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Abstract

Stochastic algorithms, especially stochastic gradient descent (SGD), have proven to be
the go-to methods in data science and machine learning. In recent years, the stochastic
proximal point algorithm (SPPA) emerged, and it was shown to be more robust than SGD
with respect to stepsize settings. However, SPPA still suffers from a decreased convergence
rate due to the need for vanishing stepsizes, which is resolved by using variance reduction
methods. In the deterministic setting, there are many problems that can be solved more
efficiently when viewing them in a non-Euclidean geometry using Bregman distances.
This paper combines these two worlds and proposes variance reduction techniques for
the Bregman stochastic proximal point algorithm (BSPPA). As special cases, we obtain
SAGA- and SVRG-like variance reduction techniques for BSPPA. Our theoretical and
numerical results demonstrate improved stability and convergence rates compared to the
vanilla BSPPA with constant and vanishing stepsizes, respectively. Our analysis, also,
allow to recover the same variance reduction techniques for Bregman SGD in a unified
way.
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1 Introduction

The objective of the paper is to solve the following finite-sum optimization problem
1 n
inimize — ; 1.1
minimize — ;fz(X), (1.1)

where H C R? is closed and convex with non empty interior, and f;: R? — R U {400} is
convex, for i € {1,...,n}.

The prime example of Problem (1.1) is the Empirical Risk Minimization (ERM) problem
in machine learning [28, Section 2.2]. In that setting, n is the number of data points, x € R4
includes the parameters of a machine learning model (linear functions, neural networks, etc.),
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and the function f; is the loss of the model x at the i-th data point. To efficiently solve
Problem (3.1), stochastic approximation [26] is leveraged, in particular stochastic gradient
descent (SGD) and its variants [12, 19].

Stochastic Proximal Point Algorithm. In recent years, the stochastic proximal
point algorithm (SPPA) [1, 4, 18, 23, 27, 29-31] has emerged as a good alternative to SGD,
demonstrating greater robustness to stepsize selection. Instead of the gradient Vf;, the
proximity operator of f;, chosen randomly, is used at each iteration. Davis et al. [7] studied
a Bregman distance version of SPPA (BSPPA) to account for a non-Euclidean geometry
that can be adapted to the problem. While the convergence rates of both SPPA and BSPPA
are of the same orders as those of SGD, in the deterministic setting, well adapted Bregman
based algorithms can improve the constants in the rates significantly (e.g. from linear to
logarithmic dependence on the problem dimension [22]). We trace this dis-balance between
the stochastic and deterministic setting back to the variance of the stochastic estimator of
the true proximity operator that requires vanishing stepsize for the algorithm to converge.

Variance-reduced Stochastic Proximal Point Algorithms have only recently
emerged [16, 21, 25, 32]. As in this paper, all existing convergence results are provided
in the smooth (differentiable) case, except for Point-SAGA proposed by Defazio [8] and
its generalization SMPM proposed by Condat et al. [6], where sublinear convergence rates
(O(1/k) and O(1/k?) respectively) with a constant stepsize are provided for strongly convex
functions. However, to the best of our knowledge, no existing result has been established in
the Bregman setting. The latter can be better adapted to constrained optimization problems
or to cases where the Euclidean distance fails to adequately capture the underlying properties.

Contributions. In this paper we propose a Bregman Stochastic Proximal Point Algorithm
(BSPPA) with generic variance reduction. We provide improved convergence rates as compared
with vanilla BSPPA without variance reduction, in particular, sublinear and linear rates for
convex or relatively strongly convex functions, respectively. Then, from the generic results,
convergence rates for BSAPA, BSVRP, and L-BSVRP, which are proximal and Bregman
distance versions of SAGA [9], SVRG [15], and L-SVRG [20] respectively. These variance-
reduced algorithms are all new in the literature. We can also recover rates for vanilla BSPPA
for potentially non-relatively smooth functions. Of course, the rates of the variance-reduced
versions (BSAPA, BSVRP, L-BSVRP) are given without the need for vanishing stepsizes, and
are faster than that of BSPPA, which are the intended objectives of variance reduction. As a
by-product of our study, we provide a unified variance reduction analysis for Bregman SGD.
Our analysis can thus recover not only the Bregman version of SAGA and L-SVRG (present
in Dragomir et al. [11]), but also Bregman SVRG and the Bregman version of the unified
study in Gorbunov et al. [13], dealing with several variants of (variance-reduced) Euclidean
SGD.

2 Preliminaries

2.1 Notation

Let C C R? be convex with non empty interior. We denote interior of C by intC and its
closure by C. For every integer £ > 1, we define [(] := {1,...,£}. Bold default font is used for
random variables taking values in R?, while bold sans serif font is used for their realizations or
deterministic variables in R%. The probability space underlying random variables is denoted
by (2,21, P). For every random variable x, E[x] denotes its expectation, while if § C 2 is a sub
o-algebra we denote by E[z | §| the conditional expectation of x given §. Also, o(y) represents



the g-algebra generated by the random variable 3. For a function ¢: R — R U {400}, define
dom ¢ = {x eER?: p(x) < +oo}. @ is proper if dom ¢ # @. The set of minimizers of ¢ is
argmin ¢ = {x € R?: p(x) = inf }. If inf ¢ is finite, it is represented by .. We denote the
subdifferential of ¢ at x as dp(x) == {g eRY: p(y) — (%) > (g,y —x) (Vy € Rd)}. When ¢
is differentiable V¢ denotes the gradient of ¢. The (convex) conjugate of ¢ is the function
¢*: RY — [—00, +00] defined by y + sup,cga(y,x) — @(x). In this work, ¢! represents the
space of sequences with summable norms and ¢? with summable squared norms.

2.2 Bregman distance

The Bregman distance Dp(x,y), between x € C,y € intC, is defined as Dj(x,y) = h(x) —
h(y) — (Vh(y),x —y), where h: R? — R U {400}, often called kernel, is a strictly convex
and twice continuously differentiable function on int C, with dom h = C. In what follows, h
will always refer to a function with those properties, unless stated otherwise. A classical
example is the usual squared Euclidean distance Dy, (x,y) = 3|x — y||3 when h = 3|/ - [|3.
The Bregman distance often captures the underlying geometry of an optimization problem
more effectively than the Euclidean distance. It can be better suited to the constraints set
or to the objective function properties. This makes it a powerful tool in optimization. For
instance, the Kullback-Leibler divergence on R% does not have a global Lipschitz continuous
gradient, however it is relatively smooth w.r.t. the kernel h(x) = — 3, logx;; see Bauschke
et al. [3]. Unfortunately, the Bregman distance is not necessarily symmetric, homogeneous
nor translation invariant. The latter two shortcomings are the reasons why the following
assumption is required.

Assumptions 2.1. Let x,y € intdomh*, A € R, and z € R? such that x+ A\z,y +z € dom h*.
There exists a positive gain function G such that

Dh* (X+)‘27X) < G(X,y,Z))\zDh*(y+Z,y), (21)

According to Dragomir et al. [11], this assumption seems unavoidable when using past
iterates in an algorithm with Bregman distance. This is also the case of accelerated methods
where similar assumption is made; see Hanzely et al. [14].

Proposition 2.2. [11, Proposition 1]. If h is L-smooth and the Hessian V>h* is M-smooth,
then the gain function can be chosen as:

G(x,y,v) =1+ 2ML(|ly — x| + [Iv]]).

To address the symmetry issue, as Bauschke et al. [3], we will make use of the following
symmetry coefficient. It will only be needed in the relatively strongly convex cases.

Definition 2.3. Given a kernel h: RY — R U {400}, its symmetry coefficient is defined by

p, := inf {m (x,y) € (int €)%, x # y} € [0,1].

Remark 2.4.

1. From Bauschke et al. [2, Theorem 3.7], we know that Dy, (x,y) = Dp-(Vh(y), Vh(x)) for
all (x,y) € (int C)%. Hence, v, = yp+.



2. By definition, (Vx € intC) (Vy € intC),

YD (y,x) < Dy(x,y) < 75, ' Dply, %),

where it is agreed that 07! = 400 and +o0 x 7 = +o0 for all r > 0.

Next, we present a handy identity for Bregman distances.

Lemma 2.5 (Three points identity [5]). Let h: R? — RU {+o00} be a proper lower semi-
continuous conver function. For any x € domh, and y,z € intdom h the following identity
holds:

Di(x,2) = Dp(x,y) = Du(y,z) = (Vh(y) = Vh(z),x —y).

3 Problem setting

First, we (re)introduce the finite-sum problem and collect all assumptions that we need for
this paper, while not all of them will be required to hold at the same time. Section 4 presents
the proposed algorithm for solving such problems:
1
inimize F' F(x):=— ; 3.1
minimize F(), F() = fi(6), (3.1)
where H = C is the closure of C and f;: R? — R U {400} is proper, convex and lower
semicontinuous (Isc), i € {1,2,...,n}.

Assumptions 3.1.  (A.) C C dom F and x, € C solves (3.1).
(A.i) For alli € [n], f; is B-relatively strongly convex w.r.t. h, with B >0, i.e.,
(vx,y €intC) BD,(x,y) < Dy,(x,y).
It includes the standing convexity assumption of each f;, i.e. f=0.
(A.iil) For alli € [n], f; is L-relatively smooth w.r.t. to h, i.e., differentiable on intC and
(Wx,y €intC) Dy, (x,y) < LDp(x,y),
for some L > 0. As a consequence, F is L-relatively smooth.
(A.iv) F is p-relatively strongly convex w.r.t. h, with p > 0.
(A.v) %, € intC such that VF(x) = 0.

Assumption (A.i) is always supposed true in this paper. Assumptions (A.ii) and (A.iv)
extend the Euclidean notions of strong convexity and L-smoothness (i.e., L-Lipschitz continuity
of the gradient), respectively, to the Bregman setting. Assumption (A.ii), with 5 > 0, is only
required when establishing a linear convergence rate (to a neighborhood of the optimum)
for the vanilla BSPPA algorithm. Similarly, (A.iv), which corresponds to the relative strong
convexity of F', will be used to derive linear convergence rates to the exact minimum for the
variance-reduced variants of BSPPA; in that case, only convexity of each f; will be assumed.
Finally, (A.iv) and (A.ii) with 8 > 0 are not required to obtain the sublinear convergence rates.
Regarding Assumption (A.v), our main focus is not on the constrained cases where it may fail.
Instead, we aim to address, possibly unconstrained, problems whose objective functions lack
Lipschitz-continuous gradients—rendering standard Euclidean algorithms unsuitable—but
are relatively smooth with respect to a Bregman kernel. Assumption (A.v) will be stated
whenever needed.



4 BSPPA with generic variance reduction

We propose to solve Problem (3.1) using the following Bregman stochastic proximal point
algorithm (BSPPA) with a generic variance reduction satisfying the abstract conditions in
Assumption 4.5 further below.

Algorithm 4.1. Let (ex)ren be a sequence of random vectors in R? and let (ig)ren be

a sequence of i.i.d. random variables uniformly distributed on {1,...,n}, so that i is
independent of e, ..., ex_1. Let a > 0 and set zg = xg € int C. Then define,
for k=0,1,...

{ Tyl = argmin gy {fik (x) — (ex,x — xg) + a—lth(x,xk)}.

We assume in all this work that this minimization is well-posed, meaning there exists a
unique solution in int C. Compared to BSPPA, we have an additional linear perturbation that
contains eg. It is the generic variance reduction term. As we shall see in Section 5, depending
on the specific algorithms, e; may be defined in various ways. When e, is set to 0, BSPPA is
recovered. Using the optimality condition, the update at iteration k£ can be rewritten as:

ZTpr1 = VA" (Vh(l‘k) — oy (gr+1 — ex) ), (4.1)

=:wy,

where gr41 € Ofi, (xr41) is such that (4.1) holds. Since wy, depends on gi4+1, Equation (4.1)
shows that Algorithm 4.1 is an implicit algorithm. This is in contrast to an explicit update

241 = VA" (Vh(xy) — agvg) (4.2)

in which wy, is replaced by
Uk = gk — €k (4.3)

for a suitable g; € 0f;, (zx). In minimization form, this explicit update reads

1
Zi+1 = argmin (vg, x — xg) + — Dp(x, 7x), (4.4)
x€EH O

and is assumed well-posed, i.e., a unique solution in int C exists for any k£ € N.

Remark 4.2. The virtual explicit sequences (vg)ren and (2x)gen introduced in (4.2) and (4.3)
are crucial to our analysis. They will be used to prove the main proposition even though
they do not appear in Algorithm 4.1.

Remark 4.3 (Bregman variance-reduced SGD also covered). The integration of these
explicit iterates is the reason why our analysis extends seamlessly to the Bregman SGD case,
providing a unified variance reduction study for Bregman SGD. All the variance reduction
results will stand true for SGD with Bregman distance; see Remark B.2 and Proposition B.3.

The next assumptions that we consider concern the noise and variance of Algorithm 4.1.
The virtual explicit sequence (zx)ren appears in those assumptions for the sake of analysis.
This allows, at the same time, the application of the analysis and the results to the Bregman
SGD case.

Remark 4.4. These assumptions on the noise and variance of the generic Algorithm 4.1 are
“assumed” for the general analysis. But when algorithms are specified in Section 5 by defining
ek, they will be proved by corresponding lemmas. They read as follows.



Assumptions 4.5. There exist non-negative sequences of real numbers (Ag)ken, (Bk)keN, (Ck)keN,
p € 10,1], and a sequence of real-valued random variables (Ni)gen such that, for every k € N,

(B.i) Eler |8kl =0 a.s. and
E[gk |f{k] S aF(xk) a.s.,

(B.ii) E[Dh(xk, Zk+1) |Sk] < Oz%Ak (F(:Ek) - F(X*)) + ain.a,% + OzZNk a.s.,

(B.iii) E[o7,,] < (1 - p)E [0F] + CkE[F(z1) — F(x.)],

where oy, is a real-valued random variable (r.v.), (Fk)ken S a sequence of o-algebras such
that, Vk € N, 8§, C Fx+1 C2A; tp—1, Tk, a,% and Ni are §-measurable, and i is independent

of k-

In the smooth case, Assumption (B.i) ensures that E[vy | §x] = E[V fi, (zk) | §k] = VF(xr),
so that the direction vy is an unbiased estimator of the full gradient of F' at xj, which is a
standard assumption in the related literature. Assumption (B.ii) on E [Dy(xg, zk+1) | $k] is
the equivalent of what is called, in the literature [10, 17] and in the Euclidean setting, the
expected smoothness or ABC-assumption on E [||V fi, (zx)||* | §] with oy = ||[VF(z)| and
Nj, constant. Assumption (B.iii) provides some control on the variance from iteration to
iteration. Indeed, as we will see later that the sequence (o)ken encodes the variance of the
Algorithm 4.1. Depending on p, (B.iii) makes sure that the variance does not blow up and
possibly reduces along the iterations whenever the algorithm converges.

4.1 Convergence Analysis

Now, we can present the main two theorems.

Theorem 4.6 (F is only convex). Suppose that Assumptions 4.5 hold with p > 0. Let (M},)ken
be a non-increasing positive real-valued sequence such that Mj > Be vk eN. Suppose also
that the sequence (zx)ken is generated by Algorithm 4.1 with (g )ken @ non-decreasing positive
real-valued sequence such that oy < m, Vk € N. Then, for all k € N,

o) - Py < (/0R)EID s, 20)] + MoE[og] | K= E[N]
B = F0l S SEr ) o) (1= an( A+ 20C0) T 2 ST (1) (= cnAr + DG

k—1

1 1—oy(Ar + MC
it 5y 5 (/00 (1= i+ 11iCo)
=0 2o (1/ay) (1 — ay(Ag + MCy))
Theorem 4.7 (F is p-relatively strongly convex). Suppose that Assumptions (A.v), 4.5
and (A.iv) are verified with p > 0. Let (My)ren be a non-increasing positive real-valued
sequence such that My, > %, Vk € N. Suppose also that the sequence (xk)ren is generated
by Algorithm 4.1 with (ax)ken a non-decreasing positive real-valued sequence such that oy, <
m, Vk € N. Set q;, :'= max {1 — agypp (1 — ap(Ax + MpCh)) , 1 + ]\BTz — p}. Then for
all k € N, g €]0,1] and

Tt.

Vi1 < @& Vi + E[Ng],

1
where Vi, = E | —5 Dy (X«, 1) + Mka,%], Vk € N.
Ok



Remark 4.8. In both Theorem 4.6 and 4.7, on the right hand sides, the second terms may
seem problematic. However, later, for specified variance-reduced algorithms, we will have
Nj, <0 for every k € N. So they can be dropped. Therefore, in terms of order of convergence,
these theorems establish the standard sublinear O(1/k) and linear O(q*) rates for the generic
Algorithm 4.1, corresponding, respectively, to convex and relatively strongly convex functions,
without requiring a vanishing stepsize. This is an improvement on BSPPA without variance
reduction; see Section 5.1. However, the constants in both theorems depend on the sequence
(Gk)ken and this can impede those rates. In the ideal case of Euclidean or quadratic kernel,
G =1 [11], and we recover the generic results of Traoré et al. [32].

5 Instantiation of specific algorithms

In this section, we specialize the generic Algorithm 4.1 with different variance reduction
techniques by specifying the term ey.

5.1 Bregman Stochastic Proximal Point Algorithm (BSPPA)

We start by the vanilla BSPPA [7], which is also covered by the generic algorithm and analysis
by taking e = 0 for all £ € N. For BSPPA, the functions can potentially be nonsmooth.

Algorithm 5.1 (BSPPA). Let (ix)ren be a sequence of i.i.d. random variables uniformly
distributed on {1,...,n}. Let g = xg € intC and oy > 0 for all k¥ € N.

fork=0,1,...
{ Tpt1 = argmin py{f;, (x) + O%th(x,mc)}.

Theorem 5.2 (F is only convex). Suppose that Assumptions (B.i) and (B.ii) hold with
A = N, =0 and Bkaz <02 >0 (ie., E[Dy(zk, 2141) | Sk] is bounded by ozkag) Suppose
also that the sequence (xk)ken s generated by Algorithm 5.1. Then, for k > 1,

_ Dh(x*,wo) zzt o af
ElF — F(x)] < )
[F'(Z,) ()] < ST, S =

k—1
_ Qi
where Ty, = E Py e
t=0 2.t=0 Y

Remark 5.3. Here, 02 represents a hard bound on E[Dy,(zx, 2141) | §&] and, in some sense,
encodes the variance of the algorithm. If we set the stepsize to be constant, i.e. ai = «, we
obtain

Dy, (X,
7}1()( 330) + Ozaf.
ak

E[F(Zg) — F(x)] <
This equation shows that the algorithm, because of the variance, will converge to a ball
around the minimum rather than the minimum itself and keep oscillating. A vanishing
stepsize (typically (ax)gen € £2 \ 1) can be used in order to cancel o2 asymptotically. But,
this slows down the algorithm to a convergence of order O(1/Vk).

Theorem 5.4. Suppose that Assumptions (A.ii), (B.i), and (B.ii) hold with 8 > 0 (each f;
is relatively strongly convezx), Ay, = Ny = 0 and Broi < 02 > 0 (i.e., E[Dp(zk, 2k+1) | Skl



is bounded by a20?). Let ay = o > 0, Vk € N. Suppose also that the sequence (Tg)gen 15
generated by Algorithm 5.1. Then, for k > 1,
1
E[Dn(xs, z1)] < ¢"E[Dh(xs, 0)] + 04271 — qaf,
1

1+Ba”

Remark 5.5. As in the only convex case, with a constant stepsize, the algorithm will only
converge to a ball around the minimizer and oscillate there due to the variance. Also using a
vanishing to kill the variance leads to reduce convergence rate from linear to O(1/k). So we

need another way to reduce the variance, that what the next sections will present.

where ¢ =

Remark 5.6 (relatively smooth and interpolation case). If f; is relatively smooth for all
i € [n], Bxoi o« Ex[Dp«(Vh(zk) — 2aV fi, (x«), VR(zg))]; see Dragomir et al. [11, Section 3.2].
Therefore, in the very special case of interpolation, i.e. Vf;(xs) = 0 for all i € [n], 02 = 0 and
BSPPA does converge to the actual minimum and have a good sublinear and linear rates for
convex and relatively strongly convex functions, respectively.

In the following, we will present the variance-reduced algorithms. We defer the double-
loop, SVRG-style variant of the variance-reduced BSPPA to Appendix A, and focus in the
main text on its single-loop counterpart. The first variance-reduced BSPPA that we proposed
is using a SAGA-style technique, and we coined it BSAPA. It is the Bregman version of
SAPA proposed by Traoré et al. [32].

5.2 Bregman SAPA (BSAPA)

Algorithm 5.7 (BSAPA). Let (ix)ren be a sequence of i.i.d. random variables uniformly
distributed on {1,...,n}. Let oy, > 0 for every k € N, and set, for every i € [n], 1o = ¢! =
xg € int C.

fork=0,1,...
Tpy1 = argming.y {fik (%) + 3z Dn(xs k) = (V fip (05) — & iy VIi(eF),x — $k>}
Vie [n]: ¢Ftt = oF 46,4, (xp — oF),

where 0; ; is the Kronecker symbol. Here we get e, = Vf;, ((bfk) — Ly Vi(eh).

We set §x = o(io,...,ixk_1) and Ex[] = E[-|§k]. We then have that z; and ¢ are Fy-
measurable and iy, is independent of §i. Let (x = —2ax(V fi, (x«) — Vfi, ( fk)) It is clear

that Ej[Ck] = 2002 3771 V fi(oF).

Lemma 5.8. Suppose that Assumptions (A.ii), 2.1 and (A.v) hold. Let s € N and let
(Tk)kepm) be the sequence generated by the inner iteration in Algorithm 5.13. We finally
assume that there exists a non-increasing sequence (Gy)ren such that, for all i € [n],

G > G (Vh(:vk), Vhizy), %(Vfi(xk) _ Vfl-(x*))> , (5.1)

Gr 2 G(Vh(ar) — ExlGi), VR(6E), T (V(6) = Vfi(x)). (5:2)
Then
Ek[Dh(:Ek, Zk—f—l)] < 2LaszDF(SC]€,X*) + Q%dez

- %Dh*(Vh(xk), Vh(zk) — Eg[Ck)), (5-3)



where

oézzL%kPh4Vhwi»—iauawgﬂw@@g»Vhwiny

and

Remark 5.9. As we stated earlier in Remark 4.4, Lemma 5.8 shows that Assumptions 4.5 are
verified with Ay = 2LGy, By, = Gy, Ny, = —(1/204%)1)]1* (Vh(:nk), Vh(xzy) — Ek[Ck]), p= l/n
and C, = C = % By just putting this values in Theorems 4.6 and 4.7 we obtain the
following two corollaries, respectively.

Corollary 5.10 (F' is only convex). Let assumptions of Lemma 5.8 hold. Let (My)ren be a
non-increasing positive real-valued sequence such that My > nGy, Vk € N. Suppose also that
the sequence (zy)ken is generated by Algorithm 5.13 with (ay)ken @ non-decreasing positive
real-valued sequence such that ay < m, Vk € N. Then, for all k € N,

(1/0B)E[Dn (%, 70)] + MoE[o]

E[F(.fk) - F(X*)] < f;ol(l/at) (1 — QOth(Gt + Mt/n))’

with
k—1 (1/Oét) (1 — QQtL(Gt + Mt/n))

" = Sy (1/aw) (1 — 204 L(Gy + Mt/n))xt.

Corollary 5.11 (F is p-relatively strongly convex). Let assumptions of Lemma 5.8 hold.
Let (My)ken be a non-increasing positive real-valued sequence such that My > nGy, Yk € N.
Suppose also that the sequence (xy)ken is generated by Algorithm 5.13 with (a)ken a non-
decreasing positive real-valued sequence such that ap < m, Vk € N. Set q, =

max {1 — agypp (1 — 20, L(Gg + My /n)), 1 + ](\;/[—’Z — l}. Then, for all k € N, g €]0,1],

n

k
Vi1 < @Vi and Viyr < (H Qt> Vo,
=0

where

1
Vi, =E LYQDh(x*,a:k) + Mka,%] .
k

Using relative smoothness, we get

k
Drp(xs, Tpq1) < (H Ch) a1 LVp.
=0

; — 1
Remark 5.12. To see a normal linear rate, we can set o, = a = SL(GoT Mo )Tl =
72L(Gk41er/n)’ for all k € N. We can always take M} such that %’Z = n%rl Then (gx)ken is
non-increasing,

Vi1 < qoVi and Vi < g8,
Also

Dp (X, xp1) < ngLE [Dh(x*,:vo) + a2M00(2)} .



5.3 Bregman Loopless SVRP (BLSVRP)

We also proposed BLSVRP, using an L-SVRG-style technique with only one loop. The second
loop is replaced by a Bernoulli probability. It generalizes, to the Bregman distance, L-SVRP
found for instance in Khaled and Jin [16] and Traoré et al. [32].

Algorithm 5.13 (BLSVRP). Let (ir)ren be a sequence of i.i.d. random variables uniformly
distributed on {1,...,n} and let (e;)ren be a sequence of i.i.d Bernoulli random variables
such that P(e, = 1) = p € (0,1]. Let ag > 0 for every k € N, and set z9 = ug = x¢ € intC.

fork=0,1,...
Th41 = argmin,cy {fik (%) + o Da(x,xx) = (V fiy, (ur) = VF(ug),x — $k>}

k41 = (1 — ek)uk + ExTk

For BLSVRP, e), = Vi, (ur) — VF(ug,). Set S = (i, ---,ik_1,0,--.,6" 1) and Ex[] =
E[-| §x]. We then have that xy, ur and yi are Fi-measurable, iy, and ¢ are independent of
Sk. Let (. = —20ék(Vfik(X*) - Vfi, (ug)). So, Ex[Ck] = 2ax V F (uy).

Lemma 5.14. Suppose that Assumptions (A.iii), 2.1 and (A.v) hold. Let s € N and let
(Tk)kem) be the sequence generated by the inner iteration in Algorithm 5.13. Assume that
there exists a non-increasing sequence (Gy)ren such that, for all i € [n],

Gy 2 G (Vh(aw). Vh(wn), 1 (V) - VHilx)) . (55
Gr > G(Vh(zy) — Ex[G], V(ug), %(Vfi(uk) ~ Vfi(x.)))- (5.6)
Then
Ek[Dh(xka Zk+1)] < 2LO&%G}€DF(.CL‘]€,X*> + OJ%GkO',%
- %Dh*(Vh(xk), Vh(zy) — Exlci), (5.7)
where
0} = 2L°E; [Dh* (Vh(ur) — (Y fi ) = ¥ fi (). w(uk))] ,
and

Exlo? 1] < (1 p)of + 2LDr (wr.x.).

Remark 5.15. Lemma 5.14 shows that Assumptions 4.5 are verified with A = 2LGy,
By = Gi, Niy = —(1/203) Dp= (Vh(z), Vh(21) — Ex[C]), p = p and Cy = C = 2pL.

Corollary 5.16 (F is only convex). Let assumptions of Lemma 5.14 hold. Let (My)ken be a

non-increasing positive real-valued sequence such that Mj > @, Vk € N. Suppose also that

the sequence (zk)ken is generated by Algorithm 5.13 with (ay)ken a non-decreasing positive

real-valued sequence such that oy < m, Vk € N. Then, for all k € N,
2 2

E[F(.fk) . F(X*)] < (kl,/la())E[Dh(XMxO)] + MOE[UO] 7

Y=o (L/aw) (1 = 204 L(Gy + Myp))

with
k—1
g_jk _ Z (1/0[75) (1 — 2C¥tL(Gt -+ Mtp))

S S (1 ar) (1 — 204 L(Gy + Mip))
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Corollary 5.17 (F is p-relatively strongly convex). Let assumptions of Lemma 5.14 hold.
Let (My)ken be a mon-increasing positive real-valued sequence such that My > %, vk €
N. Suppose also that the sequence (xp)ren s generated by Algorithm 5.13 with (o)ken
a non-decreasing positive real-valued sequence such that ap < m, Vk € N. Set

g, = max {1 — apypp (1 — 20, L(Gy, + Myp)), 1 + ]\GT’Z — } Then, for all k € N, ¢ €]0,1],

k
Vit1 < @V and Vi < (H Qt> Vo,
t=0

where

1
V. =E [&Dh(x*,xk) + MkO']%] .
k

Using relative smoothness, we get

k

Dp (X, py1) < (H %) aj 1 L.
=0

6 Experiments

We illustrate the advantage of variance reduction for BSAPA by performing in this section a
numerical experiment on the Poisson linear inverse problem. It is given by:

min F(x) = - Dy (b, Ax),
n

xeRi

where

n

Dicr.(b, Ax) = >~ { fi(x) = by log(bi/(Ax);) — b + (Ax); }

=1

is the Kullback-Leibler divergence, A € ]RﬁXd is the forward operator of the inverse problem,
and b € R’ , is the measurements vector. It models the maximum likelihood estimation
problem where the model is b ~ Poisson(Ax,), with x, the true unknown value. Each f; is
convex. The kernel used is h(x) = — 2% logx;. Based on Bauschke et al. [3], we have that
each function f; is L-relatively smooth w.r.t. A when L = max;b;. In these experiments,
we compare a fixed stepsize BSAPA to non variance-reduced BSPPA with both fixed and
vanishing stepsizes.

At each iteration, we solved the proximal subproblem

arg min {fik (x) — (ex,x — zk) + a—lth(x,xk)}
xeRi

using a gradient descent subroutine, since no closed-form solution is available in general. As
this subroutine is employed in both algorithms under comparison, the evaluation remains
equitable. Strictly speaking, this procedure corresponds to an approximate minimization
of the proximal mapping, and hence the implementation is closer to an inexact variant
of the algorithms. A formal treatment of inexactness lies beyond the scope of this work.
Nevertheless, this approximation does not affect our empirical findings, which still clearly
demonstrate the advantage of variance reduction. These findings encourage future extensions
of the theoretical analysis toward inexact variants.
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For the first experiment, we used a uniformly generated matrix. We set n = 500, d = 100.
We couldn’t choose the sequence (Gg)ren, as the existence of a gain function for the kernel is
unknown. Following previous work [11] and their numerical experiments, we therefore assume
(Gk)ken is constant, which can possibly go beyond our theoretical analysis. To account for
this uncertainty and also the fact that L is quite conservative, we consider several values for
the stepsize in our experiments. Here, we present the results for two values; see Figure 1. For
the complete range of stepsizes, see Appendix C, where all additional experimental results
are provided. As expected, the results show that with vanishing stepsize (green curve), SPPA
is slower that BSAPA (blue curve), and even plateaus quite early. With constant stepsize
(orange curve), SPPA has the same rate as BSAPA (interpolation). However, while the
stepsizes increase we observe that SPPA is less stable than BSAPA. More stability can be
added to SPPA by using average iterates (Z)gen. However this instability of SPPA| in the
interpolation case, is vastly due to the approximate proximal mapping. Indeed when the A is
diagonal, a closed form exists for the proximal mapping and the experiments don’t exhibit
this instability for SPPA; see Figure 2. Nevertheless, the experiments shows the advantage
and stability of variance reduction, even in the interpolation case, when the proximal mapping
can only be approximated.

Poisson inverse problem (interpolation) Poisson inverse problem (interpolation)
10° | 10° l
10714 107y
1072 1072
* 10-3 * 1072
w 10 w
1 1
= 10 =10
X 10 B
w w
10-5 107
10754 107
—— BSAPA ax = 1/10L —— BSAPAa;=1/L
-7
10-71 BSPPA ay = 1/10L 10 BSPPA a = 1/L
=== BSPPA vanishing stepsize 10-¢] === BSPPA vanishing stepsize
0 500 1000 1500 2000 0 500 1000 1500 2000
epochs epochs
Tomographic reconstruction Tomographic reconstruction
102 102 L
10* 101
£ g
o100 1100 A -
3 = ~
= 3 =
T T
\
107* 101
1024 — BSAPA @, =1/10L 10-2{ = BSAPA ay =1/L
BSPPA a; = 1/10L BSPPA o, = 1/L
= BSPPA vanishing stepsize = BSPPA vanishing stepsize
1073
0 500 1000 1500 2000 0 500 1000 1500 2000

epochs epochs

Figure 1: Our BSAPA (variance reduced) is more stable, converges to the minimum and does
not oscillate around it, even in the non-interpolation case with constant stepsize, contrary to
BSPPA.

To cover the non-interpolation case, we did some experiments on tomographic reconstruc-

tion problem, where A is a discrete Radon transform, that projects the image x in n different
angles (01,...,0,), with n = 90. The optimization problem is

minimize ~ 3 {fi(x) = b; log(b;/(Ax)s,) — bi + (Ax)g,}
=1

xERi n:
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Poisson inverse problem (interpolation) Poisson inverse problem (interpolation)

1071\ = BSAPA a; = 1/10L 10714 = BSAPA @ =1/5L
BSPPA ax = 1/10L . BSPPA a = 1/5L
1072 103

10-5 1072

1077 \ 1077 N

1079

Flxg) = Fy
Flxi) = Fx

10-11 1071
10-13 107134

10-15 107154

10-17 107174

0 500 1000 1500 2000 0 500 1000 1500 2000
epochs epochs

Figure 2: The case of diagonal A: closed-form solution to the proximal mapping. There is
no instability for BSPPA in that case, showing that its instability in Figure 1 is due to the
inexact proximal mapping. This proves it is less stable to inexact algorithms compare to its
variance-reduced counterparts.

The image used is the Shepp-Logan phantom. Also here, the vanishing stepsize SPPA is
slower than BSAPA; see Figure 1. Furthermore, the results show, that constant stepsize
SPPA oscillates around the minimum while BSAPA is stable; expected behaviors for non-
interpolation cases. These oscillations are low for small stepsizes and high for bigger ones.
We also ran this for different stepsizes because GGj is unknown and L is conservative.

Finally, in all experiments, BSAPA tends to explode quicker than SPPA when the stepsize
is big enough. This is seen from the theory where SPPA does not have a bound on the
stepsize; see Theorems 5.2 and 5.4. However bigger stepsizes increase the term which is
related to the variance in those theorems, hence an increase in oscillations and no convergence.
But until that stepsize threshold imposed by the theory, for non-interpolation cases, BSAPA
remains more stable and ensure convergence whereas SPPA does not.

7 Conclusion

In this paper, we conducted a unified analysis of variance reduction for the Bregman stochastic
proximal point algorithm (BSPPA). We proposed a generic variance-reduced algorithm based
on BSPPA and prove convergence rates. From that general algorithm and analysis, we
derived several new variance-reduced BSPPAs; employing SVRG- and SAGA-like techniques,
and their corresponding convergence rates. More specifically, under the relative smoothness
assumption, we prove sublinear and linear rates for convex and relatively strongly convex
functions, respectively. Our general analysis can also recover the previously studied vanilla
BSPPA with its standard rates. Furthermore, the unified theoretical results extend seamlessly
to variance-reduced SGD with Bregman distance. For future work, we will focus on extending
this work to nonsmooth functions and/or to inexact proximal mapping variants.

Acknowledgments. P. Ochs acknowledges funding by the German Research Foundation
for the project DFG Grant OC 150/3-1. The majority of this work was done while C. Traoré
was a postdoc at Saarland University. He acknowledges the support of Occitanie region, the
European Regional Development Fund (ERDF), and the French government, through the
France 2030 project managed by the National Research Agency (ANR) with the reference
number “ANR-22-EXES-0015". C. Traoré thanks Edouard Pauwels for valuable discussions.
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Appendices

A  Bregman SVRP (BSVRP)

Our analysis can also be adapted to the original SVRG-like variance reduction, i.e. a Bregman
version of SVRP in Traoré et al. [32]. We call it BSVRP.

Algorithm A.1 (BSVRP). Let m € N, with m > 1, and (&s)sen, (it)ten be two independent

sequences of i.i.d. random variables uniformly distributed on {0,1,...,m — 1} and {1,...,n}
respectively. Let oy > 0 for every k£ € N, and set o = Xg € int C.
fors=0,1,...
Ty = Ts

fork=0,...,m—1

Lr4+1 = arg miner {flk (X) + aith(X, xk) - <vfism+k ('i's) - VF(@S%X - xk>}

=~ m—1 ~ 1 m—1
| Ts+1 = Zk:() 5k,§sxka Or Ts1 = o Zk:() Tk,

where dy, j, is the Kronecker symbol. It follows that ey = V f; ., (%) — VF(Z,). Moreover,
setting Fsx = 0(&0, .- ,&s—1,00, - - - s ism+k—1), We have that Z,,X,, and xj, are §; p-measurable
and igy4 is independent of Fsp. Let (p = =204 (V fi, (x«) — Vi, (Zs)). That means that
E[Ck | T,k = 200, VF(T).

Lemma A.2. Suppose that Assumptions (A.ii), 2.1 and (A.v) hold. Let s € N and let
(Tk)kem) e the sequence generated by the inner iteration in Algorithm A.1. We assume that
there exists a non-increasing sequence (Gy)ren such that, for all i € [n],

G > G (Vh(mk), Vhizy), %(Vfi(xk) - Vfi(x*))> , (A1)

Gr 2 G(Vh(er) — EG | Fos, Vh(2:), T(VA(E) = Vilx.)): (A2)

Then, for all k € {0,1,--- ,m — 1},

1
E[Dy(wk, 2k41) | k] < 2LaiGrDp(wg, %) + aiGror — iDh* (Vh(zy), Vh(zr) + 20xVEF(Zs)),

where
of = 2L°E lph* (Vh(aés) — %(sz-k (@s) = Vfi, (%)), Vh(fs)) ISk]

and, trivially, E{o7 1 | Gsr) = E[0} | Fsp)-

Remark A.3. By Lemma A.2, Assumptions 4.5 are satisfied with A; = 2LGy, By = Gy,
Np = —(1/202)Dp+ (Vh(xk), Vh(zg) + 20,V F(Z5)), p = Cx = 0. For simplicity, for any
k€N, weset Ay = A=2LG, =2LGy, B, = B =Gy, = Gy, a, = a.

Remark A.4. For simplicity, for any k € N, we set Ay = A = 2LG, = 2LGy, By = B =
Gk = Go, . = Q.

Theorem A.5 (F is p-relatively strongly convex). We assume (A.iv) and that o < ﬁ.
Then, for all s € N and under the assumptions of Lemma A.2,

1 2LaGy
E[Dp(Zs,x4)].
Yo (1 —2LaGy) m t 1— 2LO&G0> [Dp(Zs,x4)]

E[Dp(Zs1,%:)] < (



2LaG
ensures that 0

R k A.6. Taki e
emar aking a < 1LGq 1~ 2LaGy

gives linear rate.

< 1. Then taking m big enough

B Proofs

B.1 Fundamental results

For the proofs, we start with a proposition that constitutes the cornerstone of our analysis.
Most of the others results are derived from that proposition.

Proposition B.1. Suppose that Assumptions 4.5 are verified, Assumption (A.ii) holds, and
that the sequence (xk)ken s generated by Algorithm 4.1. Then, for all k € N,

(1 + ﬁak) E[Dh(x*, :L‘k+1) |C‘{k] < Dh(X*, {L‘k) — Ol [1 — OtkAk] (F(l’k) — F(X*)) + ozinai + asz.

Proof. We recall the definition of xpy1:

Tpy1 = arg n;in { fin(x) — (eg,x — x) — BDp(x, zx) + (1 —i—afak) Dh(x,xk)}
xeR ::Rik o
-1
= Vh* (Vh(wk) - (1 “;fo"“) ml) , (B.1)

where ri11 € OR(zk41) such that (B.1) holds.
Let x € C. The function R;, (x) = fi, (x) — (ex,x — z) — BDp(x, xy) is convex, since f;, is

B-relatively strongly convex w.r.t. h. By convexity of R;,, we have:

(Pkt1,x — Tpg1) < Ry (x) — Ry (Tge41)
= fir, (%) = fir (@p41) — (en,x — ) + (€k, Thp1 — Tp)

= BDp(x, k) + BDp(Th41, Tp)- (B.2)
Since rg41 = (Hoia’“) (Vh(zg) — Vh(zg+1)) by (B.1), it follows from (B.2):
(1 i ﬂak) (Vh(zr) = VA(Tgi1), X — Tpt1)
Qg

< fi, (%) = fip (Trg1) — (€rs X — k) + (g, Thg1 — Ti)
— BDw(x, wx) + BDp(wp 11, T)-

By using the three points identity in Lemma 2.5, (Vh(xg)—Vh(zki1),x—2k+1) = Dp(@ps1, xp)+
Dp(x, xg+1) — Dr(x,xk), in the previous inequality, we find

1 1 1+ Ba
—(ek, Tpy1 — r) + fi, (Thr1) — fir, (X) + —Dn(@ps1, 2) < —Dp(x, 21) — MDh(Xal”k-f—l)
&7 873 g
— <6k,X - Ik>. (B3)
We recall that the explicit direction v can be rewritten as
1
vy = — (Vh(zr) — Vh(zg41)) - (B.4)

093
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Using the definitions of vy in (B.4) and (4.3), we can lower bound the left hand side as follows:

—(er, Th1 — k) + fi (Trr1) — fir, (X) + Ojth(ka,xk) = —(ek, T+1 — Tk) + fip (Ths1) — fi (k)

1
+ OTth(kaa zk) + fir,(T) = fir (%)
> —(ek, Try1 — Tk) + (Ghs Thp1 — Tk)

+ iDh($k+1a wr) + fi, (1) — fi,(X)
g

1
= (—ek + gk, Th1 — T) + OTth(xk—&-la Tk)
+ flk(xk) - flk (X)
1
= (U, Thy1 — ) + — Dp(Tp41, 1)
ay,
+ flk(xk) - flk (X)
1
;k<Vh(xk) — Vh(zp41), Tt — k)
1
+ OTth(ka, wy) + fir (r) — fin (x)
1

1
= ——Dp(xp, 2p41) + — Dul(Try1, 2141)
Qe Q.

+ fir (1) = fi, (%), (B.5)

where in the first inequality, we used convexity of f;, for all i € [n] and in the last one uses
the three points inequality (2.5). By using (B.5) in (B.3) and Dp(2k+1, zk+1) > 0, we obtain

—Ojth(@mzk—l-l) + fir(2n) = fi (%) < alth(X’m“) a (1+afak)

— (e, x — zk). (B.6)

Dy (%, Tp41)

Now, define Ey[-] = E[- | §k], where Fy is defined in Assumptions 4.5 and is such that xy is
Sr-measurable and i is independent of §. Thus, taking the conditional expectation in (B.6)
and rearranging the terms, we have

(1 + Baw) Ex[Dp(x, 2x41)] < Di(x, xx) — axBr [ fiy (x1) — fir ()] + Ex[Dp (g, 2141)]
= Dh(x, a;k) — ak(F(xk) — F(X)) + Ek[Dh@:k; Zk+1)].

Replacing x by x, and using Assumption (B.ii), we get

(1 + Bo) Eg[Dn(xs, 211)] < Dp (e, 2p) — ap(F(ag) — F(x4))
+ (af Ay (F(xy) — F(x.)) + o} Byo} + a} Ny
= Dp,(x, 1) + @i N},
— ap(1 — apAy)(F(xp) — F(x.)) + i Broi. O
Remark B.2. We show in the next proposition that the same result in Proposition B.1
stands for Bregman SGD with the generic variance reduction term e;. As a consequence,

since all the variance reduced results of the paper stem from Proposition B.1, they are also
true for Bregman SGD with the same variance reduction techniques.
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Proposition B.3 (SGD case). Suppose that Assumptions 4.5 are verified, Assumption (A.ii)
holds, and that the sequence (xy)ken is generated by the explicit version of Algorithm 4.1,i.e.,
SGD with the generic variance reduction term (4.4). Then, for all k € N,

(1 + Bag) E[Dp(xe; 2r11) | §k] = (1 + Bow) E[Dp (X, 2541) | Skl
S Dh(x*,xk) — O [1 — OzkAk] (F(J}k) — F(X*>) + Q%BkU% + Q%Nk

Proof. We recall the definition of x4 = 2 11:

: 1+
Tyt = argmln{ (gr,x — xk) — (€g,x — xk) — BDp(x, k) + ( 50%) Dh(x,wk)}
x€Rd (077
:Rzk (X)
1 —1
= Vh* (Vh(xk) - < Zﬁ Lk ) rkH) , (B.7)
k

where g € 0fi, (x) and 7441 € OR(xk41) such that (B.7) holds.
Let x € C. The function R;, (x) = (gx,x — ) — (ex, X — x) — BDp(x, x) is convex, since f;,
is B-relatively strongly convex w.r.t. h. By convexity of R;, , we have:

(i1, X — opy1) < Ry (x) — Ry (Tp41)
= (g, X — ) — (ks Th1 — Tk) — (€, X — Tp) + €k, Thp1 — Tk)

— BDy(x, xk) + BDp(zkt1, k). (B.8)

Since 111 = (%) (Vh(z) — Vh(zk11)) by (B.7), it follows from (B.8) and the convexity
of flk

(FEL28) (ThGan) - Thanin)ox — zin)
< fi,(0) = fir,(Tk) = (Gk» Th1 — @) — (€ks X — T) + (€ks Thy1 — T)
— BDp(x, 1) + BDp (g1, Tk)
= fir (%) = fip (x1) — (Vks Thy1 — k) — (e, x — )
— BDy(x, k) + BDp(Tk+1, Tk)- (B.9)
By using the three points identity in Lemma 2.5, (VhA(xg)—Vh(zkt1),X—2k+1) = Dn(@p41, x5)+
Dy (x, z41) — Dp(x, xg), in the (B.9), we find

1 1 1+ fa
(U i = 22+ Fi, (08) = £ () & D@, ) < —Dylxon) = M D ()
(673 Qe (677
— (g, X — Tf). (B.10)
We recall that the explicit direction v can be rewritten as
1 1
v = o (Vh(zp) — Vh(zk41)) = o (Vh(zg) — Vh(zgs1)) - (B.11)

Using the definitions of vg in (B.11), we can express the left hand side as follows:
1 1
(s Tr1 — i) + fir (1) — fir, (X) + ;th(wk+1,$k) = oTk<Vh(wk) — VI(Tp+1), Thy1 — Tk)
1
+ OTth(fL'k—i-ly xk) + flk (xk‘) - flk (X)

= —iDh(xk,ka) + f’lk (‘rk) - fik(x)7

oy
(B.12)
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where in the second equality, we used convexity the three points inequality (2.5). By
using (B.12) in (B.10), we obtain

—alth(xk%L‘kH) + fir (xr) — fir (%) < Ojth(X’xk) B (1+Ozfak)

— (e, X — Tk). (B.13)

Dy (x, Zp41)

Now, define E[-] = E[- | §k], where §} is defined in Assumptions 4.5 and is such that zy is
§r-measurable and iy, is independent of §x. Thus, taking the conditional expectation in (B.13)
and rearranging the terms, we have

(14 Bow) Ex[Du(x, z41)] < Du(x, 2x) — arBe[fiy (21) — fir, (0] + Ex[Dn (g, Tr41)]
= Dh(X,l‘k) — Ozk(F(:L'k) — F(X)) + Ek[Dh(xk,xk+1)].
Replacing x by x, and using Assumption (B.ii), we get
(1 + Bou) Ex[Dp (x4, p+1)] < Dp(xs, Tg) — o (Fzg) — F(x4))
+ (Q%Ak (F(xx) — F(x)) + ai Bpop + a%Nk)
= Dy (xs, z1) + ap N
— (1 — apAg) (F(z) — F (%)) + aj Byoj. O

B.2 Technical lemmas

These following technical lemmas are needed in the proofs.

Lemma B.4. Suppose that Assumptions 4.5 are verified and that the sequence (Tx)ken 1S
generated by Algorithm 4.1 with (o )ken @ non-decreasing positive real-valued sequence. Let
(M) ken be a non-increasing positive real-valued sequence. Then, for all k € N,

1 1
aTE[Dh(X*,IEk+1)] + M4 1Efoj 4] < gE[Dh(X*wk)] + (M}, + By — pMy,)E[o7]
k1 K

- alk (1= a(Ag + MyCy)) E[F (wx) — F(x.)]

+ E[NVi].

Proof. Define Ei[-] = E[-| §k]. It follows from Proposition B.1 that

1 1
5 Ek[Dh(x*a xk+1)] + Mk+1Ek[O’]€+1] < TEk[‘Dh(X*a karl)] + MkEk[Uerl]
Qg Ok
1
< ?Dh(x*, xi) + Ni + Biog + MiyE[o7 1]
k
1
— OTk(l — akAk)(F(a:k) — F(X*))
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By taking the total expectation, we get
1 1
——E[Dp(e, 2k01)] + M1 E[oF 1] < —E[Dn (s, 21)) + EINg] + BiE[o] + ME[o
k+1 k

_ i(1 — apAg)E[F(zr) — F(x4)]

ak
< ;%Eummxhxkn+-EUQj+-BkEb%
——;;U-—ahAwE“m$k>_}%XQ]
+ My(1 = p)E [07] + MyCLE[F (w4) — F(x.)]
- ;%E[Dh(x*,;pk)] + E[Ni] + (M), + By, — pM)E[o7]

_r (1 — ap(Ax + MyCy)) E[F(z1) — F(x4)]. O

Qf
Lemma B.5. [11, Lemma 3|. If a convex function f is L-relatively smooth w.r.t. h, then for
any n < % and x,y € intC,

Dy(x,y) > ;Dh* (VA(X) — n(VF(x) = VF(y), Vh(x))

Lemma B.6. [11, Lemma 2]. Let x € intC, and g1, 92 € R?. Define the points xf,x%ﬂx*’
as the unique points satisfying Vh(x;) = Vh(x) — g1, Vh(x3) = Vh(x) — g2, Vh(x") =
Vh(x) — 8492 Then

1
Dh(x7x+) < 5 [Dh(x,xir) + Dh(X,X;)]

_ %[Dh* (V0. Vh)) + Die (V05), V() .

For the Euclidean case, i.e. h = |- |, we obtain the standard inequality || 25%|? <

3 (lgull® + llg211?)-

Now we recall the Bregman version of the following Euclidean variance decomposition for
ar.v.

Ellz|* = |IE[e]|* + Elle — El«]|>

Lemma B.7 (Bregman variance decomposition by [24]). Let x be a random variable on RY.
Then for any u € RY,

E[Dp+(x,u)] = Dy« (E[z], u) + E[Dp~(z, E[])].
B.3 Proofs of Section 4.1

Proof of Theorem 4.6. From Lemma B.4 and since By — pMj, < 0, we get

(1/e) (1 = ap (A + MpCy)) E[F(xx) — F(x:)] < E

1
?Dh(x*’ﬂfk) + Mkffz%}
i

1
—E [ 2 Dh(x*7xl€+1) + Mk+102+1]
Okt1

+ E[V).
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That means that, by summing on ¢t =0,...,k — 1, we obtain
(1/ag)E[Dh(xs; )] + MoE[og]
S0 (L/aw) (1= Ay + M, Cr))
k-1 E[V)]
t=0 Z (1/0%) (1 _Oét(At—i-MtCt))’

E[F(Zx) — F(x)] <

= (1/at) (1 — oy (Ar + M Cy))
where &, = tzo (/o) (1 — ae(Ar + MC)) -

Proof of Theorem 4.7. From Lemma B.4 and relative strong convexity of F', we have

1 1
) E[D (e, T41)] + My 1E[of 4] < gE[Dh(X*,xk)] + E[Ni] + (Mg + By, — pMy,)E[o7]
k1 k

1

— o (U= (A + MiCu) E[Dp (g, x.)]
< ;%E[Dh(x*,xk)] + M [1 + J\i - p} Elo}] + E[N]
_ o% (1 — ap(Ag + MypCy)) E[Dp (2, %3]

< gk <algE[Dh(X*>wk)] + Mkﬂff}%]) + E[Vk],
k

with g :max{l—ak"yhu(l—ak(Ak+Mka)),1+ABTZ —p}. O

B.4 Proofs of Section 5
Proof of Theorem 5.2. From Proposition B.1, we have
arE[F(z1) — F(x)] < E[Dp(x«, 21)] — E[Dp(Xs, Tpy1)] + oo’ (B.14)

Let £ > 1. Summing from 0 up to k£ — 1 and dividing both side by Zt o i, (B.14) gives

k—1

« 1 a
Z L E[F(x) — F(x)] < (D, (%4, 20) — E[Dp (x4, 21)]) + & 2Zt 0 O
=0 Xiso o i) o Yo
< Dh(x*7 l’o) 4 0_2 Z?iol Oé% .
Zt —0 ¢ Zt 0 Ot
Using convexity and Jensen inequality, we finally obtain the result. 0

Proof of Theorem 5.4. Proposition B.1 gives

(1+ Bag) E[Dh(X*,JS]H_l)] < E[D (X ;Uk)] _ Oék;E[F( k) — F(X*)] X 0420'3
< E[Dp (x4, z1)] + ozk02
So
E[Dp(Xs, Tp11)] < jl—i—lﬂakE[Dh(X*’xk” : fZakUz

20



Let ap = a and ¢ = m Summing from 0 up to k — 1, we obtain

E[Dp(x«, 2k)] < ¢"E[Dp (x4, 20)] + ¢ 020 Zq

:qu[Dh(x*,xo + o} aQqu ¢

1 2

< qu[Dh(X*a :EO)] + a2ig*a

which gives the results. O

Proof of Lemma 5.8. From Equation (4.2), we infer that Vh(zx41) = Vh(zg) —arV fi, (zr)+
areg. Set VA(x!) = Vh(xr) =20k [V fi, (21) =V fi, (x«)] and VA(x3) = Vh(xg) =20k (V fi, (x:)—
er). Then, from Lemma B.6, we know that Dy (xg, zk+1) < (S1 + S2)/2, where

x ), Vh(z1)),

S1 = Dp(Vh(zg) — 204V fiy, (21) = V fi
- ek)av}"(xk))'

SQ = Dh* (Vh(xk) — QOék(VfZ'k (X*)

Using the gain function in Equation (2.1), then Lemma B.5, and finally Equation (5.1),
we have

Ex[S1] = Ex[Die (Vh(zx) — 200(V fi, (21) — V iy (), Vh(zp))]
< 41202E [G (Vh(:rk) Vh(zs), %(v Fo(an) = Vi, (x*))> «
Di- (Vh(xk) - %(v Fiu @) — Vfir (). Vh@;k)ﬂ
< 4La2E, {G (Vh(xk), Vh(zs), %(v Fir(an) = V fi, (x*)))] D (5, %)
<AL GpDp (g, xy).

We know that —20(V f;, (x«) — er) = (& — Ex[Cx]. From Lemma B.7, Equation (2.1), and
Equation (5.2), it follows that

Ex[S2] = Ex[Dp« (Vh(zk) + Gk — Ex[Ck], VI(21))]
= E[Dp-(Vh(zk) + G — Ex[Gr), VA(xr) — Ex[Ce]) | Sx]
— Ex[Dp (Vh(xr), Vh(xr) — Ex[G])]

< 4L%02E, [G (Vh(a:k) - 204,r Z Vi(6F), Vh(eh ), = (Vfik(ﬁk) — Vfir(x)) ) X

=1

Dy (Vh(6) ~ 7 (VA leh) = Vi (x.) Nh(czsi-z))]

— Ex[Dp+(Vh(xk), Vh(zk) — Eg[Ck])]
< 20;Gyo} — Ex[Dp=(Vh(zr), Vh(zr) — Ex[G])]-

21



Putting all together, we get Equation (5.3). For Equation (5.4), we have

2 2
Oky1 = 2L Ek+1

D (VA (652) = 1 (Vi (6452) = Vi 060)) 0 (6£21) )
=213 Dy (W (6171) = 7 (V4 (6£71) = i) 90 (6£))
—or2! g D (Vh (68 + B (o = 68)) = - (V6 (64 + G = ) = V()
Vh (6 + 81, (21— 8))) )
That means
Ex [O-I%—H}
=17, ; E, [Dh* (90 (o + B on = 6)) = 7 (V4 (68 + i = ) = V1ix)

Vh (6F + 0 (a1 — 01)) )]
—2r21 ; ! ; Dy (Vh (6 + 8ug(amn = o)) = 1 (V6 (6F + Gion = 6) — Vsilx))
Vh (0F + 6 5(zk — o)) )
- 2L2711§ {n
42D (Vh () = 1 (Vi @) = VAix)  Vh ()|
= (1= 2) 22 S o (Vi () — 1 (V4 (6F) - Vi) 90 (oF)
i=1

+ 2L2% f: Dy (Vh (k) — % (Vfi(wr) = Vfi(x)), Vh (W)
=1

-1
n

i (99 () = 7 (95 61) - 7500 0 61

1 2L
(1Y)t bt
n n

The last inequality comes from Lemma B.5. O

Proof of Lemma 5.14. From Lemma B.6, we know that Dp(zg, zx4+1) < (S1 +S2)/2, where

S1 = Dp«(Vh(zp) = 204[V fi), (x1) — V fi, (%), VA(21)),
Sg = Dh* (Vh(l‘k) - 2ak(vfik (X*) - ek), Vh(xk))

Using the gain function in Equation (2.1), then Lemma B.5, and finally Equation (5.5), we
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have
Ex[S1] = Ex[Dp+(VR(zr) — 20 (V fi, (21) — V fi,, (%)), V(1))
< 4276, | (Vh(on), Vhlan). 7 (Vfi () = Vi (x)) %

Dy (VA1) = LV (on) = ¥ fu(x.)), Vhian) )|

< 4La2E, [G (Vh(xk), Vh(zh), %(v Fo(@n) — Vi (x*))>] Dp(wr, %)
< 4LOJ%G}CDF(Z‘]€,X*).

We know that —2a(V fi, (x«) — er) = (& — Ex[Cx]. From Lemma B.7, Equation (2.1), and
Equation (5.6), it follows that

Er[S2] = Ex[Dp (Vh(2g) + G — Ex[CG], VR(21))]
= E[Dp+ (Vh(xr) + ke — Ex[G], VA(2r) — Ex[Ck]) | Sk
— Ex[Dp(Vh(xk), Vh(z) — Ex[Ck])]

< 4L*03E, {G <Vh(xk) — 20, VF (uy,), Vh(uz), % (Vi (ur) — Vfi, (x*))) X

Dy ((Vh(u) = (Vi ) = Vi (<)) Thlan) )|

— Ex[Dr(Vh(xr), Vh(zr) — Ex[Ck])]
< 203Gror — Ex[Dp+(Vh(zy), Vh(zy) — ER[C])].

Putting all together, we get Equation (5.7). For Equation (5.4), we have
Ofr1 = 2L%Erpa [Dh* (Vh(Uk+1) - %(vfik-o—l(uk-‘rl) = Vi (%)) Vh(wm))] 7
2L’ [Dh* (Vh (1 — en)ug + epzy) — % (Vfirsr (1= ep)ug + epag) = Vi, (%))
Vh((1 - ex)ux + epr) )]

= QLQ% > Dy (Vh (1 = eg)ug + epy) — % (Vi (1 —er)uk + exrr) — Vi(x)) s
=1

Vh((1—ep)ux + erxk) )

That means

Ey [agH] = 2L2% S Er [Dh* (Vh ((1 = ep)ug + epay) — % (Vi (1= ep)ug, + exzr) — VFixe)),
=1

Vh((1 - ex)ug + erzy) )]

= (1o} + 2027 > Die (Vh(as) — 1 (VAlan) — VEilx), Vhiz))
i=1

<(1- p)U,% + 2pLDp (g, Xx)-

The last inequality comes from Lemma B.5. O
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Proof of Lemma A.2. Thanks to Lemma B.6, we know that Dy (xg, zk+1) < (S1 + S2)/2,
where

51 = Dh* (Vh(xk) — QOék[Vfik (.TUk) - szk (X*)], Vh(l'k)),
Sy = Dp«(Vh(x) — 20 (V fi, (%) — €x), Vh(zk)).

Using the gain function in Equation (2.1), then Lemma B.5, and finally Equation (A.1), we
have

E[S1[8s.k) = E[Dp=(VI(zg) — 20 (V fif (21) — V fi, (%)), V(1)) | §s k]
< 4L%02E [G (Vh(xk), Vh(xy), %(Vfik (z1) — Vi, (x*))> X

Die (Vh(a) = £ (VFio) = Vb)), Vh(e) ) 1]
1

< 4LaZE {G (Vh(lvk),Vh(!Ek), (V fir (xx) — V fi, (X*))> |35,k} Dp(zg, %)

L
S 4LO(%G]€DF(JJ]€, X*).

We know that —2ay(V fi, (x«) — ex) = (x — Eg[(x]. From Lemma B.7, Equation (2.1), and
Equation (A.2), it follows that

E[S2 | Ssk] = E[Dp+(Vh(zk) + G — Ex[Ck], VA(21)) | Ss k]
= E[Dp+(Vh(z) + G — Ex[C], VA(2k) — Ex[G])]
— Ex[Dn+ (Vh(zk), Vh(2k) — Eg[Cr]) | s k]

< 4L%03E [G (Vh(xk) — 204, VF(%,), Vh(Z,), %(Vfik (Zs) — Vi, (x*))> X

Die (Vh(2) = (Vi (7) = Vi (), Th(z) ) 1]

— E[Dp+(Vh(zr), Vh(xr) — Ex[Cr | Ss.k)) | Ts.k]
< 20;Gyop, — E[Dp+ (Vh(zr), Vh(zg) — E[Ce | o)) | Tsi)-

Putting all together give the results. O

Proof of Theorem A.5. Proposition B.1 and Lemma B.7 give

E[Dp, (%, Zkt1)] < Dp (x4, 23) + a3 Bpos
— ay [1 — apAg] E[F(z) — F(x4)]
= Dp(x«, Tx) — g [1 — o Ag] E[F(x) — F(x4)]

)
+ 21202 B4E [Dh* <Vh(:%s) - %(v Fin(y) = Vi (%), w@g) \gs,k}
)

S Dh(x*, xk) — O [1 — akAk] E[F(:ck — F(X*)]
+ 2La} BRE[Dp(Zs, x4 )].-

In the last inequality, we used Lemma B.5. By taking total expectation, it follows

E[Dp(xs, T 41)] < E[Dh (x4, 21)] + 203 B LE[Dp (&5, %+ )]
— [1 — CkkAk] E[F(ack) — F(X*)]
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Then by summing over k£ = 0, ..., m—1, taking the total expectation and recalling Remark A .4,
we obtain

E[Dp(xe, 2™)] + a [1 — @Al mE[Dp(Es11,%)] < E[Dp(xs, 20)] + 202 BLME[Dp (&, %y )]
= E[Dp,(xy, &5)] + 20 BLME[Dp (%, x,)]

1
—E[Dp(xs,%s)] + 202 BLmME[Dp (i, %, )]
o

IN

1
——E[Dp(&s,%:)] + 202 BLME[Dp (i, %, )]
Tt

1
= ( + 2aQBLm> E[Dp(Zs, %+ )]
Vit

IN

In the first inequality, we used the fact that

m—1 1 m—1 1

m—1
> Flay)=m Y —Fle)=m) —F (S dnewr) = mE[F(Z641) | Fom-1].
k=0

k=0 " £=0

It still holds by choosing Zs41 = ’,:”:_01 %xk , in Algorithm A.1, and using Jensen inequality

to lower bound 7" F(x4) by mEF(Z541). We finally have

E[Dp(Fes1,5)] < (a (1 — ad)m)~" <WL + 2a23Lm> E[Dp(2s,x.)]
1 2aBL

B (’Yh/la(l—aA)m+ 1—aA

) E[Dp(Ts,%.)].

Replacing the constants by their values gives the result. O

C Full results of the numerical experiments
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Figure 3: Poisson linear inverse problem (interpolation case) with different stepsizes.
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