ⇔ κ(λ) = log(c(λ)) > s, this is the same as:

PDN

{
κ(λ) > s

}
≤ exp(−s) .
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This implies by the union-bound argument, that:

PDN

{
sup
λ∈Λ

κ(λ) > s
}

= PDN

{⋃
λ∈Λ

{κ(λ) > s}
}
≤
∑
λ∈Λ

PDN

{
κ(λ) > s

}
≤ |Λ| exp(−s) .

Inserting s = log
(
|Λ|
ε

)
gives:

PDN

{
sup
λ∈Λ

κ(λ) > log
( |Λ|
ε

)}
≤ ε .

Hence, the complementary event yields:

PDN

{
sup
λ∈Λ

κ(λ) ≤ log
( |Λ|
ε

)}
≥ 1− ε .

Using κ(λ) = supQ�PH
EQ
[
〈η(λ), T 〉+ log(h)

]
−DKL(Q ‖ PH) then gives:

PDN

{
sup
λ∈Λ

sup
Q�PH

EQ[log(h) + 〈η(λ), T 〉]−DKL(Q ‖ PH) ≤ log
( |Λ|
ε

)}
≥ 1− ε .

Rearranging and reformulating then yields the result:

PDN

{
∀λ ∈ Λ, ∀Q� PH : EQ[log(h) + 〈η(λ), T 〉] ≤ DKL(Q ‖ PH) + log

( |Λ|
ε

)}
≥ 1− ε .

A.3 Proof of Theorem 6.2

Proof. We use the following short-hand notation:

L(α) := `(A(α,S),S), Li(α) := `(A(α,Si),Si), L0 := `(x(0),S) .

By the i.i.d. assumption, one can write for every fixed α ∈ H:

EDN

[
exp
(
λ(R(α)− R̂(α,DN ))

)]
= EDN

[
exp
(
− λ
N

N∑
i=1

(
Li − ES[L]

))]
= EDN

[ N∏
i=1

exp
(
− λ
N

(Li − ES[L])
)]

iid
=

N∏
i=1

ES

[
exp
(
− λ
N

(
L− ES[L]

))]
.

Since the loss-function is non-negative and A satisfies the convergence property, one gets that L is a non-negative
random variable with finite second-moment:

ES[L2] = ES

[
`
(
A(α,S),S

)2]
≤ C2ρ(α)2ES

[
`
(
x(0),S

)2]
= C2ρ(α)2ES[L2

0] .

Thus, by lemma 3.14, one gets the following bound:

≤
N∏
i=1

exp
( λ2

2N2
ES[L2]

)
= exp

( λ2

2N
ES[L2]

)
.

Since the exponential function is monotonically increasing, by the convergence property this can again be bounded
by:

≤ exp
( λ2

2N
C2ρ(α)2ES[L2

0]
)
.

Thus, for any α ∈ H one arrives at the following inequality:

EDN

[
exp
(
λ(R(α)− R̂(α,DN ))

)]
≤ exp

( λ2

2N
C2ρ(α)2ES[L2

0]
)
.
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Since the right-hand side is a constant w.r.t. PDN
, rearranging terms gives:

EDN

[
exp
(
λ(R(α)− R̂(α,DN ))− λ2

2

C2

N
ρ(α)2ES[L2

0]
)]
≤ 1 .

By integrating both sides with respect to PH and using Fubini’s theorem (note that this is possible, since PH is inde-
pendent of DN ), one gets:

EDN

[
EH

[
exp
(
λ(R(H)− R̂(H,DN ))

)
− λ2

2

C2

N
ρ(H)2ES[L2

0]
]]
≤ 1 .

Inserting the definition of η and T now gives:

EDN

[
EH

[
exp
(
〈η(λ), T (H,DN )〉

)]]
≤ 1 .

By definition of the Laplace transform, this is the same as:

EDN
[c(λ,DN )] ≤ 1 .

A.4 Proof of Theorem 6.6

Proof. The proof is very similar to the proof of lemma 5.1 and basically follows the same line of argumentation. We
use `c(α, θ) := 1C(α)(θ)`(α, θ) as short-hand and call this the convergence loss. First, consider α ∈ H fixed with
p(α) > 0. Then it holds:

EDN

[
exp(λ(Rc(α)− R̂c(α,DN )))

]
= EDN

[
exp
(
− λ

Np(α)

N∑
i=1

(
`c(α,Si)− ES[`c(α,S)]

))]
= EDN

[ N∏
i=1

exp
(
− λ

Np(α)

(
`c(α,Si)− ES[`c(α,S)]

))]
.

Since DN is assumed to be i.i.d., this is the same as:

=

N∏
i=1

ES

[
exp
(
− λ

Np(α)

(
`c(α,S)− ES[`c(α,S)]

))]
.

Since the convergence loss is non-negative and has a finite second-moment (since ES[`c(α,S)2] ≤ ES[`(x(0),S)2] <
∞), by lemma 3.14 this can be bounded by:

≤
N∏
i=1

exp
( λ2

2N2p(α)2
ES

[
`c(α,S)2

])
= exp

( λ2

2Np(α)2
ES

[
`c(α,S)2

])
.

By definition of the convergence set, this can in turn be bounded by:

≤ exp
( λ2

2Np(α)2
ES

[
1C(S)`(x

(0),S)2
])
≤ exp

( λ2

2Np(α)2
ES

[
`(x(0),S)2

])
.

Thus, one gets PH-a.s.:

EDN

[
exp(λ(Rc(α)− R̂c(α,DN )))

]
≤ exp

( λ2

2Np(α)2
ES

[
`(x(0),S)2

])
.

Since the right-hand side is independent of DN , this is equivalent to:

EDN

[
exp
(
λ(Rc(α)− R̂c(α,DN ))− λ2

2Np(α)2
ES

[
`(x(0),S)2

])]
≤ 1 .

Since PH

{
p(H) > 0

}
= 1, one can integrate both sides w.r.t. PH. Furthermore, since PH is independent of DN , one

can use Fubini’s theorem to get:

EDN

[
EH

[
exp
(
λ(Rc(H)− R̂c(H,DN ))− λ2

2Np(α)2
ES

[
`(x(0),S)2

])]]
≤ 1 .
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Using the definition of η and T , this is the same as:

EDN

[
EH

[
exp(〈η(λ), T (H,DN )〉)

]]
≤ 1,

which is equivalent to:
EDN

[
c(λ,DN )

]
≤ 1 .

B Description of the Learning Procedure

In this section we provide further details about the implementation.

B.1 General Setup

We use n = 50 as dimension of the optimization problem, 50 iterations of the algorithm, x(0) = 0 ∈ Rn as ini-
tialization and ε = 0.01 as threshold in the PAC-bound. For every implementation of the parametric optimization
algorithm A, we specify all (learnable) hyperparameters in a named dictionary, such that we can match all involved
quantities like corresponding priors during learning by their unique names. Furthermore, since we perform first-order
gradient-based optimization, we implement every algorithm in the form A(x(0), θ,∇x`, α, nit), where ∇x` denotes
the gradient of ` w.r.t. x as function of θ. Through this, the following learning procedure can be applied to all tested
algorithms in the same way.

B.2 Creation of the Parametric Problems

Fixed strong convexity and smoothness parameters. We create the matrix A ∈ Rn×n randomly, where every
entry is created by sampling an integer in {−10, ..., 10} uniformly at random and then adding noise from a standard
normal distribution. This matrix is fixed across the different instances of the problem, such that all problems have
the same strong convexity and smoothness parameter. For the right-hand side b ∈ Rn, which in this case is the only
parameter of the parametric optimization problem, we first create a mean m and a covariance matrix Σ by sampling
every entry uniformly at random in {−5, ..., 5} (and updating Σ ← ΣTΣ to make it positive definite), and then we
sample Nprior +Ntrain +Ntest right-hand sides from the multivariate normal distribution N (m,Σ).

Varying strong convexity and smoothness parameters. The creation of the right-hand sides is the same as in the
previous paragraph. Thus, we will only describe the creation of the matrices A, which define the strong convexity
parameter µ and smoothness parameter L. First of all, we restrict to a diagonal matrix. Further, since we found
the strong convexity parameter µ to have only a negligible influence in previous experiments (if the problem is not
generally well-conditioned, in which case one would not have to learn anything), we fix it (typically µ = 0.05) and
only vary the smoothness parameter L. First, we sample Nprior + Ntrain + Ntest smoothness parameters uniformly
at random in [1, 5000]. Then, for each smoothness parameter we create the matrix A by linearly interpolating between√
µ and

√
L and inserting these elements (randomly permutated) into the diagonal of A.

B.3 Learning Procedure

At first, we setup the sufficient statistics T and the natural parameters η as functions in α and λ, which can be called
during training. We hand these, together with the specified priors, over to the general implementation of the learning
procedure, which performs the following steps:

i) First, we create samples from the initial prior (depending on the experiment between 50 and 500).
ii) Then we evaluate the sufficient statistics T on these samples and find arg minλ∈Λ F (λ) by a simple grid

search. For this we use a linear grid Λ over (0, 1] with 25000 entries (note that this corresponds to log(|Λ|) ≈
10 and has, compared to solving the minimization problems during learning, a negligible computational cost).
Note that this also directly yields the PAC-bound.

iii) Then, we calculate the posterior density on these samples through the formula for the Gibbs posterior, i.e.,
if f denotes the density of the prior (w.r.t. the Lebesgue measure), we calculate f(αi)

exp(〈η(λ),T (αi)〉)
EH[exp(〈η(λ),T 〉)] for

every sample αi. Here we use the empirical mean as approximation for the integral.
iv) Finally, we normalize the resulting values, such that we have a distribution over these samples.
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Through this, we effectively build a discrete distribution. For visualization purposes, we take a single instance (the
argmax from the discrete posterior) as learned hyperparameter.

B.4 Construction of the Prior

If we actively construct the prior for a given hyperparameter (instead of using a fixed one as in the first experiment),
we do this in an iterative fashion (typically two iterations) on a separate dataset:

i) First, since we assume that we have access to the standard choice of the hyperparameters αstd, we put a
uniform prior around αstd, i.e., U [C1, C2], where C1 < αstd and C2 > αstd depend on the user-specified
convergence probability, i.e., they are chosen more ”aggressive”, if a smaller convergence guarantee has to
be satisfied. In our experiments, we actually used C1 = 0.5

εconv
2

Lmax
and C2 = 3

εconv
2

Lmax
for the step-

size parameter and C1 = 1
2βstd and C2 = 2βstd for the extrapolation parameter. Here εconv denotes

the user-specified convergence probability. Initially, we started also with more ”aggressive” values for the
extrapolation parameter depending on the convergence probability. However, we found that the learned
values almost exclusively ended up in that range, such that we directly restricted it.

ii) Then we run the learning procedure with this prior dataset. As described above, this yields a discrete dis-
tribution over some samples from the initial prior. From these samples, we retain only those that satisfy
the user-specified convergence probability (see Section B.5) and, if these are many, only those with highest
posterior density.

iii) Then we build a new uniform distribution U [a, b] as initial distribution for the next iteration (i.e., start from
ii) again). For this, we use the standard estimators for a and b, i.e., min and max over the remaining samples.

Note that this procedure is contractive, i.e., it does not yield a distribution that puts mass outside the very first initial
distribution.

B.5 Ensuring a Certain Convergence Probability

As described above and in the main text, ensuring the convergence probability is part of the construction of the prior.
For this, we simply split the prior data set into two parts of size Nprior,1 and Nprior,2 (typically Nprior,1 ≈ Nprior,2).
The first one is used in the learning procedure in the construction of the prior as described above in Section B.4,
and the second one is used as a separate test set to check for the convergence probability. Here we use the standard
estimator for the binomial distribution p̂conv(α) = Nconv

Nprior,2
. Based on this estimate, we only keep those samples

in Section B.4 that satisfy the user-specified convergence probability during the construction of the prior. Hence,
since the construction of the prior is contractive (as described in Section B.4), this constrains the prior to only put
mass on regions that satisfy the convergence guarantee. However, as seen in the experiments, it is also partly rather
conservative.

15



References

Alquier, P. (2008). PAC-Bayesian bounds for randomized empirical risk minimizers. Mathematical Methods of
Statistics, 17(4):279–304.

Alquier, P. (2021). User-friendly introduction to PAC-Bayes bounds. arXiv preprint arXiv:2110.11216.

Alquier, P. and Guedj, B. (2018). Simpler PAC-Bayesian bounds for hostile data. Machine Learning, 107(5):887–902.

Alquier, P., Ridgway, J., and Chopin, N. (2016). On the properties of variational approximations of Gibbs posteriors.
Journal of Machine Learning Research, 17(1):8374–8414.

Barndorff–Nielsen, O. (2014). Information and exponential families: in statistical theory. John Wiley & Sons.
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