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Abstract

In this paper, we propose two regularized proximal quasi-Newton methods with symmetric
rank-1 update of the metric (SR1 quasi-Newton) to solve non-smooth convex additive com-
posite problems. Both algorithms avoid using line search or other trust region strategies. For
each of them, we prove a super-linear convergence rate that is independent of the initialization

of the algorithm. The cubic regularized method achieves a rate of order
(

C

N1/2

)N/2

, where N

is the number of iterations and C is some constant, and the other gradient regularized method

shows a rate of the order
(

C

N1/4

)N/2

. To the best of our knowledge, these are the first global

non-asymptotic super-linear convergence rates for regularized quasi-Newton methods and reg-
ularized proximal quasi-Newton methods. The theoretical properties are also demonstrated in
two applications from machine learning.

1 Introduction

Newton-type methods have been studied extensively over decades due to their fast convergence.
However, the complexity of the computational cost of Newton’s method per iteration is cubic,
making it intractable for large-scale applications. Therefore, concurrently, quasi-Newton methods
have been developed to avoid the explicit computation of the Hessian (second derivative) of the
objective [14]. The idea of quasi-Newton methods is to approximate the Hessian by a matrix that
is generated from first-order information, for example, using the difference of the gradient of the
objective at nearby points. Based on this idea, numerous variants have been developed, including
BFGS [6], SR1 [12, 5], DFP [12, 19]. Classically, the convergence guarantee of both, Newton’s
method and quasi-Newton methods, are local, i.e., they require the starting point to be sufficiently
close to an optimal point, unless globalization strategies such as trust region or line search are
applied [11]. This picture has changed thanks to the pioneering work of Nesterov and Polyak
[34]. They propose a cubic regularization strategy for Newton’s method that guarantees global
convergence without line search. More recently, following the same goal, gradient regularization was
introduced to Newton’s method [33]. While these regularization strategies stabilize the algorithm
and allow for global convergence, they do not remedy the enormous computational cost of involving
the Hessian of the objective in the update step. Therefore, it is natural to take this as inspiration
for the design of regularized quasi-Newton methods that converge globally and are also applicable
to large-scale problems. However, even for strongly convex functions, the question remains:
how can we design a globally convergent cubic- (or gradient-) regularized quasi-Newton method

following the spirit of the pioneering works [34, 33].
A striking property of quasi-Newton-type methods is their super-linear rate of convergence

[6, 7, 15, 18, 20], which however in most cases can only be proved locally or are only asymptotic
rates. Recently, [38] provides the first non-asymptotic super-linear convergence rate for greedy
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quasi-Newton methods, which is refined to explicit rates for a restricted Broyden family of quasi-
Newton methods in [40, 25]. In [44], the first non-asymptotic explicit super-linear convergence rate
for the SR1 method is proved. While these rates are non-asymptotic, they are still local, meaning
that the initialization is required to be sufficiently close to an optimal point. In this sense, a local
region around an optimal point is defined in which the super-linear rate of convergence can be
observed. This raises the natural question of

whether it is possible to design quasi-Newton methods with global convergence and global
non-asymptotic super-linear convergence rates.

In this paper, we give an affirmative answer to both questions above by proposing cubic- and
gradient-regularized quasi-Newton methods. In Table 1, we list the main features and limitations
of the state-of-the-art quasi-Newton methods and arrange our proposed regularized quasi-Newton
methods in this context, which we explain in more detail in the following. Unlike other works
mentioned in Table 1 and Table 2, our methods attain a non-asymptotic super-linear rate of
convergence that is independent of the initialization and without using expensive line search or
trust region sub-routines. The globalization is achieved via regularization and the regime of super-
linear convergence is encoded in the number of iterations instead of a hard-to-estimate local region
around an optimal point. Instead of assuming the Dennis–Moré criterion for convergence [10, 28],
which is usually difficult to validate, we rely on Lipschitz continuity of the Hessian instead.

State-of-the-art quasi-Newton-type methods with super-linear rate of convergence
Scheme Rate Local region of super-linear convergence

DFP [40]
(

nL2

µ2N

)N/2
LH

µ3/2λf (x0) ≤
log 3

2µ

4L

BFGS [40]
(

nL
µN

)N/2
LH

µ3/2λf (x0) ≤
log 3

2µ

4L

DFP [25]
(

1
N

)N/2 LH

µ3/2 ∥∇2f(x∗)
1/2(x0 − x∗)∥ ≤ min{ 1

120 ,
1

7
√
n
}

BFGS [25]
(

1
N

)N/2 LH

µ3/2 ∥∇2f(x∗)
1/2(x0 − x∗)∥ ≤ min{ 1

50 ,
1

7
√
n
}

SR1 [44]
(

2n log 4κ
N

)N/2
LH

µ3/2λf (x0) ≤
log 3

2

4
√

3
2

max{ 1
2κ ,

1
3n log 4κ+3}

Cubic SR1 PQN (Alg 1)
(

C
N1/2

)N/2
global

Grad SR1 PQN (Alg 2)
(

Cgrad

N1/4

)N/2

global

Table 1: We compare our methods with classical quasi-Newton methods on the smooth prob-
lem minx∈Rn f where f has L-Lipschitz gradient and is µ-strongly convex. Here, we rewrite
the results in our notations. N is the number of iterations, x∗ denotes the optimal point,
λf (x0) := ∥∇f(x0)∥∇2f(x0)−1 and κ := L

µ . C, Cgrad are constants (see Theorems 3.1 and 3.4

).

Comparison of recent works on convergence rates of quasi-Newton methods

Results Non-asymptotic Explicit Global
Without Line search

and trust region strategy

Broyden family
[38, 40, 25]

Yes Yes No Yes

SR1 [44] Yes Yes No Yes
BFGS [24] Yes Yes Yes No (exact line search)
BFGS [23, 37] Yes Yes Yes No (inexact line search)
BFGS [22] Yes Yes Yes Yes (online learning strategy)
Our Alg 1 and 2 Yes Yes Yes Yes (cubic- or grad-regularization)

Table 2: Works related to ours that have achieved local or global convergence with asymptotic or
non-asymptotic explicit super-linear rate of convergence.

The analysis of our algorithms is built on a novel Lyapunov-type potential function that is in
fact simpler than those employed in related work. We summarize recently used potential functions
in Table 3. While our algorithms and analysis already demonstrate a significant contribution for
smooth optimization problems, furthermore, we consider non-smooth additive composite problems
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for which proximal gradient type algorithms are the standard choice for the large-scale regime.
Such problems frequently appear in several areas in machine learning, computer vision, image or
signal processing, and statistics. In this structured non-smooth case, the quasi-Newton metric is
constructed using the smooth part of the objective function, whereas the non-smooth part of the
objective is handled via a proximal step that is computed in the same metric.

Potential function

Broyden Family [40] σ(A,G) = tr (A−1(G−A)) for A ⪯ G
Broyden Family [40, 8] σ(A,G) = tr (A−1(G−A))− log det(A−1G) for A ⪯ G
Broyden Family [25, 7] Frobenius-norm involved potential functions
SR1[44], Broyden Family [39] σ(A,G) = log det(A−1G) and tr (G−A) for σ(A,G) = A ⪯ G
Greedy SR1[30] σ(A,G) = tr (G−A) for A ⪯ G
Our Cubic/Grad SR1 PQN V (G) = trG

Table 3: We list the potential functions introduced or used in the literature to prove super-linear
convergence rates of quasi-Newton methods along with our potential function. Here trG denotes
the trace of the matrix G and detG denotes the determinant of the matrix G.

2 Related Works

Regularized Newton method. In the classical literature on Newton’s method [35], local super-
linear and quadratic rates of convergence for the pure Newton’s method can be proved. In order
to achieve global convergence, certain globalization strategies must be used such as line search
or trust region approaches. Sometimes global convergence can be obtained while maintaining the
local fast convergence [13]. There are other regularization strategies that add a positive definite
matrix to the Hessian (like in the Levenberg–Marquardt method [29, 32]) in order to stabilize
Newton’s method and to obtain global convergence thanks to having a positive definite metric.
However, in general, this changes the Hessian and global convergence is obtained at the cost of
loosing the local fast convergence rates. The pioneering work by Nesterov and Polyak [34] has
introduced cubic regularization as another globalization strategy that avoids line search and at
the same time shows the standard fast local convergence rates of the pure Newton’s method. In
order to remedy the computational cost of cubic regularization, in [33, 17] a gradient regularization
strategy was introduced that allows for global convergence with a super-linear rate of convergence
for strongly convex problems. These works have fundamentally motivated the present paper and the
development of our cubic and gradient regularized quasi-Newton methods that combines the best of
both worlds: a global explicit super-linear rate of convergence while preserving a low computational
cost per iteration by using only first-order information.

Quasi-Newton methods. Rodomanov and Nesterov [38] obtained the first local explicit super-
linear convergence rate for greedy quasi-Newton methods and [44] obtained the first local explicit
super-linear convergence rate for the SR1 quasi-Newton method, which both inspired our devel-
opment in this paper. In subsequent works, [40, 25] proved the local non-asymptotic super-linear
convergence rate for the classical Broyden family of quasi-Newton methods (Table 1 and Table 2).
However, all results above require the starting point to lie close to the optimal point to achieve the
super-linear rate of convergence, unless additionally a line search strategy is used. Therefore, it
is worth looking for a global non-asymptotic super-linear convergence rate. The recent paper [22]
showed a global non-asymptotic super-linear convergence rate by using an online learning strategy.
For BFGS with an exact line search strategy, [24] obtain a global non-asymptotic convergence
rate. The rate is linear at the beginning and super-linear when the iterates approach the local
super-linear convergence region of the BFGS method. Later, [37, 23] achieve similar results with
an inexact line search strategy, independently. In our paper, we combine the idea of regularization
(cubic, gradient) and SR1 method and propose methods that are shown to converge globally with
a global non-asymptotic super-linear rate without the help of globalization strategies (line search,
trust region method).

There are a few more works, appearing under similar names like ‘regularized Newton-type
method’ [9, 26, 3, 4, 31, 21]. Since they do not consider non-asymptotic super-linear convergence
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rates and are using line search or trust region strategies, we do not describe them in more detail
here.

Potential functions for convergence analysis. To obtain the non-asymptotic super-linear
convergence, potential functions are widely used. We would like to mention several seminal papers
on selecting potential functions (listed in Table 3). [7] used the Frobenius-norm function for
studying the Broyden family of quasi-Newton methods. Later, an important contribution was made
by Byrd, Liu, Nocedal and Yuan in [8], who introduced the useful potential function σ(A,G) =
tr (A−1(G−A))− log detA−1G. [40] used the first part of this function σ(A,G) = tr (A−1(G−A))
to show the convergence of the Broyden family of quasi-Newton methods on quadratic functions.
A similar trace function tr (G− A) was first introduced in [30]. In [44], the authors also used the
function tr (G−A) to study the quadratic case. However, we must emphasize that for their proofs,
the existence of A is crucial and necessary. That is the reason why we regard our potential function,
despite its apparent similarity to the previous ones,, as a novel contribution. We propose the
potential function V (G) = trG which is much simpler than other potential functions while it also
eases the proof of our non-asymptotic global super-linear convergence rate. Moreover, it provides a
simple criterion for restarting the quasi-Newton method to guarantee the global convergence of our
gradient regularized Algorithm 2 (and its variant in Algorithm 3).

Proximal quasi-Newton and Newton-type methods. One of the earliest work on proximal
quasi-Newton methods is [10], where they adopted line search to guarantee global convergence
and assume the Dennis–Moré criterion to obtain asymptotic super-linear convergence. [28] also
demonstrated an asymptotic super-linear local convergence rate of the proximal Newton and a
proximal quasi-Newton method under the same condition. We believe that the Dennis–Moré
criterion is very restrictive and hard to check. Therefore, we rather use Lipschitz continuity of the
Hessian instead. Later, [41] showed that by a prox-parameter update mechanism, rather than a line
search, they can derive a sub-linear global complexity. However, to the best of our knowledge, there
is no result on non-asymptotic explicit super-linear convergence rates for a proximal quasi-Newton
method. While the works discussed so far focus on the convergence rate, general convergence of
so-called variable metric proximal gradient methods was also studied intensively. A crucial topic,
which is mostly ignored, is the practical computation of the proximal mapping with respect to
the metric that is induced by the quasi-Newton metric. Usually, simple proximal mappings in
the standard metric become hard to solve when the metric is changed. There are a few works
that are dedicated to this topic, proposing a proximal calculus tailored to exactly this situation.
This was initiated in [1] and consolidated in [2], where the interested reader finds an extensive
literature review around this topic. Several follow up works have extended and improved these
results [41, 27, 2, 43, 26].

3 Problem Setup and Main Results

In this section, we present our notation, the considered problem setup with all standing assump-
tions, our proposed regularized proximal SR1-quasi-Newton algorithms and the main convergence
results. We postpone the technical parts of the convergence analysis to Section 4.

3.1 Notation

We first introduce our notations. We denote R = R ∪ {+∞}. Rn is an Euclidean vector space of

dimension n, which is equipped with the standard Euclidean norm ∥u∥ :=
√
u⊤u, for any u ∈ Rn.

Given a matrix A ∈ Rn×n, ∥A∥ denotes the matrix norm induced by the Euclidean vector norm.
We write trA for the trace of the matrix A ∈ Rn×n. Moreover, I denotes the identity matrix in Rn.
We adopt the standard definition of the Loewner partial order of symmetric positive semi-definite
matrices. Let A and B be two symmetric matrices, we say A ⪯ B (or A ≺ B) if and only if for
any u ∈ Rn, we have u⊤(B −A)u ≥ 0 (or u⊤(B −A)u > 0, respectively).
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3.2 Problem set up

In the whole paper, we consider the following optimization problem:

min
x∈Rn

F (x) := g(x) + f(x) , (1)

where we make the following assumptions:

Assumption 1. 1. F = g + f is bounded from below;

2. g : Rn → R is proper, lower semi-continuous (lsc), convex;

3. f : Rn → R is twice differentiable with L-Lipschitz gradient, LH-Lipschitz Hessian and f is
µ-strongly convex.

3.3 Algorithms and main results

Let us first recap the classical symmetric rank-1 quasi-Newton (SR1) update G+ := SR1(A,G, u).
Given two n × n positive definite matrices A and G such that 0 ≺ A ⪯ G and u ∈ Rn, we define
the SR1 update as follows:

SR1(A,G, u) :=

{
G , if (G−A)u = 0 ;

G− (G−A)uu⊤(G−A)
u⊤(G−A)u

, otherwise .
(2)

In order to solve the problem in (1), we propose two regularized proximal SR1 quasi-Newton meth-
ods: Algorithms 1 and 2, where we present a variant of the latter as Algorithm 3 in the appendix.

Algorithm 1 is inspired by the cubic regularized Newton method from [34], which is proved
to converge globally. Step 1 of Algorithm 1 augments the classical quasi-Newton update step
with a cubic regularization term that is scaled with the Lipschitz constant LH of the Hessian of
f . Step 2 defines several variables, including the stationarity measure F ′(xk+1) that is also used
to terminate the algorithm in Step 6. In Step 3, we design a new correction strategy such that
G̃k ⪰ Jk (discussed in detail in Section 4), where Jk is defined in Step 4. It is crucial to observe
that this is only a theoretical quantity for the analysis of the algorithm. In practice, Jk is only
evaluated in the product with uk = xk+1−xk for which it simplifies to Jkuk = ∇f(xk+1)−∇f(xk).
Finally, Step 5 computes the SR1 update of the metric from (2), which for (G̃k−Jk)uk ̸= 0 (namely
F ′(xk+1) ̸= 0), becomes

Gk+1 = SR1(Jk, G̃k, uk) = Gk + λkI −
((Gk + λkI)uk − yk) ((Gk + λkI)uk − yk)

⊤

u⊤
k ((Gk + λkI)uk − yk)

,

where yk := ∇f(xk+1)−∇f(xk).

Algorithm 1 Cubic SR1 PQN

Require: x0, G0 = LI, r−1 = 0.
Update for k = 0, · · · , N :

1. Update

xk+1 = argmin
x∈Rn

{g(x) + ⟨∇f(xk), x− xk⟩+
1

2
∥x− xk∥2Gk+LHrk−1I

+
LH

3
∥x− xk∥3}. (3)

2. Set uk = xk+1 − xk, rk = ∥uk∥, λk = LHrk−1 + LHrk and

F ′(xk+1) = ∇f(xk+1)−∇f(xk)− G̃kuk .

3. Compute G̃k = Gk + λkI.

4. Denote but not use explicitly Jk :=
∫ 1

0
∇2f(xk + tuk)dt.

5. Compute Gk+1 = SR1(Jk, G̃k, uk).

6. If ∥F ′(xk+1)∥ = 0: Terminate.

End
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For the cubic regularized proximal quasi-Newton method in Algorithm 1, we obtain the follow-
ing global convergence with a non-asymptotic super-linear rate.

Theorem 3.1 (Main Theorem for Algorithm 1). For any initialization x0 ∈ Rn and any N ∈ N,
Cubic SR1 PQN(Algorithm 1) has a global convergence with the rate:

∥F ′(xN )∥ ≤
(

C

N1/2

)N/2

∥F ′(x0)∥ , (4)

where C := (2nLHC0 + nL) /µ and C0 :=
√

2(F (x0)−inf F )
µ .

Proof. See Section 4.2.

Remark 3.2. In fact, (4) indicates that the super-linear rate is only attained after a certain
number of iterations N̄ such that N̄ ≥ C2, where C = O( n

µ3/2 ). N̄ is comparable to O(n2) which

is an important price to pay for globality. However, even for an initialization close to the optimal
point, the super-linear rate of [38, 44] is attained after N̄ = O(n) iterations. While the super-linear
rate of [25] is attained immediately, the radius of their local region of convergence is as small as
O(1/

√
n) when n is large. Besides, the local region criterion of [25] requires the knowledge of the

optimal point x∗, making this criterion useless.

Remark 3.3. As pointed out in [17], ∥F ′(x)∥ can approach zero since F ′(x) is a very special way
of selecting subgradient of a possibly non-smooth function F (x).

When g ≡ 0, Algorithm 1 is a cubic regularized SR1 quasi-Newton method for solving a smooth
optimization problem, and is also a novel contribution. In this case, the global convergence rate
in (4) can be stated explicitly in term of the gradient of the (smooth) objective

∥∇f(xN )∥ ≤
(

C

N1/2

)N/2

∥∇f(x0)∥ .

Despite having the favorable rate of convergence, the computational complexity per iteration can
be costly, since the cubic regularized subproblem that needs to be minimized in Step 3 usually
does not have a closed form solution. While the same is true also for cubic regularized Newton’s
method [34], the additional cost casts our algorithm inpractical for large-scale applications. In our
implementation, we have adopted the strategy from [34, Section 5], which proposes a reformulation
into a convex one-dimensional subproblem and the usage of a bisectioning method. To remedy the
high computational cost caused by the cubic regularization term, inspired by [33, 17], we provide
two proximal quasi-Newton methods with gradient regularization (Algorithm 2 and 3), which come
with the same theoretical guarantees while maintaining a low computational cost per iteration.

Algorithm 2 is derived from Algorithm 1. Step 1 of Algorithm 2 equips the classical quasi-
Newton update with a gradient regularization term instead of a cubic regularization. Step 2
defines Jk which has the same exclusively theoretical purpose as in Algorithm 1. In Step 3, we
define several variables, including F ′(xk+1) which is used to generate the correction factor λk+1

and terminate the algorithm in Step 5. Step 4 is a new correction strategy. First, we compute
Ĝk+1 with a scaling parameter 1 + λk+1. Second, we set a restarting criterion based on the trace
of Ĝk+1. If the trace of Ĝk+1 is bounded by nκ̄ where κ̄ ≥ L is a hyper-parameter set at the
beginning, we update the gradient regularized quasi-Newton metric G̃k+1, otherwise, we restart
the update of the quasi-Newton metric by setting G̃k+1 = LI.
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Algorithm 2 Grad SR1 PQN

Require: x0, G0 = LI, λ0 = 0, G̃0 = G0(1 + λ0), κ̄ ≥ L .
Update for k = 0, · · · , N :

1. Update

xk+1 = argmin
x∈Rn

g(x) + ⟨∇f(xk), x− xk⟩+
1

2
∥x− xk∥2G̃k

. (5)

2. Denote but not use explicitly Jk :=
∫ 1

0
∇2f(xk + tuk)dt .

3. Compute uk = xk+1 − xk, rk = ∥uk∥, and

F ′(xk+1) = ∇f(xk+1)−∇f(xk)− G̃kuk ,

Gk+1 = SR1(Jk, G̃k, uk) ,

λk+1 =
1

µ

(√
LH∥F ′(xk+1)∥ + LHrk

)
.

4. Update G̃k+1: compute Ĝk+1 = (1 + λk+1)Gk+1 (Correction step).

If tr Ĝk+1 ≤ nκ̄: we set G̃k+1 = Ĝk+1 .

Othewise: we set G̃k+1 = LI (Restart step).

5. If ∥F ′(xk+1)∥ = 0: Terminate.

End

In Algorithm 2, λk relies on the subgradient F ′(xk) of F at xk which is different from what
we did in Algorithm 1 and makes (5) easier to solve compared to the cubic regularization. The
gradient regularization, despite being inspired by [33], is tailored to the non-smooth composite
problem. The restarting strategy in Step 4 from Algorithm 2, respectively, ensures that for any
k ≥ 1, the metric G̃k is bounded, namely, G̃k ⪯ tr G̃kI ⪯ nκ̄I where κ̄ ≥ L.

For gradient regularized proximal quasi-Newton methods, we obtain global convergence with
the following non-asymptotic super-linear rate.

Theorem 3.4 (Main Theorem for Algorithm 2). For any initialization x0 ∈ Rn and any N ∈ N,
Grad SR1 PQN (Algorithm 2) has a global convergence with the rate:

∥F ′(xN )∥ ≤
(
Cgrad

N1/4

)N/2

∥F ′(x0)∥ , (6)

where Cgrad := (nκ̄Θ+ nL)/µ, Θ = 1
µ

(
LHC0 +

√
LH(L+ nκ̄)C0

)
and C0 :=

√
2(F (x0)−inf F )

µ .

Proof. See Section 4.3.

Remark 3.3 also applies for Theorem 3.4.

Remark 3.5. In fact, (6) indicates that the super-linear rate is only attained after N ≥ C4
grad

number of iterations, where Cgrad = O( n
µ5/2 ).

The rate for gradient regularization is worse than for cubic regularization, since the super-
linear rate is guaranteed to occur only after N ≥ C4

grad number of iterations. However, since the
cubic regularization is no longer needed, the computational cost of the update step is significantly
reduced. When g ≡ 0, the convergence rate in (6) becomes

∥∇f(xN )∥ ≤
(
Cgrad

N1/4

)N/2

∥∇f(x0)∥ ,

and, in this smooth case, the update step in Step 1 is as follows:

xk+1 = xk − G̃−1
k ∇f(xk) , (7)

where the computational cost is, in fact, O(n2), since the use of G̃k = (1+λk)Gk in Step 4 enables
the application of the Sherman–Morrison–Woodbury formula.
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When g ̸≡ 0, the update step has the same computational cost as that of a classical proximal
quasi-Newton method and is much more tractable than that of Algorithm 1 which uses cubic reg-
ularization.

Algorithm 3. For the sake of completeness, in Section A in the appendix, we present a variant
of Algorithm 2, which comes with the same convergence guarantees under a slight modification
of the correction step, which is closer to the existing related works (e.g. [26]) and has a smaller
constant Cgrad = O( n

µ3/2 ) which shows a better dependence on the conditioning, however the

computational cost of the update step in the smooth case is larger than that of Algorithm 2.

4 Convergence Analysis

In this section, without loss of generality, we assume that ∥F ′(xk)∥ > 0 for any k ∈ N, since,
otherwise, our algorithms terminate after a finite number of steps and our non-asymptotic rates
would hold until then.

Recall that throughout the whole convergence analysis, we assume that Assumption 1 holds and
that all variables are defined either as in Algorithm 1 or 2. The convergence analysis of Algorithm 3
can also be found in the appendix.

4.1 Preliminary

First, we need several important properties of Jk :=
∫ 1

0
∇2f(xk + tuk)dt, which is the same for

both algorithms.

Lemma 4.1. For each k ∈ N, we have Jk ⪯ LI.

Proof. Since f has L-Lipschitz gradient, then, for any x, we have ∇2f(x) ⪯ LI. Therefore, due to
the definition of Jk, we have Jk ⪯ LI.

Lemma 4.2. For each k ∈ N, we have

µI ⪯ Jk ⪯ Jk−1 + LH(rk + rk−1)I . (8)

Proof. Since f(x) is µ-strongly convex, the left first is trivial. Thus, we focus on the second
inequality. The proof is similar with the one of [38, Lemma 4.2] and [44, Lemma 5]. The assumption
that the Hessian of f is LH -Lipschitz continuous means that there exists LH > 0 such that for any
x, y ∈ Rn, we have

∥∇2f(x)−∇2f(y)∥ ≤ LH∥x− y∥ . (9)

For any t ∈ [0, 1] and k ∈ N, letting x = xk + tuk and y = xk − (1− t)uk−1, we have that

∥∇2f(xk + tuk)−∇2f(xk − (1− t)uk)∥ ≤ LH∥tuk + (1− t)uk−1∥ . (10)

Then, by the definition of Jk, we have

Jk − Jk−1 =

∫ 1

0

∇2f(xk + tuk)dt−
∫ 1

0

∇2f(xk−1 + tuk−1)dt

=

∫ 1

0

∇2f(xk + tuk)dt−
∫ 1

0

∇2f(xk − (1− t)uk−1)dt

⪯
∫ 1

0

∥∇2f(xk + tuk)−∇2f(xk − (1− t)uk−1)∥dt · I

⪯
∫ 1

0

LH∥tuk + (1− t)uk−1∥dt · I

⪯ LH(rk + rk−1)I ,

(11)

where the first inequality holds because of the definition of the induced matrix norm, the second
inequality holds due to (10) and the last one uses the triangle inequality.

Then, we recall an important property of SR1 method, which shows that the update of SR1
method preserves the partial order of matrices.
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Lemma 4.3. For any two symmetric positive definite matrices A ∈ Rn×n and G ∈ Rn×n with
0 ⪯ A ⪯ G and any u ∈ Rn, we observe the following for G+ = SR1(A,G, u):

A ⪯ G+ ⪯ G . (12)

Proof. We recall the short proof from [38, Part of Lemma 2.2] here for readers’ convenience. If
(G−A)u = 0, the result is obvious. If (G−A)u ̸= 0, we conclude the statement as follows:

G+ −A = G−A− (G−A)uu⊤(G−A)

u⊤(G−A)u
= (G−A)1/2(1− ũũ⊤

ũ⊤ũ
)(G−A)1/2 ⪰ 0 , (13)

where ũ = (G−A)1/2u.

As motivated in the introduction, for any symmetric positive definite matrix G, we introduce
a new potential function that is key to our convergence analysis:

V (G) := trG . (14)

Moreover, for anyG ⪰ 0 with V (G) ≥ 0, given two matrices A andG satisfying A ⪯ G, additionally,
we introduce the following measurement function:

ν(A,G, u) =

{
0 , if (G−A)u = 0 ;
u⊤(G−A)(G−A)u

u⊤(G−A)u
, otherwise .

(15)

Using the potential function V (G) and ν(A,G, u), we deduce the following lemma showing that
the SR1 update leads to a better approximation of A.

Lemma 4.4. Consider two symmetric positive definite matrices A ∈ Rn×n and G ∈ Rn×n with
0 ≺ A ⪯ G and any u ∈ Rn. Let G+ = SR1(A,G, u). Then, we have

V (G)− V (G+) = ν(A,G, u) , (16)

and

ν(A,G, u) ≥ ∥(G−A)u∥2

u⊤Gu
. (17)

Proof. The result is trivial for the case (G − A)u = 0, since this yields G+ = G. Therefore, let
(G−A)u ̸= 0. A simple calculation shows

V (G)− V (G+) = tr (G−G+) = tr

(
(G−A)uu⊤(G−A)⊤

u⊤(G−A)u

)
=

(
∥(G−A)u∥2

u⊤(G−A)u

)
,

in which the last term can be bounded from below as claimed thanks to the ordering G ⪰ A ≻ 0.

4.2 Convergence analysis of Algorithm 1

Let us focus on Algorithm 1. The optimality condition of the update step in (3) is

∂g(xk+1) +∇f(xk) + (Gk + LHrk−1)(xk+1 − xk) + LH∥xk+1 − xk∥(xk+1 − xk) ∋ 0 , (18)

which, using our notations, simplifies to

∂g(xk+1) +∇f(xk) + (Gk + λk)(xk+1 − xk) ∋ 0 . (19)

We denote vk+1 := −∇f(xk) − (Gk + λk)(xk+1 − xk) and F ′(xk) := vk + ∇f(xk) and obtain
F ′(xk) ∈ ∂F (xk).

The following lemma is important for the correction step from Gk to G̃k, showing that for each
k, we have G̃k ⪰ Jk.

Lemma 4.5. For any k ∈ N, we have that G̃k = Gk + LH(rk + rk−1)I ⪰ Gk+1 ⪰ Jk.

9



Proof. We prove the result by induction. For k = 0, by definition, we have J0 ⪯ LI ⪯ G̃0, and using
Lemma 4.3, we have J0 ⪯ G1 = SR1(J0, G̃0, u0) ⪯ G̃0. Now, we assume that Jk−1 ⪯ Gk ⪯ G̃k−1

holds for k − 1. Then, for k, we have

Jk ⪯ Jk−1 + LH(rk−1 + rk)I ⪯ Gk + LH(rk + rk−1)I = G̃k , (20)

where the first inequality holds due to Lemma 4.2, which shows that 0 ⪯ Jk ⪯ G̃k and we conclude
the induction by Lemma 4.3:

Jk ⪯ Gk+1 = SR1(Jk, G̃k, uk) ⪯ G̃k .

Now, we study the descent lemma of function values.

Lemma 4.6. For any k ∈ N, we have

F (xk+1)− F (xk) ≤ −µ

2
r2k . (21)

Proof. We start with the strong convexity of the smooth function f : for any x and y, we have

f(x)− f(y) ≤ ⟨∇f(x), x− y⟩ − µ

2
∥x− y∥2 . (22)

Letting x = xk+1 and y = xk, we have

f(xk+1)− f(xk) ≤ ⟨∇f(xk+1), xk+1 − xk⟩ −
µ

2
∥xk+1 − xk∥2

= ⟨∇f(xk), xk+1 − xk⟩+ ⟨∇f(xk+1)−∇f(xk), xk+1 − xk⟩ −
µ

2
∥xk+1 − xk∥2

= ⟨∇f(xk), xk+1 − xk⟩+ ⟨Jk(xk+1 − xk), xk+1 − xk⟩ −
µ

2
∥xk+1 − xk∥2 ,

(23)

where the last equality holds since Jkuk =
∫ 1

0
∇2f(xk+tuk)ukdt = ∇f(xk+1)−∇f(xk). According

to Lemma 4.2, we have ⟨Jkuk, uk⟩ ≤ ⟨Jk−1uk + LH(rk + rk−1)uk, uk⟩. Thus, (23) implies that

f(xk+1)− f(xk) ≤ ⟨∇f(xk), xk+1 − xk⟩+ ⟨Jk−1(xk+1 − xk), xk+1 − xk⟩

+ LH(rk + rk−1)∥xk+1 − xk∥2 −
µ

2
∥xk+1 − xk∥2 .

(24)

By Lemma 4.5, we have Gk ⪰ Jk−1 and thus ⟨Gkuk, uk⟩ ≥ ⟨Jk−1uk, uk⟩ for any k ≥ 1. Therefore,
(24) implies that

f(xk+1)− f(xk) ≤ ⟨∇f(xk), xk+1 − xk⟩+ ⟨Gk(xk+1 − xk), xk+1 − xk⟩

+ LH(rk + rk−1)∥xk+1 − xk∥2 −
µ

2
∥xk+1 − xk∥2 . (25)

Since xk+1 is the solution of the inclusion (19) and g is convex, the subgradient inequality holds:

g(xk+1)− g(xk) ≤ ⟨vk+1, xk+1 − xk⟩ . (26)

Combining (25) and (26), we deduce that

F (xk+1)− F (xk) ≤ ⟨vk+1 +∇f(xk), xk+1 − xk⟩+ ⟨Gk(xk+1 − xk), xk+1 − xk⟩

+ LH(rk + rk−1)∥xk+1 − xk∥2 −
µ

2
∥xk+1 − xk∥2

= −µ

2
r2k ,

(27)

where the last equality holds due to (19).

Due to the above descent lemma of function values, we can derive bounds for several sequences.
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Lemma 4.7. Given a number of iterations N ∈ N, we have:

N∑
k=0

r2k ≤ 2(F (x0)− inf F )

µ
< +∞ , (28)

N−1∑
k=0

rk ≤ C0N
1
2 , (29)

N∑
k=1

rk ≤ C0N
1
2 , (30)

where C0 :=
√

2(F (x0)−inf F )
µ .

Proof. The first inequality is derived from Lemma 4.6. Then, we apply the Cauchy–Schwarz
inequality and obtain

N−1∑
i=0

rk ≤

(
N−1∑
k=0

r2k

)1/2(N−1∑
i=0

1
2
1

)1/2

≤

( ∞∑
k=0

r2k

)1/2

N1/2 ≤ C0N
1/2 . (31)

Similarly, we have

N∑
i=1

rk ≤

(
N∑

k=1

r2k

)1/2( N∑
i=1

1
2
1

)1/2

≤

( ∞∑
k=0

r2k

)1/2

N1/2 ≤ C0N
1/2 . (32)

Now, we provide several simple but useful inequalities showing the relations among Gk, G̃k, Jk.
Based on the growth rate of the summation over sequence (rk)k∈N, we can derive an upper bound
growth rate of the sequence (λk)k∈N.

Lemma 4.8. Given the number of iterations N ∈ N, we have

N∑
k=1

λk ≤ 2LHC0N
1/2

with C0 as in Lemma 4.7.

Proof. The result follows by combining the definition of λk with Lemma 4.7.

Lemma 4.9. For any k ∈ N, we have

u⊤
k G̃kuk ≤ 1

µ
∥F ′(xk)∥2 . (33)

Proof. Since g is convex, hence, its subdifferential monotone, we have u⊤
k (vk+1−vk) ≥ 0. According

to (19), we obtain that G̃kuk = −∇f(xk)− vk+1. Then we can deduce that:

u⊤
k G̃kuk ≤ u⊤

k G̃kuk + u⊤
k (vk+1 − vk)

= u⊤
k (−∇f(xk)− vk+1 + vk+1 − vk)

= −u⊤
k F

′(xk)

= −u⊤
k G̃

1/2
k G̃

−1/2
k F ′(xk)

≤ ∥uk∥G̃k
∥F ′(xk)∥G̃−1

k

≤ 1

2
u⊤
k G̃kuk +

1

2
∥F ′(xk)∥2G̃−1

k

≤ 1

2
u⊤
k G̃kuk +

1

2µ
∥F ′(xk)∥2 ,

(34)

where the second inequality uses Cauchy-Schwarz inequality, the third inequality uses Young’s
inequality and the last inequality holds since G̃−1

k ⪯ 1
µI (see Lemma 4.5 and Lemma 4.2). By

rearranging the above inequality, we obtain the desired result.
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The following lemma is a crucial estimate of the descent of the corrected SR1 metric G̃k with
respect to our potential function V (G̃k) = tr G̃k.

Lemma 4.10. For any k ∈ N, we have the following descent inequality:

V (G̃k)− V (G̃k+1) ≥
µg2k+1

g2k
− nλk+1 , (35)

where gk := ∥F ′(xk)∥.

Proof. By the optimality condition (19), we have G̃kuk+vk+1 = −∇f(xk) and by definition of Jk,
we have Jkuk = ∇f(xk+1)−∇f(xk). Using Lemma 4.4, we make the following estimation:

V (G̃k)− V (Gk+1) = ν(Jk, G̃k, uk) ≥
∥(G̃k − Jk)uk∥2

u⊤
k G̃kuk

=
∥∇f(xk+1) + vk+1∥2

u⊤
k G̃kuk

=
∥F ′(xk+1)∥2

u⊤
k G̃kuk

≥ µ∥F ′(xk+1)∥2

∥F ′(xk)∥2
=

µg2k+1

g2k
,

(36)

where the second inequality holds due to Lemma 4.9. Summing this with

V (Gk+1)− V (G̃k+1) = tr (Gk+1 −Gk+1 − λk+1I) ≥ −nλk+1 , (37)

we obtain the desired inequality.

Now, we are ready to prove our main theorem for Algorithm 1.

Proof of Theorem 3.1. For simplicity, we denote γ2
k :=

g2
k+1

g2
k
, where gk := ∥F ′(xk)∥. By

Lemma 4.10, summing (35) from k = 0 to N , we obtain

V (G̃0)− V (G̃N ) ≥ µ

N−1∑
k=0

γ2
k − n

N∑
k=1

λk . (38)

Since, for every k, our method preserves the relation G̃k ⪰ Gk+1 ⪰ Jk (see Lemma 4.5), we have
V (G̃k) > 0 for all k ∈ N. Therefore, we deduce that

V (G̃0) ≥ µ

N−1∑
k=0

γ2
k − n

N∑
k=1

λk . (39)

By Lemma 4.8, we obtain

CN1/2 ≥ 1

µ

(
V (G0) + 2nLHC0N

1/2
)
≥

N−1∑
k=0

γ2
k . (40)

where C := (2nLHC0+V (G0))/µ. Dividing (40) by N on both sides, we deduce with the concavity
and monotonicity of log x that

log
C

N1/2
≥ log

(
1

N

N−1∑
k=0

γ2
k

)
≥ 1

N

N−1∑
k=0

log(γ2
k) ≥ log

(N−1∏
k=0

g2k+1

g2k

)1/N
 = log

((
gN
g0

)2/N
)

.

(41)

Thus, we obtain the result

gN ≤
(

C

N1/2

)N/2

g0 . (42)
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4.3 Convergence analysis of Algorithm 2

Now, let us analyze Algorithm 2. The optimality condition of the update step in (5) is

∇f(xk) + vk+1 + G̃k(xk+1 − xk) = 0 , (43)

where vk+1 := −∇f(xk)− G̃k(xk+1 − xk) ∈ ∂g(xk+1).
As in the previous section, we need several bounds for sequences (G̃k)k∈N, (Gk)k∈N and (Jk)k∈N.

Lemma 4.11. For each k ∈ N, we have

µI ⪯ Jk ⪯ Gk+1 ⪯ G̃k , (44)

trGk+1 ≤ tr G̃k ≤ nκ̄ . (45)

Proof. We first notice that since g is convex, the monotonicity of its subdifferential yields

u⊤
k (vk+1 − vk) ≥ 0 ,

for any k ∈ N. Then, for any k ∈ N, we have

u⊤
k G̃kuk ≤ u⊤

k G̃kuk + u⊤
k (vk+1 − vk) = u⊤

k (−∇f(xk)− vk+1 + vk+1 − vk) = −u⊤
k F

′(xk) . (46)

The first inequality in (44) is a direct consequence of the strong convexity of f .
Now, we prove the remaining inequalities in (44) by induction. In order to validate the base

case k = 0, we first observe that G̃0 = G0(1 + λ0) ⪰ J0 holds by Lipschitz continuity of ∇f and
G0 = LI and λ0 = 0. Then, Lemma 4.3 shows the desired property:

J0 ⪯ G1 = SR1(J0, G̃0, u0) ⪯ G̃0 ⪯ nLI ⪯ nκ̄I .

For showing the induction, we suppose now that (44) holds for k = N − 1. We discuss by cases:

1. If tr ĜN ≤ nκ̄, then, G̃N = ĜN . Since G̃N = GN (1 + λN ) ≥ µλN and Cauchy–Schwarz
inequality, the above equality (46) implies

µλN∥uN∥2 ≤ u⊤
N G̃NuN = −u⊤

NF ′(xN ) ≤ ∥uN∥∥F ′(xN )∥ . (47)

Thus, ∥uN∥ ≤ ∥F ′(xN )∥
µλN

. Therefore,

LHrN = LH∥uN∥ ≤ LH∥F ′(xN )∥
µλN

≤
√
LH∥F ′(xN )∥ , (48)

where the last inequality holds since µλN ≥
√
LH∥F ′(xN )∥ (see the definition of λk). We can

deduce that:
LHrN + LHrN−1 ≤

√
LH∥F ′(xN )∥ + LHrN−1 = µλN . (49)

Therefore, we deduce by the induction hypothesis and Lemma 4.2 that

G̃N = GN (1 + λN )

⪰ JN−1(1 + λN )

⪰ JN−1 + µλNI

⪰ JN−1 + (LHrN−1 + LHrN )I

⪰ JN .

(50)

Using Lemma 4.3 again, we obtain JN ⪯ GN+1 = SR1(JN , G̃N , uN ) ⪯ G̃N and trGN+1 ≤
tr G̃N ≤ nκ̄.

2. If tr ĜN > nκ̄, then G̃N = LI due to the restarting step. Automatically, we have G̃N ⪰ JN
and using Lemma 4.3 again, we obtain JN ⪯ GN+1 ⪯ G̃N ⪯ LI and trGN+1 ≤ tr G̃N = nL ≤
nκ̄.

Remark 4.12. Lemma 4.11 indicates that both Gk+1 and G̃k are bounded by nκ̄I for any k ∈ N
due to the restarting strategy, while the candidate Ĝk has the possibility to be larger than nκ̄I
where κ̄ ≥ L. Since our potential function is simple and does not involve any Hessian term, the
computational cost of the simple restarting criterion tr Ĝk+1 ≤ nκ̄ is only O(n), which is another
advantage of our potential function.

13



Based on the lemma above, we can derive a descent lemma for the objective values.

Lemma 4.13 (descent lemma for function values). For any k ∈ N, we have

F (xk+1)− F (xk) ≤ −µ

2
r2k . (51)

Proof. The argument is similar with the one of Lemma 4.6. By the strong convexity of f , we have

f(xk+1)− f(xk) ≤ ⟨∇f(xk), xk+1 − xk⟩+ ⟨∇f(xk+1)−∇f(xk), xk+1 − xk⟩ −
µ

2
∥xk+1 − xk∥2

= ⟨∇f(xk), xk+1 − xk⟩+ ⟨Jk(xk+1 − xk), xk+1 − xk⟩ −
µ

2
∥xk+1 − xk∥2

≤ ⟨∇f(xk), xk+1 − xk⟩+
〈
G̃k(xk+1 − xk), xk+1 − xk

〉
− µ

2
∥xk+1 − xk∥2 ,

(52)

where the second inequality above holds due to Lemma 4.11. Since xk+1 is the solution of (43)
and g(x) is convex, we can derive that

g(xk+1)− g(xk) ≤ ⟨vk+1, xk+1 − xk⟩ . (53)

Combining (52) and (53), we deduce that

F (xk+1)− F (xk) ≤ ⟨vk+1 +∇f(xk), xk+1 − xk⟩+
〈
G̃k(xk+1 − xk), xk+1 − xk

〉
− µ

2
∥xk+1 − xk∥2

= −µ

2
r2k ,

(54)

where the last equality holds due to (43).

Next, we study the growth rates of several important sequences.

Lemma 4.14. Given a number of iteration N ∈ N, we have:

N∑
k=0

r2k ≤ 2(F (x0)− inf F )

µ
< ∞ ; (55)

N−1∑
k=0

rk ≤ C0N
1/2 and

N∑
k=1

rk ≤ C0N
1/2 ; (56)

N∑
k=1

λk ≤ ΘN3/4 where Θ :=
1

µ
(LHC0 +

√
LH(L+ nκ̄)C0) , (57)

where C0 :=
√

2(F (x0)−inf F )
µ .

Proof. We start with the first and the second results. By summing the inequality in Lemma 4.13
from k = 0 to N − 1, we have

µ

2

N−1∑
k=0

r2k ≤
N−1∑
k=0

F (xk)− F (xk+1) ≤ F (x0)− inf F , (58)

which yields the first result. Using Cauchy–Schwarz inequality, we obtain:

N−1∑
k=0

rk ≤

(
N−1∑
k=0

r2k

)1/2(N−1∑
k=0

1

)1/2

≤ C0N
1/2 , (59)

and because of the uniform bound above, we conclude that

N∑
k=1

rk ≤

(
N∑

k=1

r2k

)1/2( N∑
k=1

1

)1/2

≤ C0N
1/2 . (60)
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Now, we prove the third result. From (43) we derive that:

LH∥F ′(xk)∥ = LH∥∇f(xk)−∇f(xk−1)− G̃k−1(xk − xk−1)∥
≤ LH(∥∇f(xk)−∇f(xk−1)∥ + ∥G̃k−1(xk − xk−1)∥)
≤ LH(L+ nκ̄)rk−1 ,

(61)

where the last inequality holds since ∇f is L-Lipschitz continuous and G̃k is bounded uniformly for
any k ∈ N by the restarting step in Algorithm 2. For convenience, we denote ak :=

√
LH∥F ′(xk)∥

for all k ∈ N. From (61) and (55), we get

N∑
k=1

a2k ≤ LH(L+ nκ̄)

N−1∑
k=0

rk ≤ LH(L+ nκ̄)C0N
1/2 . (62)

Then, by Cauchy–Schwarz inequality, we obtain

N∑
k=1

ak ≤

(
N∑

k=1

a2k

)1/2( N∑
k=1

1

)1/2

≤
√
LH(L+ nκ̄)C0N

1/4 ∗N1/2 ≤
√
LH(L+ nκ̄)C0N

3/4 . (63)

Thus, we have the growth rate:

N∑
k=1

λk =
1

µ

(
N∑

k=1

LHrk−1 +

N∑
k=1

ak

)
≤ 1

µ

(
LHC0N

1/2 +
√
LH(L+ nκ̄)C0N

3/4
)
≤ ΘN3/4 , (64)

where Θ = 1
µ

(
LHC0 +

√
LH(L+ nκ̄)C0

)
.

Lemma 4.15. For any k ∈ N, we have

u⊤
k G̃kuk ≤ 1

µ
∥F ′(xk)∥2 . (65)

Proof. According to (43), we obtain that G̃kuk = −∇f(xk)− vk+1. The rest of this proof remains
the same as the one for Lemma 4.9.

Lemma 4.16. For any k ∈ N, we have a descent inequality as the following:

V (G̃k)− V (G̃k+1) ≥
µg2k+1

g2k
− nλk+1κ̄ , (66)

where gk := ∥F ′(xk)∥.

Proof. By the optimality condition in (43), we have G̃kuk + vk+1 = −∇f(xk) and by definition of
Jk, we have Jkuk = ∇f(xk+1)−∇f(xk). Using Lemma 4.4, we have the following estimation:

V (G̃k)− V (Gk+1) = ν(Jk, G̃k, uk) ≥
∥G̃k − Jk)uk∥2

u⊤
k G̃kuk

=
∥∇f(xk+1) + vk+1∥2

u⊤
k G̃kuk

=
∥F ′(xk+1)∥2

u⊤
k G̃kuk

≥ µ∥F ′(xk+1)∥2

∥F ′(xk)∥2
=

µg2k+1

g2k
,

(67)

where the second inequality holds due to Lemma 4.15.
We also need a lower bound for V (Gk+1)− V (G̃k+1), for which we need to take the two cases

of the restarting Step 4 into account.

1. When tr Ĝk+1 ≤ nκ̄, we have G̃k+1 = Ĝk+1, trGk+1 ≤ nκ̄ and

V (Gk+1)− V (G̃k+1) = tr (Gk+1 −Gk+1 − λk+1Gk+1) ≥ −nλk+1κ̄ . (68)
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2. When tr Ĝk+1 > nκ̄, we have V (Ĝk+1) > nκ̄ ≥ nL = trLI. Since in this case we set G̃k+1 = LI,
we have V (Ĝk+1) ≥ V (G̃k+1). According to Lemma 4.11, we have trGk+1 ≤ nκ̄. Since λk ≥ 0,
we deduce that

V (Gk+1)− V (G̃k+1) = V (Gk+1)− V (Ĝk+1) + V (Ĝk+1)− V (G̃k+1)

≥ V (Gk+1)− V (Ĝk+1)

≥ tr (Gk+1 −Gk+1 − λk+1Gk+1)

≥ −λk+1tr (Gk+1)

≥ −nλk+1κ̄ .

(69)

Therefore, adding (67) with either (68) or (69) yields the desired inequality.

Now, we are ready to prove our main theorem for Algorithm 2.

Proof of Theorem 3.4. For symplicity, we denote γ2
k :=

g2
k+1

g2
k
. Summing the result in Lemma 4.16

from k = 0 to N − 1, we obtain

V (G̃0)− V (G̃N ) ≥ µ

N−1∑
k=0

γ2
k − nκ̄

N∑
k=1

λk . (70)

Since, for every k, our method keeps G̃k ⪰ Jk and Gk+1 ⪰ Jk (see Lemma 4.11), we have V (G̃k) > 0
and therefore

V (G̃0) ≥ µ

N−1∑
k=0

γ2
k − nκ̄

N∑
k=1

λk . (71)

By Lemma 4.14, we obtain

CgradN
3/4 ≥ 1

µ

(
V (G0) + nκ̄ΘN3/4

)
≥

N−1∑
k=0

γ2
k , (72)

where Cgrad := (nκ̄Θ+ V (G0))/µ. Dividing (72) by N , we obtain

Cgrad

N1/4
≥ 1

N

N−1∑
k=0

γ2
k . (73)

We derive from (73) with the concavity and monotonicity of log x that

log
(Cgrad

N1/4

)
≥ log

(
1

N

N−1∑
k=0

γ2
k

)
≥ 1

N

N−1∑
k=0

log(γ2
k) = log

(N−1∏
k=0

g2k+1

g2k

)1/N
 = log

((
gN
g0

)2/N
)

.

(74)

Thus, we obtain

gN ≤
(
Cgrad

N1/4

)N/2

g0 . (75)

5 Experiments

In the following section, we consider two regression applications from machine learning to provide
also numerical evidence about the superior performance of our algorithms and thereby validat-
ing the global non-asymptotic super-linear rates of convergence. While our algorithms can solve
possibly non-smooth additive composite optimization problems, we restrict ourselves to smooth
problems, for which our algorithms are new as well. This is mainly due to the fact that the efficient
solution of sub-problems in the non-smooth case needs additional careful investigations, possibly
along the lines of [2], which we will tackle in future work.
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5.1 Regularized log-sum-exp problem

For experiment, we test our methods: Cubic SR1 PQN (Algorithm 1) and Grad SR1 PQN (Algo-
rithm 2) on the log-sum-exp problem with regularization:

min
x∈Rn

f(x) , f(x) = log
( m∑

i=1

exp (⟨ai, x⟩ − bi)
)
+

µ

2
∥x∥2 , (76)

where a1, a2, · · · , am ∈ Rn, b1, b2, · · · , bm ∈ R are given. The strong convexity modulus is µ = 1.
The Lipschitz constant is L = µ+2

∑m
i=1 ∥ai∥2 and LH = 2. In our experiment, (ai)i=1,...,m ⊂ Rn

and (bi)i=1,...,m ⊂ R are generated randomly with m = 500 and n = 200. We set κ̄ = L for Grad
SR1 PQN. As depicted in Figure 1, while the starting point is far from the optimal solution, our
methods achieve a super-linear rate of convergence. However, since cubic regularization is hard to
compute, Cubic Newton [34] and Cubic SR1 PQN are not competitive when it comes to measuring
the actual computation time. This is in contrast to the Heavy ball Method (HBF) [36] (with optimal

damping rate β =
√
L−√

µ√
L+

√
µ
and step size τ = 4

(
√
L+

√
µ)2

) and Gradient Descent (GD), which both

have cheap cost per iteration. Our gradient regularized quasi-Newton method outperforms all other
methods significantly, especially, in initial iterations. However, the estimation of convergence rates
of our method is not sharp, despite our methods perform much better in practice, which is the
price to pay for globality and non-smoothness.
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Figure 1: Our proposed Cubic SR1 PQN and Grad SR1 PQN significantly outperform first-order
methods and even faster than related Newton methods, in the early iterations. In terms of time,
our Grad SR1 PQN remains the fastest, while methods with cubic regularization take longer time
when the initial point far from the optimal point.

5.2 Logistic regression

The second experiment is a logistic regression problem with regularization on the benchmark
dataset “mushroom” from UCI Machine Learning Repository [42]:

min
x∈Rn

f(x), with f(x) :=
1

m

m∑
i=1

log(1 + exp(−bia
⊤
i x)) +

µ

2
∥x∥2 , (77)

where ai ∈ Rn, bi ∈ R for i = 1, 2, · · · ,m denotes the given data from the “mushrooms” dataset.
The strong convexity modulus is µ = 1. The Lipschitz constants are L = µ + 2

∑m
i=1 ∥ai∥2 and

LH = 2. Here, m = 8124 and n = 117. We set κ̄ = L for Grad SR1 PQN.
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Figure 2: Our proposed Cubic SR1 PQN and Grad SR1 PQN still significantly outperform first-
order methods, eventually, in number of iterations. In terms of time, our Grad SR1 PQN is still
among the fastest methods due to SR1 metric and the cheap computation of the correction step
and the restarting step.

As depicted in Figure 2, despite the starting point is far from the optimal solution, our methods
achieve a super-linear rate of convergence globally. Since the computation for the quasi-Newton
metric is less than that of Newton’s method, Cubic quasi-Newton is better than Cubic Newton
eventually in terms of time. However, due to the cubic term, neither Cubic Newton nor Cubic quasi-
Newton is competitive when it comes to measuring the actual computation time. Our gradient
regularized SR1 quasi-Newton method outperforms all other methods significantly in number of
iterations and is among the fastest in terms of time.

6 Conclusion

In this paper, we propose two variants of proximal quasi-Newton SR1 methods which converge
globally with an explicit (non-asymptotic) super-linear rate of convergence. The key is the adapta-
tion of cubic and gradient regularization from the pioneering works [34, 33] on Newton’s method to
quasi-Newton methods. The potential function in our paper differs from previous works [40, 25, 44]
and turns out to be more tractable for the analysis of the regularized SR1 quasi-Newton method,
also by making the restarting step numerically easier. Moreover, our algorithm and analysis is
directly developed for non-smooth additive composite problems. The analysis of the convergence
used in this paper paves the road to generalize many regularized Newton methods, in particular,
[33, 17, 16]. Since this paper considers the SR1 method, an interesting generalization is that of
proximal quasi-Newton methods with BFGS or DFP metric update under the same conditions,
especially without using line search.

A A variant of gradient regularized proximal quasi-Newton
method

Algorithm 3 is almost the same with Algorithm 2. Step 1 of Algorithm 3 equips the classical quasi-
Newton term with an additive gradient regularization term instead of a scaling factor involving
gradient. Step 2 defines Jk as in Algorithm 2. In Step 3, several variables are defined, including
F ′(xk+1) which will be used to generate the regularization term, compute λk and terminate the
algorithm in Step 5. Step 4 computes the corrected metric Ĝk+1 by adding λk. As in Algorithm 2,
we adopt the same restarting strategy for G̃k+1 in Algorithm 3.
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Algorithm 3 Grad Reg SR1 PQN

Require: x0, G0 = LI, λ0 = 0, G̃0 = G0 + λ0, κ̄ ≥ L.
Update for k = 0, · · · , N :

1. Update

xk+1 = argmin
x∈Rn

g(x) + ⟨∇f(xk), x− xk⟩+
1

2
∥x− xk∥2G̃k

. (78)

2. Denote but not use explicitly Jk :=
∫ 1

0
∇2f(xk + tuk)dt.

3. Compute uk = xk+1 − xk, rk = ∥uk∥ and

F ′(xk+1) = ∇f(xk+1)−∇f(xk)− G̃kuk

Gk+1 = SR1(Jk, G̃k, uk)

λk+1 =
(√

LH∥F ′(xk+1)∥ + LHrk

)
.

4. Update G̃k+1: compute Ĝk+1 = Gk+1 + λk+1 (Correction step).

If tr Ĝk+1 ≤ nκ̄: we set G̃k+1 = Ĝk+1.

Othewise: we set G̃k+1 = LI (Restart step).

5. If ∥F ′(xk+1)∥ = 0: Terminate.

End

In Algorithm 3, we have G̃k = Gk +λk where Gk is generated by the SR1 method or G̃k = LI.
We consider the smooth case that g = 0. When G̃k = Gk +λk, we can not use Sherman-Morrison-
Woodbury formula to derive the inverse of G̃k due to the addition. Thus, even for smooth case,
the computational cost of update step is the same as the inversion of a matrix, namely, O(n3).
However, for non-smooth setting, the computational cost of the update step in Algorithm 3 is
the same as that of classical proximal Newton method. For Algorithm 3, we have the following
non-asymptotic super-linear rate.

Theorem A.1 (Main Theorem 3). For any initialization x0 ∈ Rn and any N ∈ N, Grad Reg SR1
PQN has a global convergence with the rate:

∥F ′(xN )∥ ≤
(
Cgrad

N1/4

)N/2

∥F ′(x0)∥ , (79)

where Cgrad := (Θ + nL)/µ, C0 :=
√

2(F (x0)−inf F )
µ and Θ = LHC0 +

√
LH(L+ nκ̄)C0.

Proof. See Section B.

Remark A.2. In fact, (79) indicates that the super-linear rate is only attained after N ≥ C4
grad

number of iterations, where Cgrad = O( n
µ3/2 ).

B Convergence analysis of Algorithm 3

Let λk :=
(
LHrk−1 +

√
LH∥F ′(xk)∥

)
. We obtain a gradient regularized SR1 proximal quasi-

Newton method which can be also regarded as a generalization of gradient regularized prox-
imal Newton method [17]. The convergence analysis is very similar with the one for Algo-
rithm 2 since the only difference in Algorithm 3 is that G̃k+1 = Gk+1 + λk+1 with λk+1 =(
2LHrk−1 +

√
2LH∥F ′(xk)∥

)
. In this case, we have

∑N
k=1 λk ≤ ΘN3/4 where Θ = LHC0 +√

LH(L+ nκ̄)C0 is a constant. The proof of that property is very similar with the one of
Lemma 4.14. Most properties for Algorithm 2 listed in previous section still hold true for Al-
gorithm 3 except the following lemma.

Lemma B.1. For any k ∈ N, we have a descent inequality as the following:

V (G̃k)− V (G̃k+1) ≥
µg2k+1

g2k
− nλk+1 , (80)
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where gk := ∥F ′(xk)∥.

Proof. The only difference from the proof of Lemma 4.16 lies in the estimation of V (Gk+1) −
V (G̃k+1). However, we have to discuss by cases due to the restart step.

1. When tr Ĝk+1 ≤ nκ̄, we have G̃k+1 = Ĝk+1, trGk+1 ≤ nκ̄ and

V (Gk+1)− V (G̃k+1) = tr (Gk+1 −Gk+1 − λk+1I) ≥ −nλk+1 . (81)

2. When tr Ĝk+1 > nκ̄, we have V (Ĝk+1) > nκ̄ ≥ nL. Since in this case we set G̃k+1 = LI, we
have V (Ĝk+1) ≥ V (G̃k+1). We deduce that

V (Gk+1)− V (G̃k+1) = V (Gk+1)− V (Ĝk+1) + V (Ĝk+1)− V (G̃k+1)

≥ V (Gk+1)− V (Ĝk+1)

≥ tr (Gk+1 −Gk+1 − λk+1I)

≥ −nλk+1

≥ −nλk+1 .

(82)

Therefore, no matter which case, we always have

V (Gk+1)− V (G̃k+1) ≥ −nλk+1 . (83)

Summing (83) and (67), we obtain the desired inequality.

Now, we are ready to prove our main theorem for Algorithm 3.

Proof of Theorem A.1. Following the same steps of the proof of Theorem 3.4 and using Lemma B.1,
we obtain the global superlinear convergence rate (Theorem A.1) of Algorithm 3.
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